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Part II Regular Contributions

Multithread Java P Systems Running on a Cluster of Computers
Manuel ALFONSECA, Carlos CASTAÑEDA MARROQUÍN, Marina DE
LA CRUZ ECHEANDÍA, Rafael NÚÑEZ HERVÁS, Alfonso ORTEGA DE
LA PUENTE 94

Number of Protons/Bi-Stable Catalysts and Membranes in P
Systems. Time-Freeness
Artiom ALHAZOV 102

Symbol / Membrane Complexity of P Systems with Symport /
Antiport Rules
Artiom ALHAZOV, Rudolf FREUND, Marion OSWALD 123

Software Tools / P Systems Simulators Interoperability
Fernando ARROYO, Juan CASTELLANOS, Luis FERNÁNDEZ, Victor J.
MARTÍNEZ, Luis F. MINGO 147

Gene Regulatory Network Modelling by Means of Membrane
Systems
Nicolae BARBACARI, Aurelia PROFIR, Cleopatra ZELINSCHI 162



2 Contents

LP Colonies for Language Evolution. A Preview
Gemma BEL ENGUIX, M. Dolores JIMÉNEZ LÓPEZ 179

On P Systems as a Modelling Tool for Biological Systems
Francesco BERNARDINI, Marian GHEORGHE, Natalio KRASNOGOR,
Ravie C. MUNIYANDI, Mario J. PÉREZ-JIMÉNEZ, Francisco J.
ROMERO-CAMPERO 193

P Systems and the Modeling of Biochemical Oscillations
Luca BIANCO, Federico FONATANA, Vincenzo MANCA 214

Encoding-Decoding Classes of P Systems for the Metabolic
Algorithm
Luca BIANCO, Vincenzo MANCA 226

On the Computational Power of the Mate/Bud/Drip Brane
Calculus: Interleaving vs. Maximal Parallelism
Nadia BUSI 235

A Membrane Computing System Mapped on an Asynchronous,
Distributed Computational Environment
Giovanni CASIRAGHI, Claudio FERRETTI, A. GALLINI, Giancarlo
MAURI 253

P Systems with Memory
Paolo CAZZANIGA, Alberto LEPORATI, Giancarlo MAURI, Claudio
ZANDRON 261

On Picture Arrays Generated by P Systems
P. Helen CHANDRA, K.G. SUBRAMANIAN 282

Algebraic and Coalgebraic Aspects of Membrane Computing
Gabriel CIOBANU, Viorel Mihai GONTINEAC 289

On Symport/Antiport Systems and Semilinear Sets
Zhe DANG, Oscar H. IBARRA, Sara WOODWORTH, Hsu-Chun YEN 312

P Systems, Petri Nets and Program Machine
Pierluigi FRISCO 336

A simulator for Conformon-P Systems
Pierluigi FRISCO, Ranulf T. GIBSON 355

On the Power of Dissolution in P Systems with Active Membranes
Miguel A. GUTIÉRREZ-NARANJO, Mario J. PÉREZ-JIMÉNEZ, Agustín
RISCOS-NÚÑEZ, Francisco J. ROMERO-CAMPERO 373

A Linear Solution for QSAT with Membrane Creation
Miguel A. GUTIÉRREZ-NARANJO, Mario J. PÉREZ-JIMÉNEZ,
Francisco J. ROMERO-CAMPERO 395

Boolean Circuits and a DNA Algorithm in Membrane Computing
Mihai IONESCU, Tseren-Onolt ISHDORJ 410

Towards a Petri Net Semantics for Membrane Systems
Jetty KLEIJN, Maciej KOUTNY, Grzegorz ROZENBERG 439
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Preface

The 6th Workshop on Membrane Computing is held in Vienna from July

18th to July 21st, 2005, under the auspices of the European Molecular Computing

Consortium. It continues the tradition of the annual series that started with the

Workshop on Multiset Processing WMP-CdeA 2000 and was followed by

the Workshop on Membrane Computing WMC-CdeA 2001 and WMC-

CdeA 2002 in Curtea de Argeş as well as theWorkshop on Membrane Com-

puting WMC4 held in Tarragona 2003 andWMC5 held in Milano 2004.

The present volume contains five invited lectures and twenty-eight selected con-

tributions that were reviewed by three referees each. Based on these reviews, the

selected papers were accepted as full papers or as extended or short abstracts. The

final volume will be published after the workshop in the Springer series Lecture

Notes in Computer Science. The pre-proceedings of the previous workshops can be

found at the P Systems Web Page http://psystems.disco.unimib.it.

We thank the members of the program committee as well as the additional

referees for their quick reviewing and for their helpful remarks which allowed for

considerable improvements of the accepted papers.
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Georg Lojka

Marion Oswald

Gheorghe Păun
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Structural Operational Semantics of

P Systems

Oana ANDREI1, Gabriel CIOBANU2, Dorel LUCANU1

1“A.I.Cuza” University of Iaşi, Faculty of Computer Science

E-mail: {oandrei,dlucanu}@info.uaic.ro

2Romanian Academy, Institute of Computer Science, Iaşi

and Research Institute “e-Austria” Timişoara, Romania

E-mail: gabriel@iit.tuiasi.ro

Abstract

The paper formally describes an operational semantics of P sys-
tems. We present an abstract syntax of P systems, then the notion of
configurations, and we define the sets of inference rules corresponding
to the three stages of an evolution step: maximal parallel rewriting,
parallel communication, and parallel dissolving. Several results as-
suring the correctness of each set of inference rules are also presented.
Finally, we define simulation and bisimulation relations between P sys-
tems.

1 Introduction

Structural operational semantics (SOS) provides a framework of defining a
formal description of a computing system. It is intuitive and flexible, and it
becomes more attractive during the years by the developments presented by
G.Plotkin [14], G.Kahn [7], and R.Milner [9]. In P systems a computation is
regarded as a sequence of parallel application of rules in various membranes,
followed by a communication step and a dissolving step. A SOS of the P
systems emphasizes the deductive nature of the membrane computing by
describing the transition steps by using a set of inference rules. Considering
a set R of inference rules of form premises

conclusion
, we can describe the computation

of a P system as a deduction tree. As a consequence, given two configurations
C, C of a P system, SOS provides a formal method to show that C is obtained
in a transition step from C, i.e., R ⊢ C ⇒ C.
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Structural operational semantics is introduced by Plotkin [14], and it
becomes a well-known framework for specifying the semantics of concurrent
systems. Configurations are states of transition systems, and computations
consists of sequences of transitions between configurations, and terminating
(if it terminates) in a final configuration. In the usual style of structural
operational semantics, computations proceed by small steps through inter-
mediate configurations. In P systems, the operational semantics is given in
a rather big-step style, each step representing the collection of parallel steps
due to the maximal parallelism principle.

In this paper we present a structural operational semantics of P systems.
First we give an abstract syntax of P systems, and then we define an ap-
propriate notion of configuration. We introduce three sets of inference rules
corresponding to distinct phases in the evolution of a P system. We prove
the soundness of our inference rules. The (bi)simulation relations between
P systems are also defined; they allow to compare the evolution behaviour
of two P systems.

The structure of the paper is as follows. Section 2 presents briefly the P
systems. Section 3 represents the principal part of the paper; it presents the
structural operational semantics of the P systems. Conclusion and references
end the paper.

2 Definition of P Systems

P systems represent a new abstract model of parallel and distributed com-
puting inspired by cell compartments and molecular membranes [12]. A cell
is divided in various compartments, each compartment with a different task,
and all of them working simultaneously to accomplish a more general task of
the whole system. P systems provide a nice abstraction for parallel systems,
and a suitable framework for distributed and parallel algorithms [3].

A detailed description of the P systems can be found in [12]. A P system
consists of a hierarchy of membranes that do not intersect, with a distin-
guishable membrane, called the skin membrane, surrounding them all. A
membrane without any other membranes inside is elementary, while a non-
elementary membrane is a composite membrane. The membranes produce
a demarcation between regions. For each membrane there is a unique as-
sociated region: the space delimited from above by it and from below by
the membranes placed directly inside, if any exists. The space outside the
skin membrane is called the outer region. Because of this one-to-one corre-
spondence we sometimes use membrane instead of region. Regions contain
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multisets of objects, evolution rules and possibly other membranes. Only
rules in a region delimited by a membrane act on the objects in that region.
The multisets of objects from a region correspond to the “chemicals swim-
ming in the solution in the cell compartment”, while the rules correspond
to the “chemical reactions possible in the same compartment”. The rules
must contain target indications, specifying the membrane where the new
objects obtained after applying the rule are sent. The new objects either re-
main in the same region when they have a here target, or they pass through
membranes, in two directions: they can be sent out of the membrane which
delimits a region from outside, or can be sent in one of the membranes which
delimit a region from inside, precisely identified by its label. In a step, the
objects can pass only through one membrane. We say that objects are en-
closed in messages together with the target indication. Therefore we have
here messages of typical form (w, here) with w a possibly empty multiset
of objects, out messages of typical form (w, out), and in messages of typical
form (w, inL), both with w a non-empty multiset of objects.

For the sake of simplicity, we consider that the messages with the same
target indication merge into one message, such that

(w1, here) . . . (wn, here) = (w, here),
(w1, inL) . . . (wn, inL) = (w, inL), and
(w1, out) . . . (wn, out) = (w, out),

where w = w1 . . . wn.
A membrane is dissolved by the symbol δ resulted after a rule applica-

tion; this action is important when discussing about adaptive executions.
When such an action takes place, the membrane disappears, its contents
(objects and membranes) remain free in the membrane placed immediately
outside, and the evolution rules of the dissolved membranes are lost. The
skin membrane is never dissolved. The application of evolution rules is done
in parallel, and it is eventually regulated by priority relationships between
rules.

A P system has a certain structure represented by a tree (with skin as
its root and elementary membranes as leaves), or by a string of correctly
matching parentheses, placed in a unique pair of matching parentheses; each
pair of matching parentheses corresponds to a membrane. Graphically, a
membrane structure is represented by a Venn diagram in which two sets
can be either disjoint, or one is a subset of the other. This representation
makes clear that the order of sibling membranes is irrelevant (as they float
around), while, on the contrary, the inclusion relationship (or parent-child
relationship in the tree-like representation) between membranes is essential.
The membranes (and the corresponding regions) are labelled in a one-to-
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one manner with labels from a given set, usually ranging from 1 to the total
number of membranes.

Formally, a P system is a structure Π = (O, µ, w1, . . . , wm, (R1, ρ1),. . . ,
(Rm, ρm), io), where:

(i) O is an alphabet of objects;

(ii) µ is a membrane structure;

(iii) wi are the initial multisets over O associated with the regions defined
by µ;

(iv) Ri are finite sets of evolution rules over O associated with the mem-
branes, of typical form u → v, with u a multiset over O and v consisting
of messages and/or the dissolving symbol δ;

(v) ρi is a partial order relation over Ri, specifying a priority relation
among the rules: (r1, r2) ∈ ρi iff r1 > r2 (i.e., r1 has a higher priority
than r2);

(vi) i0 is either a number between 1 and m specifying the output membrane
of Π, or it is equal to 0 indicating that the output is the outer region.

Since the skin is not allowed to be dissolved, we consider that the rules of
the skin do not involve δ. These are the general P systems, or transition P
systems; many other variants and classes were introduced [12].

The membranes preserve the initial labelling, evolution rules and priority
relation among them in all subsequent configurations. Therefore in order to
describe a membrane we consider its label and the current multiset of objects
together with its structure. We use the mappings rules and priority to
associate to a membrane label the set of evolution rules and the priority
relation : rules(Li) = Ri, priority(Li) = ρi, and the projections L and w
which return from a membrane its label and its current multiset, respectively.

Notation. If X is a set, then X∗

c denotes the set of the finite multisets
defined over X, and X+

c denotes X∗

c without the empty multiset. This
notations are inspired by the one-to-one correspondence from the set of the
finite multisets defined over X onto the free commutative monoid generated
by X.

Formally, the set of membranes for a P system Π, denoted by M(Π),
and the membrane structure are inductively defined as follows:

• if L is a label, and w is a multiset over O ∪ (O∗

c × {here}) ∪ (O+
c ×

{out}) ∪ {δ}, then 〈 L | w 〉 ∈ M(Π); 〈 L | w 〉 is called simple (or
elementary) membrane, and it has the structure 〈〉;
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• if M1, . . . , Mn ∈ M(Π) with n ≥ 1, the structure of Mi is µi for all
i ∈ [n], L is a label, w is a multiset over O ∪ (O∗

c × {here}) ∪ (O+
c ×

{out}) ∪ (O+
c × {inL(Mj)|j ∈ [n]}) ∪ {δ}, then 〈 L | w ; M1, . . . , Mn 〉 ∈

M(Π); 〈 L | w ; M1, . . . , Mn 〉 is called a composite membrane, and it
has the structure 〈µ1, . . . , µn〉.

A finite multiset of membranes is usually written as M1, . . . , Mn. We
denote by M+(Π) the set of non-empty finite multisets of membranes.
The union of two multisets of membranes M+ = M1, . . . , Mm and N+ =
N1, . . . , Nn is written as M+, N+ = M1, . . . , Mm, N1, . . . , Nn. An element
from M+(Π) is either a membrane, or a set of sibling membranes.

A committed configuration for a P system Π is a skin membrane which
has no messages and no dissolving symbol δ, i.e., the multisets of all regions
are elements in O∗

c . We denote by C(Π) the set of committed configurations
for Π, and it is a proper subset of M+(Π). We have C ∈ C(Π) iff C is a skin
membrane of Π and w(M) is a multiset over O for each membrane M in C.

An intermediate configuration is a skin membrane in which we have
messages or the dissolving symbol δ. The set of intermediate config-
urations is denoted by C#(Π). We have C ∈ C#(Π) iff C is a skin
membrane of Π such that there is a membrane M with w(M) = w′w′′,
w′ ∈ (Msg(O) ∪ {δ})+c , and w′′ ∈ O∗

c . By Msg(O) we denote the set
(O∗ × {here}) ∪ (O+ × {out}) ∪ (O+ × {inL(M)}).

A configuration is either a committed configuration or an intermediate
configuration. Each P system has an initial committed configuration which
is characterized by the initial multiset of objects for each membrane and the
initial membrane structure of the system.

Example 1 We give an example of a deterministic P system computing n2

for a given n. The initial configuration of such a system is:
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ca → (cd, here)

> c → δ

f → (ff, here)

d → (c, here)

c → (a, here)

a → (a, here)(e, in4)

ff → (f, here) > f → δ

and it is written as 〈 1 | empty ; 〈 2 | empty ; 〈 3 | ancf 〉, 〈 4 | empty 〉 〉 〉.

3 Structural Operational Semantics of P Systems

Structural operational semantics descriptions of systems start from abstract
syntax. Specifications of abstract syntax introduce symbols for syntactic
sets, meta-variables ranging over those sets, and notation for constructor
functions. Some of the syntactic sets are usually regarded as basic, and left
open or described only informally. The abstract syntax for P systems is
given as follows:

Objects: o ∈ O

Multisets of objects: w ∈ O∗

c

Labels: L ∈ {Skin} ∪ L

Messages: (w, here), (w, inL), (w, out) ∈ Msg(O)

Dissolving symbol: δ

Membrane contents: w ∈ (O ∪ Msg(O) ∪ {δ})∗c

6



Membranes: M ∈ M(Π)
M ::= 〈L | w〉 | 〈L | w; M+〉

Sibling membranes: M+ ∈ M+(Π) = M(Π)+c
Committed configurations: C ∈ C(Π)

Intermediate configurations: C ∈ C#(Π)

In structural operational semantics, the evolution of systems is modelled
by a transition system specified inductively, by rules. The transition sys-
tem for a P system Π is intuitively defined as follows. For two committed
configurations C1 and C2 of Π, we say that there is a transition from C1 to
C2, and write C1 ⇒ C2, if the following steps are executed in the following
given order:

1. the maximal parallel rewriting step, written C1
mpr
=⇒ C ′

2, is consisting
in non-deterministically assigning objects to evolution rules in every
membrane, and executing them in a maximal parallel manner;

2. the parallel communication of objects through membranes, written

C ′

2
tar
=⇒ C ′′

2 , is consisting in sending the existing messages;

3. the parallel membrane dissolving, written C ′′

2
δ

=⇒ C2, consisting in
dissolving the membranes which contain the δ symbol.

The last two steps are executed only if there are messages or δ symbols
resulted from the first step, respectively. If the first step is not possible,
consequently neither the other two steps, then we say that the system has
reached a halting configuration. A halting configuration is always a commit-
ted one.

Next we present in the terms of SOS each of the three steps.

3.1 Maximal Parallel Rewriting Step

We can pass from a configuration to another one by using the evolution
rules. This is done in parallel: all objects, from all membranes, which can
be the subject of local evolution rules, as prescribed by the priority relation,
should evolve simultaneously. The rules of a membrane are using its current
objects as much as this is possible in a parallel and non-deterministic way.
However, an object introduced by a rule cannot evolve at the same step by
means of another rule. The use of a rule u → v in a region with a multiset
w means to subtract the multiset identified by u from w, and then adding
the objects of v according to the form of the rule.

7



We denote the maximal parallel rewriting on membranes by
mpr
=⇒ and

by
mpr
=⇒L the maximal parallel rewriting over the multisets of objects of

the membrane labelled by L (we omit the label whenever it is clear from

the context). SOS definition of
mpr
=⇒ uses two predicates regarding mpr-

irreducibility and (L, w)-consistency.

Definition 1 The irreducibility property w.r.t. the maximal parallel rewrit-
ing relation for multisets of objects, messages, and δ, for membranes, and
for sets of sibling membranes is defined as follows:

• a multiset w consisting only of objects is L-irreducible iff there
are no rules in rules(L) applicable to w w.r.t. the priority relation
priority(L);

• a multiset containing at least a message or the dissolving symbol δ is
L-irreducible;

• a simple membrane 〈L |w 〉 is mpr-irreducible iff w is L-irreducible;

• a non-empty set of sibling membranes M1, . . . , Mn is mpr-

irreducible iff Mi is mpr-irreducible, for every i ∈ [n];

• a composite membrane 〈 L | w ; M1, . . . , Mn 〉, with n ≥ 1, is mpr-

irreducible iff w is L-irreducible, and the set of sibling membranes
M1, . . . , Mn is mpr-irreducible.

Definition 2 Let M be a membrane labelled by L, and w a multiset of
objects. A non-empty multiset R = (u1 → v1, . . . , un → vn) of evolution
rules is (L, w)-consistent iff:

- R ⊆ rules(L),

- w = u1 . . . unz, so each rule r ∈ R is applicable on w,

- (∀r ∈ R, ∀r′ ∈ rules(L)) r′ applicable on w implies (r′, r) /∈ priority(L),

- (∀r′, r′′ ∈ R) (r′, r′′) /∈ priority(L),

- the dissolving symbol δ has at most one occurrence in the multiset v1 . . . vn.

The maximal parallel rewriting relation
mpr
=⇒ is defined by the fol-

lowing inference rules:

8



For each w ∈ O+
c and L-irreducible z ∈ O∗

c such that w = u1 . . . unz, and
(L, w)-consistent rules (u1 → v1, . . . , un → vn),

(R1)
w

mpr
=⇒L v1 . . . vnz

For each w ∈ O+
c , w′ ∈ (O ∪ Msg(O) ∪ {δ})+c ,

(R2)
w

mpr
=⇒L w′

〈 L | w 〉
mpr
=⇒ 〈 L | w′ 〉

For each w ∈ O+
c , w′ ∈ (O ∪ Msg(O) ∪ {δ})+c , M+, M ′

+ ∈ M+(Π),

(R3)
w

mpr
=⇒L w′, M+

mpr
=⇒ M ′

+

〈 L | w ; M+ 〉
mpr
=⇒ 〈 L | w′ ; M ′

+ 〉

For each w ∈ O+
c , w′ ∈ (O ∪ Msg(O) ∪ {δ})+c , and mpr-irreducible M+ ∈

M+(Π),

(R4)
w

mpr
=⇒L w′

〈 L | w ; M+ 〉
mpr
=⇒ 〈 L | w′ ; M+ 〉

For each L-irreducible w ∈ O∗

c , M+, M ′

+ ∈ M+(Π),

(R5)
M+

mpr
=⇒ M ′

+

〈 L | w ; M+ 〉
mpr
=⇒ 〈 L | w ; M ′

+ 〉

For each M, M ′ ∈ M(Π), M+, M ′

+ ∈ M+(Π),

(R6)
M

mpr
=⇒ M ′, M+

mpr
=⇒ M ′

+

M, M+
mpr
=⇒ M ′, M ′

+

For each M, M ′ ∈ M(Π), and mpr-irreducible M+ ∈ M+(Π),

(R7)
M

mpr
=⇒ M ′

M, M+
mpr
=⇒ M ′, M+

Example 2 Considering the P system of Example 1, the inference tree for

〈1|empty ; 〈2|aaf ; 〈4|ee〉〉〉
mpr
=⇒ 〈1|empty ; 〈2|(aa, here)(ee, in4)δ ; 〈4|ee〉〉〉

is:

9



(R1)
aaf

mpr
=⇒2 (aa, here)(ee, 4)δ

(R4)
〈 2 | aaf ; 〈 4 | ee 〉 〉

mpr
=⇒ 〈 2 | (aa, here)(ee, in4)δ ; 〈 4 | ee 〉 〉

(R5)
〈 1 | empty ; 〈 2 | aaf ; 〈 4 | ee 〉 〉 〉

mpr
=⇒ 〈 1 | empty ; 〈 2 | (aa, here)(ee, in4)δ ; 〈 4 | ee 〉 〉 〉

Lemma 1 If w
mpr
=⇒L w′, then w′ is L-irreducible.

Proof. We get w
mpr
=⇒L w′ only applying (R1) using a (L, w)-consistent

multiset of rules. Then we have w′ = w′′z such that w′′ ∈ (Msg(O)∪{δ})+c ,
and z ∈ O∗

c is L-irreducible. Then w′ is L-irreducible by definition because
it contains messages or δ. �

Lemma 2 If M+
mpr
=⇒ M ′

+ then M ′

+ is mpr-irreducible.

Proof. Let M+, M ′

+ be two non-empty sets of membranes such that M+
mpr
=⇒

M ′

+. We prove that M ′

+ is mpr-irreducible by induction on the depth of the
associated inference tree. We consider all possible cases for the final step of
the inference:

(i) M+
mpr
=⇒ M ′

+ is inferred by (R2). Then M+ = 〈L|w〉 and M ′

+ = 〈L|w′〉

with w
mpr
=⇒ w′. By Lemma 1 w′ is L-irreducible, therefore M ′

+ is mpr-
irreducible by definition.

(ii) M+
mpr
=⇒ M ′

+ is inferred by (R3). Then M+ = 〈 L | w ; N+ 〉 and

M ′

+ = 〈L |w′ ; N ′

+ 〉 with w
mpr
=⇒L w′ inferred by (R1), and N+

mpr
=⇒ N ′

+

inferred by a shorter inference tree. By Lemma 1 w′ is L-irreducible,
and by inductive hypothesis, N ′

+ is mpr-irreducible. Therefore M ′

+ is
mpr-irreducible by definition.

(iii) M+
mpr
=⇒ M ′

+ is inferred by (R4). Then M+ = 〈 L | w ; N+ 〉 and

M ′

+ = 〈 L | w′ ; N+ 〉 with w
mpr
=⇒ w′ (therefore w′ is L-irreducible by

Lemma 1) and N+ mpr-irreducible. By definition we obtain that M ′

+

is mpr-irreducible.

(iv) M+
mpr
=⇒ M ′

+ is inferred by (R5). Then M+ = 〈 L | w ; N+ 〉 and

M ′

+ = 〈L |w ; N ′

+ 〉 with w L-irreducible and N+
mpr
=⇒ N ′

+ inferred by a
shorter inference tree. By inductive hypothesis N ′

+ is mpr-irreducible,
therefore M ′

+ is mpr-irreducible.

10



(v) M+
mpr
=⇒ M ′

+ is inferred by (R6). Then M+ = M, N+ and M ′

+ =

M ′, N ′

+ where M
mpr
=⇒ M ′ and N+

mpr
=⇒ N ′

+ are inferred by shorter in-
ference trees. By inductive hypothesis M ′ and N ′

+ are mpr-irreducible,
therefore M ′, N ′

+ is mpr-irreducible.

(vi) M+
mpr
=⇒ M ′

+ is inferred by (R7). Then M+ = M, N+ and M ′

+ =

M ′, N+ where M
mpr
=⇒ M ′ is inferred by a shorter inference tree, and

N+ is mpr-irreducible. By inductive hypothesis M ′ is mpr-irreducible,
therefore M ′, N+ is mpr-irreducible by definition.

�

Theorem 1 Let Π be a P system. If C ∈ C(Π) and C
mpr
=⇒ C ′, then C ′ ∈

C#(Π) and C ′ is mpr-irreducible.

The proof of the theorem follows easily from Lemma 2.

3.2 Parallel Communication of Objects

Communication through two membranes M1 and M2 can take place only if
one is inside the other.

We say that a multiset w is here-free/inL-free/out-free if it does not
contain any here/inL/out messages, respectively. For w a multiset of objects
and messages, we introduce the operations obj, here, out, and inL as follows:

obj(w) is obtained from w by removing all messages,

here(w) =

{

empty if w is here-free,
w′′ if w = w′(w′′, here) ∧ w′ is here-free,

out(w) =

{

empty if w is out-free,
w′′ if w = w′(w′′, out) ∧ w′ is out-free,

inL(w) =

{

empty if w is inL-free,
w′′ if w = w′(w′′, inL) ∧ w′ is inL-free.

We recall that all the messages with the same target merge in one message.

Definition 3 The tar-irreducibility property for membranes and for sets
of sibling membranes is defined as follows:

1. a simple membrane 〈 L | w 〉 is tar-irreducible iff L 6= Skin ∨ (L =
Skin ∧ w is out-free);

2. a non-empty set of sibling membranes M1, . . . , Mn is tar-irreducible

iff Mi is tar-irreducible, for every i ∈ [n];

11



3. a composite membrane 〈L|w ; M1, . . . , Mn〉, n ≥ 1, is tar-irreducible

iff:

(a) L 6= Skin ∨ (L = Skin ∧ w is out-free),

(b) w is inL(Mi)-free, for every i ∈ [n],

(c) for all i ∈ [n], w(Mi) is out-free,

(d) the set of sibling membranes M1, . . . , Mn is tar-irreducible.

Notation. We treat the messages of form (w′, here) as a particular com-
munication inside their membranes consisting in substitution of (w′, here)
by w′. We denote by w the multiset obtained by replacing (here(w), here) by
here(w) in w. For instance, if w = a (bc, here) (d, out) then w = abc (d, out),
where here(w) = bc. We note that inL(w) = inL(w), and out(w) = out(w).

The parallel communication relation
tar
=⇒ is defined by the following

inference rules:

For each tar-irreducible M1, . . . , Mn ∈ M+(Π) and multiset w such that
here(w) 6= empty, or L = Skin ∧ out(w) 6= empty, or it exists i ∈ [n]
with
inL(Mi)(w)out(w(Mi)) 6= empty or here(w(Mi)) 6= empty,

(C1)
〈 L | w ; M1, . . . , Mn 〉

tar
=⇒ 〈 L | w′ ; M ′

1, . . . , M
′

n 〉

where

w′ =

{

obj(w) out(w(M1)) . . . out(w(Mn)) , if L = Skin
obj(w) (out(w), out) out(w(M1)) . . . out(w(Mn)) , otherwise

and

w(M ′

i) = obj(w(M ′

i)) inL(Mi)(w), for all i ∈ [n]

For each M1, . . . , Mn, M ′

1, . . . , M
′

n ∈ M+(Π), and multiset w,

(C2)
M1, . . . , Mn

tar
=⇒ M ′

1, . . . , M
′

n

〈 L | w ; M1, . . . , Mn 〉
tar
=⇒ 〈 L | w′′ ; M ′′

1 , . . . , M ′′

n 〉

where

w′′ =

{

obj(w) out(w(M ′

1)) . . . out(w(M ′

n)) if L = Skin,
obj(w) (out(w), out) out(w(M ′

1)) . . . out(w(M ′

n)) otherwise,
and each M ′′

i is obtained from M ′

i by replacing its resources by

w(M ′′

i ) = obj(w(M ′

i)) inL(M ′

i)
(w), for all i ∈ [n]
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For each multiset w such that here(w) out(w) 6= empty,

(C3)
〈 Skin | w 〉

tar
=⇒ 〈 Skin | obj(w) 〉

For each M, M ′ ∈ M(Π), and tar-irreducible M+ ∈ M+(Π),

(C4)
M

tar
=⇒ M ′

M, M+
tar
=⇒ M ′, M+

For each M ∈ M(Π), M+ ∈ M+(Π),

(C5)
M

tar
=⇒ M ′, M+

tar
=⇒ M ′

+

M, M+
tar
=⇒ M ′, M ′

+

Example 3 Considering the P system of Example 1, the inference tree for

〈1|empty; 〈2|(aa, here)(ee, in4)δ ; 〈4|ee〉〉〉
tar
=⇒ 〈1|empty; 〈2|aaδ; 〈4|eeee〉〉〉

is:

(C1)

〈 2 | (aa, here)(ee, in4)δ ; 〈 4 | ee 〉 〉
tar
=⇒ 〈 2 | aaδ ; 〈 4 | eeee 〉 〉

(C2)

〈 1 | empty ; 〈 2 | (aa, here)(ee, in4)δ ; 〈 4 | ee 〉 〉 〉
tar
=⇒ 〈 1 | empty ; 〈 2 | aaδ ; 〈 4 | eeee 〉 〉 〉

Lemma 3 If M+
tar
=⇒ M ′

+, then M ′

+ is tar-irreducible.

Proof. Let M+, M ′

+ be two non-empty sets of membranes such that M+
tar
=⇒

M ′

+. We prove that M ′

+ is tar-irreducible by induction on the depth of the
associated inference tree. We consider all possible cases for the final step of
the inference tree, i.e., each of the five rules for communication:

(i) M+
tar
=⇒ M ′

+ is inferred by (C1). Then M+ = 〈 L | w ; M1, . . . , Mn 〉,
M ′

+ = 〈 L | w′ ; M ′

1, . . . , M
′

n 〉 where M1, . . . , Mn is a tar-irreducible
set of membranes, and (here(w) 6= empty, or L = Skin ∧ out(w) 6=
empty, or it exists i ∈ [n] with inL(Mi)(w)out(w(Mi)) 6= empty or
here(w(Mi)) 6= empty). Then M ′

+ is tar-irreducible by Definition 3.3.
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(ii) M+
tar
=⇒ M ′

+ is inferred by (C2). Then M+ = 〈 L | w ; M1, . . . , Mn 〉,

M ′

+ = 〈 L | w′′ ; M ′′

1 , . . . , M ′′

n 〉 and the hypothesis M1, . . . , Mn
tar
=⇒

M ′

1, . . . , M
′

n is inferred by a shorter inference tree. M ′

1, . . . , M
′

n is tar-
irreducible by inductive hypothesis. For the membrane M ′

+, w′′ is
out-free if L = Skin, w′′ is inL(Mi)-free and w(M ′′

i ) is out-free, for
all i ∈ [n]. Moreover, the sibling membranes M ′′

1 , . . . , M ′′

n are tar-
irreducible. Then M ′

+ is tar-irreducible by Definition 3.3.

(iii) M+
tar
=⇒ M ′

+ is inferred by (C3). Then M+ = 〈 Skin | w 〉, M ′

+ =
〈Skin | obj(w) 〉, where out(w) 6= empty, and w(M ′

+) is out-free. Then
M ′

+ is tar-irreducible by Definition 3.1.

(iv) M+
tar
=⇒ M ′

+ is inferred by (C4). Then M+ = M, N+, M ′

+ = M ′, N+

where N+ is tar-irreducible, and M
tar
=⇒ M ′ is inferred by a shorter

inference tree. It follows that M ′ is tar-irreducible by inductive hy-
pothesis. Therefore M ′

+ is tar-irreducible by Definition 3.2.

(v) M+
tar
=⇒ M ′

+ is inferred by (C5). Then M+ = M, N+, M ′

+ = M ′, N ′

+

where M
tar
=⇒ M ′ and N+

tar
=⇒ N ′

+ are inferred by shorter inference
trees. M ′ and N ′

+ are tar-irreducible by inductive hypothesis. It
follows that M ′, N ′

+ is a tar-irreducible by Definition 3.2.

�

Theorem 2 Let Π be a P system. If C ∈ C#(Π) and C
tar
=⇒ C ′, then

C ′ ∈ C(Π) ∪ C#(Π), and C ′ is a tar-irreducible.

Proof follows easily from Lemma 3.

3.3 Parallel Membrane Dissolving

If the special symbol δ occurs in the multiset of objects of a membrane
labelled by L, the membrane is dissolved producing the following changes
in the system:

• its evolution rules and the associated priority relation are lost, and

• its contents (objects and membranes) are added to the contents of the
region which was immediately external to the dissolved membrane.
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We consider the extension of the operator w (previously defined
over membranes) to non-empty sets of sibling membranes by setting
w(M1, . . . , Mn) = w(M1) . . . w(Mn). We say that a multiset w is δ-free
if it does not contain the special symbol δ.

Definition 4 The δ-irreducibility property for membranes and for sets of
sibling membranes is defined as follows:

1. a simple membrane is δ-irreducible;

2. a non-empty set of sibling membranes M1, . . . , Mn is δ-irreducible

iff every membrane Mi is δ-irreducible, for 1 ≤ i ≤ n;

3. a composite membrane 〈 L | w ; M+ 〉 is δ-irreducible iff M+ is δ-
irreducible, and w(M+) is δ-free.

The parallel dissolving relation
δ

=⇒ is defined by the following infer-
ence rules:

For each two multisets of objects w1, w2, and labels L1, L2,

(D1)
〈 L1 | w1 ; 〈 L2 | w2δ 〉 〉

δ
=⇒ 〈 L1 | w1w2 〉

For each M+ ∈ M+(Π), δ-irreducible 〈 L2 | w2δ ; M+ 〉, and label L1,

(D2)
〈 L1 | w1 ; 〈 L2 | w2δ ; M+ 〉 〉

δ
=⇒ 〈 L1 | w1w2 ; M+ 〉

For each M+ ∈ M+(Π), δ-free multiset w2, and labels L1, L2,

(D3)
〈 L2 | w2 ; M+ 〉

δ
=⇒ 〈 L2 | w

′

2 〉

〈 L1 | w1 ; 〈 L2 | w2 ; M+ 〉 〉
δ

=⇒ 〈 L1 | w1 ; 〈 L2 | w′

2 〉 〉

For each M+, M ′

+ ∈ M+(Π), δ-free multiset w2, multisets w1, w
′

2, and
labels L1, L2

(D4)
〈 L2 | w2 ; M+ 〉

δ
=⇒ 〈 L2 | w

′

2 ; M ′

+ 〉

〈 L1 | w1 ; 〈 L2 | w2 ; M+ 〉 〉
δ

=⇒ 〈 L1 | w1 ; 〈 L2 | w′

2 ; M ′

+ 〉 〉
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For each M+ ∈ M+(Π), multisets w1, w2, w
′

2, and labels L1, L2

(D5)
〈 L2 | w2δ ; M+ 〉

δ
=⇒ 〈 L2 | w

′

2δ 〉

〈 L1 | w1 ; 〈 L2 | w2δ ; M+ 〉 〉
δ

=⇒ 〈 L1 | w1w′

2 〉

For each M+ ∈ M+(Π), multisets w1, w2, w
′

2, and labels L1, L2

(D6)
〈 L2 | w2δ ; M+ 〉

δ
=⇒ 〈 L2 | w

′

2δ ; M ′

+ 〉

〈 L1 | w1 ; 〈 L2 | w2δ ; M+ 〉 〉
δ

=⇒ 〈 L1 | w1w′

2 ; M ′

+ 〉

For each M+, N+ ∈ M+(Π), δ-irreducible 〈 L | w ; N+ 〉, and multisets w′,

(D7)
〈 L | w ; M+ 〉

δ
=⇒ 〈 L | w′ 〉

〈 L | w ; M+, N+ 〉
δ

=⇒ 〈 L | w′ ; N+ 〉

For each M+, M ′

+, N ′

+ ∈ M+(Π), δ-irreducible 〈L |w ; N+ 〉, and multisets
w′, w′′,

(D8)
〈 L | w ; M+ 〉

δ
=⇒ 〈 L | w′ ; M ′

+ 〉

〈 L | w ; M+, N+ 〉
δ

=⇒ 〈 L | w′ ; M ′

+, N+ 〉

(D9)
〈 L | w ; M+ 〉

δ
=⇒ 〈 L | ww′ 〉 〈 L | w ; N+ 〉

δ
=⇒ 〈 L | ww′′ 〉

〈 L | w ; M+, N+ 〉
δ

=⇒ 〈 L | ww′w′′ 〉

(D10)
〈 L | w ; M+ 〉

δ
=⇒ 〈 L | ww′ 〉 〈 L | w ; N+ 〉

δ
=⇒ 〈 L | ww′′ ; N ′

+ 〉

〈 L | w ; M+, N+ 〉
δ

=⇒ 〈 L | ww′w′′ ; N ′

+ 〉

(D11)
〈 L | w ; M+ 〉

δ
=⇒ 〈 L | ww′ ; M ′

+ 〉 〈 L | w ; N+ 〉
δ

=⇒ 〈 L | ww′′ ; N ′

+ 〉

〈 L | w ; M+, N+ 〉
δ

=⇒ 〈 L | ww′w′′ ; M ′

+, N ′

+ 〉

Example 4 Considering the P system of Example 1, the inference tree for

〈1|empty; 〈2|empty; 〈3|dffffδ〉, 〈4|empty〉〉〉
δ

=⇒ 〈1|empty; 〈2|dffff ; 〈4|empty〉〉〉

is:
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(D1)

〈 2 | empty ; 〈 3 | dffffδ 〉 〉
δ

=⇒ 〈 2 | dffff 〉
(D7)

〈 2 | empty ; 〈 3 | dffffδ 〉, 〈 4 | empty 〉 〉
δ

=⇒ 〈 2 | dffff ; 〈 4 | empty 〉 〉
(D4)

〈 1 | empty ; 〈 2 | empty ; 〈 3 | dffffδ 〉, 〈 4 | empty 〉 〉 〉
δ

=⇒

〈 1 | empty ; 〈 2 | dffff ; 〈 4 | empty 〉 〉 〉

Lemma 4 If M+
δ

=⇒ M ′

+, then M ′

+ is δ-irreducible.

Proof. Let M+, M ′

+ be two non-empty sets of membranes such that M+
δ

=⇒
M ′

+. We prove that M ′

+ is δ-irreducible by induction on the depth of the
associated inference tree. We consider all possible cases for the final step of
the inference:

(i) M+
δ

=⇒ M ′

+ is inferred by (D1). Since M ′

+ is a simple membrane, M ′

+

is δ-irreducible by Definition 4.1.

(ii) M+
δ

=⇒ M ′

+ is inferred by (D2). Then M+ = 〈L1 |w1 ; 〈L2 |w2δ ; N+ 〉〉
and M ′

+ = 〈 L1 | w1w2 ; N+ 〉, where 〈 L2 | w2δ ; N+ 〉 is δ-irreducible.
It follows that w(N+) is δ-free, and M ′

+ is δ-irreducible by Definition
4.3.

(iii) M+
δ

=⇒ M ′

+ is inferred by (D3). Then M+ = 〈L1 |w1 ; 〈L2 |w2 ; N+ 〉 〉

and M ′

+ = 〈 L1 | w1 ; 〈 L2 | w
′

2 〉 〉, where 〈 L2 | w2 ; N+ 〉
δ

=⇒ 〈 L2 | w
′

2 〉
is inferred by a shorter inference tree, and w2 is δ-free. 〈 L2 | w′

2 〉
is δ-irreducible by inductive hypothesis. Since w2 is δ-free and no
dissolving rule preserves δ, it follows w′

2 is δ-free. Then M ′

+ is δ-
irreducible by Definition 4.3.

(iv) M+
δ

=⇒ M ′

+ is inferred by (D4). We proceed in a similar way to that
used for (D3).

(v) M+
δ

=⇒ M ′

+ is inferred by (D5). M ′

+ is δ-irreducible by Definition 4.1.

(vi) M+
δ

=⇒ M ′

+ is inferred by (D6). Then M+ = 〈L1 |w1 ; 〈L2 |w2δ ; N+ 〉〉

and M ′

+ = 〈L1 |w1w
′

2 ; N ′

+ 〉, where 〈L2 |w2δ ; N+ 〉
δ

=⇒ 〈L2 |w
′

2δ ; N ′

+ 〉
is inferred by a shorter inference tree. 〈L2 |w

′

2δ ; N ′

+ 〉 is δ-irreducible
by inductive hypothesis, and hence N ′

+ is δ-irreducible, and w(N ′

+) is
δ-free. M ′

+ is also δ-irreducible by Definition 4.3.

(vii) M+
δ

=⇒ M ′

+ is inferred by (D7). Then M+ = 〈 L | w ; N ′

+, N ′′

+ 〉 and

M ′

+ = 〈 L | w′ ; N ′′

+ 〉, where 〈 L | w ; N ′

+ 〉
δ

=⇒ 〈 L | w′ 〉 is inferred by
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a shorter inference tree, and 〈 L | w ; N ′′

+ 〉 is δ-irreducible. It follows
that w(N ′′

+) is δ-free, and M ′

+ is δ-irreducible by Definition 4.3.

(viii) M+
δ

=⇒ M ′

+ is inferred by (D8). Then M+ = 〈 L | w ; N1
+, N2

+ 〉 and

M ′

+ = 〈 L | w′ ; N3
+, N2

+ 〉, where 〈 L | w ; N1
+ 〉

δ
=⇒ 〈 L | w′ ; N3

+ 〉 is
inferred by a shorter inference tree, and 〈 L | w ; N2

+ 〉 is δ-irreducible.
N3

+ is δ-irreducible and w(N3
+) is δ-free by inductive hypothesis and

Definition 4.3. It follows that N3
+, N2

+ is δ-irreducible by Definition
4.2. Since w(N3

+, N2
+) is δ-free, we get that M ′

+ is δ-irreducible by
Definition 4.3.

(ix) M+
δ

=⇒ M ′

+ is inferred by (D9). M ′

+ is δ-irreducible by Definition 4.1.

(x) M+
δ

=⇒ M ′

+ is inferred by (D10). Then M+ = 〈 L | w ; N1
+, N2

+ 〉 and

M ′

+ = 〈 L | ww′w′′ ; N3
+ 〉, where 〈 L | w ; N1

+ 〉
δ

=⇒ 〈 L | ww′ 〉 and

〈L |w ; N2
+ 〉

δ
=⇒ 〈L |ww′′ ; N3

+ 〉 are inferred by shorter inference trees.
〈 L | ww′′ ; N3

+ 〉 is δ-irreducible by inductive hypothesis, and hence
N3

+ is δ-irreducible, and w(N3
+) is δ-free. Then M ′

+ is δ-irreducible by
Definition 4.3.

(xi) M+
δ

=⇒ M ′

+ is inferred by (D11). Then M+ = 〈 L | w ; N1
+, N2

+ 〉 and

M ′

+ = 〈L |ww′w′′ ; N3
+, N4

+ 〉, where 〈L |w ; N1
+ 〉

δ
=⇒ 〈L |ww′ ; N3

+ 〉 and

〈L |w ; N2
+ 〉

δ
=⇒ 〈L |ww′′ ; N4

+ 〉 are inferred by shorter inference trees.
Both N3

+ and N4
+ are δ-irreducible, and both w(N3

+) and w(N4
+) are

δ-free by inductive hypothesis and Definition 4.3. Therefore N3
+, N4

+

is also δ-irreducible, and w(N3
+, N4

+) is δ-free. It follows that M ′

+ is
δ-irreducible by Definition 4.3.

�

Theorem 3 Let Π be a P system. If C ∈ C#(Π) is mpr- and tar-irreducible

and C
δ

=⇒ C ′, then C ′ ∈ C(Π).

The proof follows easily from Lemma 4.

Proposition 1 Let Π be a P system. If C
mpr
=⇒ C ′ and C ′ tar

=⇒ C ′′ such that
C ∈ C(Π), C ′ ∈ C#(Π), and C ′′ is δ-irreducible, then C ′′ ∈ C(Π).

Proof. C ′ is mpr-irreducible by Theorem 1, and C ′′ is tar-irreducible by
Theorem 2. Therefore C ′′ does not contain both messages and δ, and hence
it is a committed configuration, i.e., C ′′ ∈ C(Π). �
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Proposition 2 Let Π be a P system. If C
mpr
=⇒ C ′ and C ′ δ

=⇒ C ′′ such that
C ∈ C(Π), C ′ ∈ C#(Π), and C ′ is tar-irreducible, then C ′′ ∈ C(Π).

Proof. C ′ is mpr-irreducible by Theorem 1, and C ′′ is δ-irreducible by The-
orem 3. Therefore C ′′ does not contain both messages and δ, and hence it
is a committed configuration, i.e., C ′′ ∈ C(Π). �

Proposition 3 Let Π be a P system. If C
mpr
=⇒ C ′, C ′ tar

=⇒ C ′′, and C ′′ δ
=⇒

C ′′′ such that C ∈ C(Π), and C ′, C ′′ ∈ C#(Π), then C ′′′ ∈ C(Π).

Proof. C ′ is mpr-irreducible by Theorem 1, C ′′ is tar-irreducible by Theorem
2, and hence C ′′ does not contain messages. C ′′′ is δ-irreducible by Theorem
3, and hence it does not contain both messages and δ. Therefore C ′′′ is a
committed configuration, i.e., C ′′′ ∈ C(Π). �

Definition 5 Let Π be a P system. A transition step in Π is defined by the
following inference rules:

For each C, C ′′ ∈ C(Π), and δ-irreducible C ′′ ∈ C#(Π),

C
mpr
=⇒ C ′, C ′ tar

=⇒ C ′′

C ⇒ C ′′

For each C, C ′′ ∈ C(Π), and tar-irreducible C ′ ∈ C#(Π),

C
mpr
=⇒ C ′, C ′ δ

=⇒ C ′′

C ⇒ C ′′

For each C, C ′′′ ∈ C(Π), and C ′, C ′′ ∈ C#(Π),

C
mpr
=⇒ C ′, C ′ tar

=⇒ C ′′, C ′′ δ
=⇒ C ′′′

C ⇒ C ′′′

The consistency of this definition follows from the previous three proposi-
tions.

A sequence of transition steps represents a computation. A computation
is successful if this sequence is finite, namely there is no rule applicable to the
objects present in the last committed configuration. In a halting committed
configuration, the result of a successful computation is the total number of
objects present either in the membrane considered as the output membrane,
or in the outer region.
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3.4 Bisimulation

Operational semantics provides us with a formal and mechanizable way to
find out which transitions are possible for the current configurations of a
P system. It provides an abstract interpreter for P systems, as well as the
basis for the definition of certain equivalences and congruences between P
systems. Moreover, given an operational semantics, we can reason about
the rules defining the semantics.

Operational semantics allows a formal analysis of membrane computing,
permitting the study of relations between systems. Important relations in-
clude simulation preorders and bisimulation. These are especially useful in
our context of P systems, allowing to compare two P systems.

A simulation preorder is a relation between transition systems associ-
ated to P systems expressing that the second one can match the transitions
of the first one. We present a simulation as a relation over the states in a
single transition system rather than between the configurations of two sys-
tems. Often a transition system consists intuitively of two or more distinct
systems, but we also need our notion of simulation over the same transition
system. Therefore our definitions relate configurations within one transition
system, and this is easily adapted to relate two separate transition systems
by building a single transition system consisting of their disjoint union.

Definition 6 Let Π be a P system.

1. A simulation relation is a binary relation R over C(Π) such that for
every pair of configurations C1, C2 ∈ C(Π), if (C1, C2) ∈ R, then for
all C ′

1 ∈ C(Π), C1 ⇒ C ′

1 implies that there is a C ′

2 ∈ C(Π) such that
C2 ⇒ C ′

2 and (C ′

1, C
′

2) ∈ R.

2. Given two configurations C, C ′ ∈ C(Π), C simulates C ′, written C ′ ≤
C, iff there is a simulation R such that (C ′, C) ∈ R. In this case, C
and C ′ are said to be similar, and ≤ is called the similarity relation.

The similarity relation is a preorder. Furthermore, it is the largest sim-
ulation relation over a given transition system.

A bisimulation is an equivalence relation between transition systems as-
sociated to systems which behave in the same way, in the sense that one
system simulates the other and vice-versa. Intuitively two systems are bisim-
ilar if they match each other’s transitions, and their evolutions cannot be
distinguished.

Definition 7 Let Π be a P system.
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1. A bisimulation relation is a binary relation R over C(Π) such that both
R and R−1 are simulation preorders.

2. Given two configurations C, C ′ ∈ C(Π), C is bisimilar to C ′, written
C ∼ C ′, iff there is a bisimulation R such that (C, C ′) ∈ R. In this
case, C and C ′ are said to be bisimilar, and ∼ is called the bisimilarity
relation.

The bisimilarity relation ∼ is an equivalence relation. Furthermore, it is
the largest bisimulation relation over a given transition system.

4 Conclusion and Related Work

Structural operational semantics is an approach originally introduced by
Plotkin [14] in which the operational semantics of a programming language
or a computational model is specified in a logical way, independent of a ma-
chine architecture or implementation details, by means of rules that provide
an inductive definition based on the elementary structures of the language
or model. Within “structural operational semantics”, two main approaches
coexist:

• Big-step semantics is also called natural semantics by Kahn [7], Gunter
[5], and Nielson and Nielson [11], and evaluation semantics by Hen-
nessy [6]. In this approach, the main inductive predicate describes
the overall result or value of executing a computation, ignoring the
intermediate steps.

• Small-step semantics is also called structural operational semantics by
Plotkin [14], and Nielson and Nielson [11], computational semantics by
Hennessy [6], and transition semantics by Gunter [5]. In this approach,
the main inductive predicate describes in more detail the execution
of individual steps in a computation, with the overall computation
roughly corresponding to the transitive closure of such small steps.

In general, the small-step style tends to require a greater number of rules
that the big-step style, but this is outweighed by the fact that the small-step
rules also tend to be simpler. The small-step style facilitates the description
of interleaving [10].

In this paper we present an abstract syntax of the membrane systems,
and we define a structural operational semantics of P systems by means
of three sets of inference rules corresponding to maximal parallel rewriting,
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parallel communication, and parallel dissolving. The inference rules come
together with correctness results. The simulation and bisimulation relations
between P systems are also defined.

The inference rules provide a big-step operational semantics due to the
parallel nature of the model. As a continuation of this work, we translate this
big-step operational semantics of P systems into rewriting logic [8], and so
we get a small-step operational description. Moreover, by using an efficient
implementation of rewriting logic as Maude [4], we obtain an interpreter for
membrane systems, and we can verify various properties of these systems by
means of a search command (a semi-decision procedure for finding failures
of safety properties), and a LTL model checker. These achievements are
presented in [2].
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Deterministic P Systems∗
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We consider P systems that are used as acceptors. In the standard se-
mantics of P systems, each evolution step is a result of applying the rules
in a maximally parallel manner – at each step, a maximal multiset of rules
are nondeterministically selected and applied in parallel to the current con-
figuration to derive the next configuration (thus, the next configuration is
not unique, in general). The system is deterministic if at each step, there
is a unique maximally parallel multiset of rules applicable. The question of
whether or not the deterministic version is weaker than the nondeterministic
version for various models of P systems is an interesting and fundamental
research issue in membrane computing. Here, we look at three popular
models of P systems: catalytic systems, symport/antiport systems, and
communicating P systems. We report on recent results that answer some
open problems in the field. These include the following:

• The membership problem for deterministic multi-membrane catalytic
systems is decidable. (These systems have rules of the forms Ca → Cv

or a → v, where C is a catalyst, a is a noncatalyst, and v is a pos-
sibly null string of noncatalysts.) This is in contrast to the known
result that nondeterministic 1-membrane catalytic systems are uni-
versal, even when the rules are restricted to the form Ca → Cv. This
result also gives the first example of a P system where the nondeter-
ministic version is universal but the deterministic version is not.

∗This research was supported in part by NSF Grants CCR-0208595 and CCF-0430945.
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• For deterministic catalytic systems that allow rules to be prioritized,
the answer to the question of whether or not they are universal depends
on how priority in the application of the rules is interpreted: some are
universal, others are not.

• For symport/antiport systems whose rules are of the form (u, out; v, in),
where u, v are multisets of objects with the restriction that |u| ≥ |v|,
the deterministic and nondeterministic versions are equivalent if and
only if deterministic and nondeterministic linear-bounded automata
are equivalent, the latter being a long-standing open problem in com-
plexity theory This is in contrast to the fact that deterministic and
nondeterministic 1-membrane unrestricted symport/antiport systems
are equivalent and are universal.

• For a restricted model of a 1-membrane symport/antiport system that
has an attached one-way input tape (containing the input string), the
deterministic version is strictly weaker than the nondeterministic ver-
sion. For example, the language L = {x#y | x, y ∈ {0, 1}∗, x 6= y} can
be accepted by a nondeterministic system but not by any deterministic
system.

• The last two items above hold for similarly restricted classes of com-
municating P systems.
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Abstract

A new approximate algorithm for optimization problems, called
membrane algorithm, is proposed, which is an application of G. P�aun�s
membrane computing or P-system. Membrane algorithm consists of
several membrane separated regions and a subalgorithm and a few
tentative solutions of the optimization problem to be solved in ev-
ery region. Subalgorithms improve tentative solutions simultaneously.
Then the best and worst solutions in a region are sent to adjacent inner
and outer regions, respectively. By repeating this process, a good so-
lution will appear in the innermost region. The algorithm terminates
if a terminate condition is satis�ed. A simple terminate condition is
the number of iterations, while a little sophisticated condition becomes
true if the good solution is not changed during a predetermined period.
Computer experiments show that the algorithm solves the traveling
salesman problem very well.

1 Introduction

Studies on approximate algorithms for NP-complete problems [1, 2, 10] are
a very important issue in computer science because:

• There are thousands of NP-complete problems.

• Almost all NP-complete problems have practical importance.
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• There are very few (I think no) expectations for P = NP, or strictly
solving NP-complete problems in deterministic polynomial time.

We have suggested a new approximate algorithm for solving NP com-
plete optimization problems [5, 6, 7]. The algorithm uses P-system paradigm
[8]. Then it is called membrane algorithm. Membrane algorithm borrows
nested membrane structures, rules in membrane separated regions, trans-
porting mechanisms through membranes, and dynamic structures in rules
and membranes from P-systems. Membrane algorithm remakes these com-
ponents to solve NP-complete optimization problems approximately.

In the next section, basic idea and framework of membrane algorithm
are explained. Then two types of membrane algorithms, which solve the
traveling salesman problems approximately, are de�ned and their computer
experiments are shown in Section 3. In Section 4, we propose an adaptive
membrane algorithm which may overcome �No Free Lunch Theorem� [11].

2 Basic idea and framework of membrane algo-

rithm

Here we explain the new algorithm, called membrane algorithm or MA for
short.

Outermost region

innermost region

Figure 1: Membrane structure of membrane algorithm.

An MA consists of three different kinds of components:

1. A number of regions which are separated by nested membranes (Fig-
ure. 1).
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2. For every region, a subalgorithm and a few tentative solutions of the
optimization problem to be solved.

3. Solution transporting mechanisms between adjacent regions.

After initial settings, an MA works as follows:

1. For every region, the solutions are updated by the subalgorithm at the
region, simultaneously.

2. In every region, the best and worst solutions, with respect to the opti-
mization, are sent to the adjacent inner and outer regions, respectively.

3. MA repeats updating and transporting solutions until a terminate con-
dition is satis�ed. A simple terminate condition is the number of iter-
ations, while a little sophisticated condition becomes true if the good
solution is not changed during a predetermined period.

The best solution in the innermost region is the output of the algorithm.
An MA can have a number of subalgorithms which are any approximate

algorithm for optimization problems, for example, genetic algorithm, tabu
search, simulated annealing, local search, and so forth. An MA is expected
to be able to escape from local minima by using a subalgorithm which likes
random search at outer regions. On the other hand, it can improve good
solutions in the inner regions by a subalgorithm which likes local search.
So, assigning appropriate subalgorithms for a given problem, performance
of MA will be excellent.

Because the subalgorithms are separated by membranes and communica-
tions occur only between adjacent regions, MA will be easily implemented in
parallel, distributed, or grid computing systems. This is the second superior
point of the algorithm.

3 Computer Experiments of Membrane Algorithm

Solving Traveling Salesman Problem

In this section we �x components of membrane algorithm to solve the travel-
ing salesman problem (TSP for short). Then we implement and experiment
the algorithm on a computer.
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3.1 Traveling Salesman Problem

An instance of TSP with n nodes contains n pairs of real numbers (xi, yi)
(i = 0, 1, . . . , n − 1) which correspond to points in the two dimensional
space. The distance between two nodes vi = (xi, yi) and vj = (xj , yj) is the

geometrical distance d(vi, vj) =
√

(xi − xj)2 + (yi − yj)2. A solution (or a

tour) is a list of nodes (v0, v1, . . . , vn−1) in which no nodes appear twice, i.e.,
∀i, j i �= j implies vi �= vj . The value of a solution v = (v0, v1, . . . , vn−1),
denoted by W (v), is given by

W (v) =
n−2
∑

i=0

d(vi, vi+1) + d(vn−1, v0).

For two solutions u and v, v is better than u if W (v) < W (u). The solution
which has the minimum value in all possible solutions is said to be the strict

solution of the instance. A solution which has a value close to the strict
solution is called an approximate solution.

3.2 Simple Membrane Algorithm

First we examine a simple realization of MA, called simple MA.
Let m be the number of membranes and let region 0 be the innermost

and region m − 1 be the outermost regions, respectively.
Simple MA has one tentative solution in region 0 and two solutions in

regions 1 to m − 1.
We use a tabu search as the subalgorithm in the innermost region, region

0. Tabu search searches a neighbour of the tentative solution by exchanging
two nodes in the solution. In order for the same solution to avoid appearing
twice, tabu search has a tabulist which consists of nodes already exchanged.
Nodes in the tabulist are not exchanged again. Tabu search resets the
tentative solution and the tabulist if one of the three conditions occurs:

1. The value of the neighbouring solution is less than that of the tentative
solution. The neighbouring solution becomes the tentative solution.

2. The value of the best solution in the region 1 is less than that of the
tentative solution. The best solution in the region 1 becomes the new
tentative solution.

3. Neighbour search exceeds a predetermined turns (in this case n
5
). The

tentative solution remains. Only tabulist is reset.
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In case 3, no improvement occurs. But tabu search tries to search other
neighbours, since there are many unsearched neighbours.

The tentative solutions in regions 1 to m− 1 (there are two solutions in
each region) are improved by a subalgorithm summarized below:

1. If the two solutions have the same value, then a part of one solution
(which is selected probabilisticly) is reversed.

2. Recombinates the two solutions and makes two new solutions.

3. Modi�es the two new solutions by point mutations. In the i-th region,
a mutation occurs under probability i

m
.

Obviously the subalgorithm described above resembles genetic algorithms.
But the subalgorithm always recombinates the two solutions in a region while
genetic algorithms randomly select solutions to be recombined. If the two
solutions in a region are identical, recombination makes no new solutions.
The step 1 avoids this case and introduces a new solution using reverse
operation, which is a kind of mutation.

The overall algorithm looks like:

1. Given an instance of TSP.

2. Randomly makes one tentative solution for region 0 and two tentative
solutions for every region 1 to m − 1.

3. Repeats 3.1 to 3.3 for d times (d is given as a parameter).

3.1 Modify tentative solutions simultaneously in every region using
the subalgorithm at the region.

3.2 For every region i (1 ≤ i ≤ m− 2), sends the best solution of the
solutions in the region (old solutions and modi�ed solutions) to
region i − 1 and the worst solution to region i + 1. (In region 0,
sends the worst solution to region 1 and in region m − 1, sends
the best solution to region m − 2.)

3.3 For every region 1 to m − 1 erases solutions but the best two.

4. Outputs the tentative solution in region 0 as the output of the algo-
rithm.

In the above algorithm, steps 3.2 and 3.3 correspond to solution trans-
porting mechanisms between adjacent regions.
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3.3 Computer Experiments

We have implemented the algorithm using Java programming language (see
Appendix A). By using Java, modifications of the algorithm have been
easily tested on a computer. For example, we have implemented several
recombination methods and have found that edge exchange recombination
(EXX, [4] and Appendix B) exhibits the best performance.
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Figure 2: An example tour (solution) obtained by simple MA. The instance
is eil51.

Tables 1 and 2 show results of the program for TSP benchmark problems
eil51 and kroA100 from TSPLIB [9]1. Results of simulated annealing from
[12] are also shown in the tables. Table 3 shows results of the program for
various benchmark problems from TSPLIB.

1The optimum values in TSPLIB are obtained with integer distances between nodes.

The MA’s in this paper are implemented using real valued distances. So we cannot directly

compare the results to the optimum values in TSPLIB. To solve the problems using real

valued distances is, however, as hard as using integer distances.
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Table 1: Results of membrane algorithm and a simulated annealing (SA) for
the benchmark problem eil51. Membrane algorithm repeats step 3 40,000
times. The number of trials of membrane algorithm is 20. Membrane 2, 10,
30, 50, and 70 stand for the algorithms with 2, 10, 30, 50, and 70 regions,
respectively.

Algorithm Membrane SA
2 10 30 50 70

Best 440 437 432 429 429 430
Average 522 449 441 435 434 438
Worst 786 466 451 444 443 445

Table 2: Results for benchmark problem kroA100. 100,000 iterations and
20 trials.

Algorithm Membrane SA
2 10 30 50 70 100

Best 23564 21776 21770 21651 21544 21299 21369
Average 34601 23195 22878 22590 22275 21941 21763
Worst 82756 24862 23940 24531 23569 22954 22564

Table 3: Results of simple MA with 50 membranes and 100,000 iterations
for verous benchmark problems.

Problem nodes Results optimum
best average worst value

ulysses22 22 75.31 75.31 75.31 —

eil51 51 429 434 444 426

eil76 76 556 564 575 538

eil101 101 669 684 693 629

kroA100 100 21651 22590 24531 21282

ch150 150 7073 7320 7633 6528

gr202 202 509.7 520.1 528.4 —

tsp225 225 4073.1 4153.6 4238.9 —

Note: The — in the optimum column represents that optimum values in
TSPLIB are calculated other metric and cannot be compared with geomet-
rical distance used here.
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3.4 Shrink Membrane Algorithm

Now we make shrink membrane algorithm or shrink MA by incorporating
dynamic structures of P-system.

Figure 3: Shrink membrane algorithm.

Table 4: Parameters of shrink membrane algorithm used computer experi-
ment.

Phase number of subalgorithms terminate conditions
structures membranes unchange during

1–1 t = 100 m = 5 GA type only 100n

1–2 t = 100 2 GA type and 300n

tabu search

2 1 t

2
= 50 GA type and 100n

tabu search

Shrink MA consists of two phases. Its first phase starts with m mem-
branes and GA type subalgorithms in all regions, where m is a parameter. If
the best solution in region 0 does not change during 100n iterations (where
n is the size of the instance, i.e., number of nodes), then the number of mem-
branes becomes 2 with tabu search in region 0 and GA type subalgorithm
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in region 1. The two regions have the same initial solutions which are the
best solution obtained so far. Then the algorithm improves solutions until
the solution in region 0 does not change during 300n iterations.

The first phase has a number, say t, of membrane structures. All struc-
tures do the same computation independently. They get different solutions
because the subalgorithms use probabilistic choice3.

The second phase of shrink MA has one membrane structure with t

2

regions. The t solutions obtained in the first phase are sorted and put in
t

2
regions. A region gets two solutions and the inner region gets better

solutions. In other words, the results of the first phase become the initial
solutions of the second phase. The subalgorithms of the second phase are
identical to those of simple MA but shrink MA terminates if the best solution
does not change during 100n iterations.

Figure 3 and Table 4 illustrate flow and parameters of shrink MA. The
parameters shown in Table 4 are selected by several preliminary experiments
of solving eil51 and kroA100 with various combinations of parameters.

Table 5: Results of 10 trials of shrink MA for various benchmark problems.
The columns “steps” stand for total counts of iterations, including both
phases 1 and 2, to obtain the value. The “average steps” represents the
average of steps of all 10 trials.

Problem best average worst
value steps value steps value steps

eil51 429 3,171,593 431 3,159,977.5 436 3,145,823

eil76 547 5,980,046 556 5,812,737.6 561 5,896,362

eil101 655 9,002,312 667 9,042,661.4 677 8,782,816

kroA100 21299 9,776,654 21504 9,673,806.1 21750 9,846,136

ch150 6751 18,365,598 6889 18,656,657.4 6961 18,821,244

gr202 506.8 30,473,165 510.4 29,910,766.6 515.4 29,963,798

tsp225 4031.4 35,420,300 4112.3 35,583,424.0 4171.6 35,912,701

Table 5 shows results of shrink MA for benchmark problems in TSPLIB.
We can see that shrink MA always yields a good approximate solution while
it takes quite many steps. By changing parameters in Table 4, shrink MA

3Of course the results of the first phase may be unique if the strict solution is obtained.
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may get results in shorter steps for large TSP instances. The computations
of the first phase of shrink MA are completely independent each other. So
shrink MA will be easily implemented on a parallel processing system and
computation time willl become much shorter.

4 An Adaptive Membrane Algorithm

There are several optimization algorithms, e.g., simulated annealing, ant
colony, etc., which may give MA good results if they are used as the sub-
algorithms of MA. But we must remind “No Free Lunch Theorem” [3, 11],
which says that every optimization algorithm has equal performance in av-
erage if the average is computed over all optimization problems. So we
propose adaptive membrane algorithm or adaptive MA (Figure 4).

Figure 4: Outline of adaptive MA.

An adaptive MA starts with several membrane structures which have
different subalgorithms each other. After a predetermined steps or real
computation time, a structure which has the best solution is selected. Then
the structure is copied with its subalgorithm. Finally, a shrink type process
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gets the result of the algorithm. An adaptive MA will be able to overcome
“No Free Lunch Theorem” and to obtain good results for any, not only TSP,
NP complete optimization problems.

5 Conclusion

In this paper, notions of membrane algorithms (MA) are presented. MA is
a new approximate algorithm for solving NP-complete optimization prob-
lems. Here we have defined two types of MA solving the traveling salesman
problem, simple MA and shrink MA, and examined their behaviours on a
computer. We have observed that simple MA gets as good approximate so-
lutions as simulated annealing and that simple MA converges fast. On the
other hand, shrink MA always obtains quite good approximate solutions.

We have proposed adaptive membrane algorithm which may solve any
optimization problems well. That is, adaptive membrane algorithm has a
possibility of defeating “No Free Lunch Theorem”.
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Appendices

A The Simulation Program

Although Java is slightly slower than C or other languages which are com-
piled into native machine codes, Java has many merits [1]:

• Because Java is an object oriented language, various types of subal-
gorithms are easily incorporated in a program without affecting the
remaining parts of the program.
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• Because Java is a multi-platform language, a program in Java runs al-
most all computers and operating systems including Solaris on SPARC,
Solaris on x86, Linux, Windows, MacOS, and so forth.

• Developing a program in Java is, in general, more efficient than de-
veloping in any other languages. Rigorous syntax checks in compiling
and detailed exception reports at run time help us to find and fix most
bugs.

Table 6: Classes and their methods of the simulation program.

class super class descriptions

TSP (Object) TSP contains methods which are com-
monly used, e.g., read a TSP instance,
write results of simulations, etc.

TSPsimple TSP TSPsimple has the main method of
simple MA.

TSPshrink TSP TSPshrink has the main method of
shrink MA.

Membrane (Object) Membrane represents a nested mem-
brane structure. Membrane has an
array of OneRegion as a field and
method oneRound() which proceeds
simulation one step.

OneRegion (Object) OneRegion is an abstract class which
defines one region of membrane struc-
ture. OneRegion has two abstract
methods update() and select().

RegionEXX HC OneRegion RegionEXX HC realizes edge ex-
change crossover subalgorithm.

RegionTabuSearch OneRegion RegionTabuSearch does tabu search
subalgorithm.

Table 6 and Figure 5 show essential classes and methods of the simulation
program. The program will be opened as a free software [2].
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Figure 5: Class hierarchies of TSP, TSPsimple, TSPshrink, and others
(above); and OneRegion, RegionEXX HC, RegionTabuSearch, and others
(below). An abstract class is represented by a doted circle.

B Edge Exchange crossover

We describe edge exchange crossover in this appendix.
For a positive integer n, let [n] denote the set {0, 1, . . . , n − 1}. An

instance of TSP with n nodes is a weighted complete graph of n nodes1. A
(pseudo) tour of a TSP instance of n nodes is a function X : [n] → [n]. If
X is a bijection, then X is a tour of the instance; otherwise, X is a pseudo

1The definition here corresponds to all types of weights not only geometrical distance

in the two dimensional space.
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tour. For every i ∈ [n], X(i) stands for the i-th node of the (pseudo) tour
X.

For a (pseudo) tour X and an integer i ∈ [n], E(X, i) stands for the i-th
edge of the (pseudo) tour, i.e., E(X, i) = (X(i), X((i + 1) mod n)). For an
edge e of a (pseudo) tour X, s(e) and t(e) denote the beginning and the
ending nodes of e, respectively. The following equations are obvious:

s(E(X, i)) = X(i)

t(E(X, i)) = X((i + 1) mod n).

In the sequel, all additions and subtractions are those of the modulo-n
residue ring.

The edge exchange crossover (EXX for short) is an algorithm described
below.

Algorithm EXX:
Input: A TSP instance and two tours A, B

Output: recombined tours A′, B′

1. Select i ∈ [n] randomly.
2. Let j be an integer such that s(E(B, j)) = s(E(A, i)).
3. Make new (pseudo) tours A′, B′ by

A′(k) =

{

A(k) 0 ≤ k ≤ i, i + 2 ≤ k ≤ n− 1
t(E(B, j)) k = i + 1

B′(k) =

{

B(k) 0 ≤ k ≤ j, j + 2 ≤ k ≤ n− 1
t(E(A, i)) k = j + 1

4. While t(E(A, i)) 6= t(E(B, j)) do
/* If t(E(A, i)) = t(E(B, j)), then A′ and B′ are tours and
the algorithm terminates. See lemma 1. */

5. Let i′ and j′ be integers such that s(E(A, i′)) = t(E(B, j)) and
s(E(B, j′)) = t(E(A, i)).

6. Make (pseudo) tours A′′ and B′′ by
case i < i′

A′′(k) =







A′(k) 0 ≤ k ≤ i + 1 or i′ ≤ k ≤ n− 1
t(E(B, j))(= A′(i + 1)) k = i + 1
A(i + i′ + 1− k) i + 2 ≤ k ≤ i′ − 1
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case i′ < i

A′′(k) =







A′(k) i′ ≤ k ≤ i + 1
t(E(B, j))(= A′(i + 1)) k = i + 1
A(i + i′ + 1− k) 0 ≤ k ≤ i′ − 1 or i + 2 ≤ k ≤ n− 1

case j < j′

B′′(k) =







B′(k) 0 ≤ k ≤ j + 1 or j′ ≤ k ≤ n− 1
t(E(A, i))(= B′(j + 1)) k = j + 1
B(j + j′ + 1− k) j + 2 ≤ k ≤ j′ − 1

case j′ < j

B′′(k) =







B′(k) j′ ≤ k ≤ j + 1
t(E(B, j))(= A′(i + 1)) k = i + 1
B(j + j′ + 1− k) 0 ≤ k ≤ j′ − 1 or j + 2 ≤ k ≤ n− 1

7. Let i← i′, j ← j′, A← A′′, B ← B′′

8. Make new (pseudo) tours A′, B′ by

A′(k) =







A(k) 0 ≤ k ≤ i− 1 or i + 2 ≤ k ≤ n− 1
B(j) k = i

t(E(B, j)) k = i + 1

B′(k) =







B(k) 0 ≤ k ≤ j − 1 or j + 2 ≤ k ≤ n− 1
A(i) k = j

t(E(A, i)) k = j + 1

/* the end of “while” loop */

Example 1 If tours A and B are given by the following table

x 0 1 2 3 4 5 6 7

A(x) 0 1 2 3 4 5 6 7

B(x) 1 4 3 0 5 6 2 7

and i is selected to 1, then the algorithm EXX calculates j = 0, i′ = 4, and

j′ = 6. The pseudo tours A′′ and B′′ are given by
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x 0 1 2 3 4 5 6 7

A′′(x) 0 1 4 3 4 5 6 7

B′′(x) 1 2 6 5 0 3 2 7

.

Now, i = 4, j = 6, i′ = 7, and j′ = 3. The next A′′ and B′′ become

x 0 1 2 3 4 5 6 7

A′′(x) 0 1 4 3 2 7 6 7

B′′(x) 6 2 1 5 0 3 4 5

.

Then i = 7 and j = 3 and the terminate condition of the algorithm becomes

true obtaining the tours

x 0 1 2 3 4 5 6 7

A′(x) 0 1 4 3 2 7 6 5

B′(x) 6 2 1 7 0 3 4 5

.

Lemma 1 Let A, B, A′, B′, A′′, B′′, i, j, i′, and j′ be the symbols defined

in the algorithm EXX. The following conditions are equivalent.

1. A′ and B′ are not tours.

2. t(E(A, i)) 6= t(E(B, j)), A′′(i′) = A′′(i + 1), B′′(j′) = B′′(j + 1),
∀x, y ∈ [n] − {i′, i + 1}x 6= y implies A′′(x) 6= A′′(y), and ∀x, y ∈
[n]− {j′, j + 1}x 6= y implies B′′(x) 6= B′′(y).

Proof. The proof of 2 → 1 is obvious.
We prove the 1 → 2 by induction on the “while” loop.
At the first execution of the loop, A′ has t(E(B, j))(= B(j + 1)) at

A′(i+1) and B′ has t(E(A, i))(= A(i+1)) at B′(j+1). If A(i+1) 6= B(j+1),
then there exist i′, j′ ∈ [n] such that i 6= i′, j 6= j′, A(i′) = A′(i′) = A′(i+1),
and B(j′) = B′(j′) = B′(j + 1) because A and B are tours. Then all
assertions of 2 hold.

Next let 1 and 2 be equivalent until the previous execution of the loop.
In this case we have A′(i) = B(j), A′(i+ 1) = t(E(B, j)), B′(j) = A(i), and
B′(j+1) = t(E(A, i)). If A(i+1) 6= B(j+1), then there exist i′, j′ ∈ [n] such
that i 6= i′, j 6= j′, A(i′) = A′(i′) = A′(i+1), and B(j′) = B′(j′) = B′(j +1)
because of the hypothesis of induction. Then assertions of 2 hold. 2

Lemma 2 The algorithm EXX always terminates.
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Proof. It is easily seen that the algorithm EXX is reversible, that is, given
A′′, B′′, i, j, i′, and j′, A and B are uniquely determined. The observation
implies that the algorithm EXX is an injection on the direct product of the
sets of pseudo tours. Then the lemma follows from Lemma 1 and the fact
that the domain of the algorithm is finite. 2

Lemmas 1 and 2 prove the next theorem.

Theorem 3 The algorithm EXX always terminates and outputs recombined

tours.
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Abstract

We first give a historical overview of the most important results
obtained in the area of P systems and tissue P systems with sym-
port / antiport rules, especially with respect to the development of
computational completeness results improving descriptional complex-
ity parameters as the number of membranes and cells, respectively,
and the weight of the rules as well as the number of objects. Then
we establish our newest results: P systems with only one membrane
and symport rules of weight three can generate any recursively enu-
merable language with only seven additional objects remaining in the
skin membrane at the end of a halting computation; P systems with
minimal cooperation, i.e., P systems with symport / antiport rules of
size one and P systems with symport rules of weight two, are compu-
tationally complete with only two membranes with only three and six,
respectively, superfluous objects remaining in the output membrane at
the end of a halting computation.
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1 Introduction

P systems with symport / antiport rules, i.e., P systems with pure commu-
nication rules assigned to membranes, first were introduced in [27]; symport
rules move objects across a membrane together in one direction, whereas an-
tiport rules move objects across a membrane in opposite directions. These
operations are very powerful, i.e., P systems with symport / antiport rules
have universal computational power with only one membrane, e.g., see [12],
[20], [15].

After establishing the necessary definitions, we first give a historical
overview of the most important results obtained in the area of P systems and
tissue P systems with symport / antiport rules and review the development
of computational completeness results improving descriptional complexity
parameters, especially concerning the number of membranes and cells, re-
spectively, and the weight of the rules as well as the number of objects.
Moreover, we establish our newest results: first we prove that P systems
with only one membrane and symport rules of weight three can generate
any recursively enumerable language with only seven additional symbols re-
maining in the skin membrane at the end of a halting computation, which
improves the result of [19] where thirteen superfluous symbols remained.
Then we show that P systems with minimal cooperation, i.e., P systems
with symport / antiport rules of weight one and P systems with symport
rules of weight two, are computationally complete with only two membranes
modulo some initial segment: In P systems with symport / antiport rules of
weight one, only three superfluous objects remain in the output membrane
at the end of a halting computation, whereas in P systems with symport
rules of weight two six additional objects remain. For both variants, in [4]
it has been shown that two membrane are enough to obtain computational
completeness modulo a terminal alphabet; in this paper, we now show that
the use of a terminal alphabet can be avoided for the price of superfluous
objects remaining in the output membrane at the end of a halting computa-
tion. So far we were not able to completely avoid these additional objects,
hence, it remains as an interesting question how to reduce their number.

2 Basic Notions and Definitions

For the basic elements of formal language theory needed in the following,
we refer to [30]. We just list a few notions and notations: N denotes the set
of natural numbers (i.e., of non-negative integers). V ∗ is the free monoid
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generated by the alphabet V under the operation of concatenation and the
empty string, denoted by λ, as unit element; by NRE, NREG, and NFIN
we denote the family of recursively enumerable sets, regular sets, and finite
sets of natural numbers, respectively. For k ≥ 1, by NkRE we denote
the family of recursively enumerable sets of natural numbers excluding the
initial segment 0 to k−1. Equivalently, NkRE = {k + L | L ∈ NRE}, where
k + L = {k + n | n ∈ L}.

Let {a1, ..., an} be an arbitrary alphabet; the number of occurrences of a
symbol ai in x is denoted by |x|ai

; the Parikh vector associated with x with

respect to a1, ..., an is
(
|x|a1

, ..., |x|an

)
. The Parikh image of a language L

over {a1, ..., an} is the set of all Parikh vectors of strings in L. A (finite) mul-
tiset 〈m1, a1〉 ... 〈mn, an〉 with mi ∈ N, 1 ≤ i ≤ n, can be represented by any
string x the Parikh vector of which with respect to a1, ..., an is (m1, ..., mn) .

The families of recursively enumerable sets of vectors of natural numbers
are denoted by PsRE.

2.1 Register Machines and Counter Automata

The proofs of the main results discussed in this paper are based on the sim-
ulation of register machines or counter automata, respectively; with respect
to register machines, we refer to [25] for original definitions, and to [11] for
definitions like those we use in this paper:

A (non-deterministic) register machine is a construct

M = (d, Q, q0, qf , P )

where

• d is the number of registers,

• Q is a finite set of label for the instructions of M,

• q0 is the initial label,

• qf is the final label, and

• P is a finite set of instructions injectively labelled with elements
from Q.

The instructions are of the following forms:

1. q1 : (A (r) , q2, q3);
add 1 to the contents of register r and proceed to one of the
instructions (labelled with) q2 and q3 (“ADD”-instruction).
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2. q1 : (S (r) , q2, q3);
if register r is not empty, then subtract 1 from its contents
and go to instruction q2, otherwise proceed to instruction q3

(“SUBTRACT”-instruction).

3. qf : halt;
stop the machine; the final label qf is only assigned to this in-
struction.

A (non-deterministic) register machine M is said to generate a vector
(s1, . . . , sk) of natural numbers if, starting with the instruction with label
q0 and all registers containing the number 0, the machine stops (it reaches
the instruction qf : halt) with the first k registers containing the numbers
s1, . . . , sk (and all other registers being empty).

The register machines are known to be computationally complete, equal
in power to (non-deterministic) Turing machines: they generate exactly the
sets of vectors of natural numbers which can be generated by Turing ma-
chines, i.e., the family PsRE. More precisely, from the main result in [25]
that the actions of a Turing machine can be simulated by a register machine
with two registers (using a prime number encoding of the configuration of the
Turing machine) we know that any recursively enumerable set of k-vectors of
natural numbers can be generated by a register machine with k +2 registers
where only “ADD”-instructions are needed for the first k registers.

A non-deterministic counter automaton is a construct

M = (d, Q, q0, qf , P )

where

• d is the number of counters, and we denote D = {1, ..., d};

• Q is a finite set of states, and without loss of generality, we use the
notation Q = {qi | 0 ≤ i ≤ f} and F = {0, 1, ..., f},

• q0 ∈ Q is the initial state,

• qf ∈ Q is the final state, and

• P is a finite set of instructions of the following form:

1. (qi → ql, k+), with i, l ∈ F, i 6= f, k ∈ D (“increment”-
instruction). This instruction increments counter k by one and
changes the state of the system from qi to ql.
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2. (qi → ql, k−), with i, l ∈ F, i 6= f, k ∈ D (“decrement”-
instruction). If the value of counter k is greater than zero, then
this instruction decrements it by 1 and changes the state of the
system from qi to ql. Otherwise (when the value of register k is
zero) the computation is blocked in state qi.

3. (qi → ql, k = 0), with i, l ∈ F, i 6= f, k ∈ D (“test for zero”-
instruction). If the value of counter k is zero, then this instruction
changes the state of the system from qi to ql. Otherwise (the
value stored in counter k is greater than zero) the computation
is blocked in state qi.

4. halt. This instruction stops the computation of the counter au-
tomaton, and it can only be assigned to the final state qf .

A transition of the counter automaton consists in updating/checking the
value of a counter according to an instruction of one of the types described
above and by changing the current state to another one. The computation
starts in state q0 with all counters being equal to zero. The result of the
computation of a counter automaton is the value of the first k counters
when the automaton halts in state qf ∈ Q (without loss of generality we may
assume that in this case all other counters are empty). A counter automaton
thus (by means of all computations) generates a set of k-vectors of natural
numbers. As for register machines, we know that any set of k-vectors of
natural numbers from PsRE can be generated by a counter automaton
with k + 2 counters where only “increment”-instructions are needed for the
first k counters.

A special variant of counter automata uses a set C of pairs {i, j} with
i, j ∈ Q and i 6= j. As a part of the semantics of the counter automaton with
conflicting counters M = (d, Q, q0, qf , P, C), the automaton stops without
yielding a result whenever it reaches a configuration where, for any pair of
conflicting counters, both are non-empty.

Given an arbitrary counter automaton, we can easily construct an equiv-
alent counter automaton with conflicting counters: For every counter i which
shall also be tested for zero, we add a conflicting counter ı̄; then we re-
place all “test for zero”-instructions (l → l′, i = 0) by the sequence of
instructions (l → l′′, ı̄+), (l′′ → l′, ı̄−). Thus, in counter automata with
conflicting counters we only use “increment”-instructions and “decrement”-
instructions, whereas the “test for zero”-instructions are replaced by the
special conflicting counters semantics.
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2.2 P Systems with Symport / Antiport Rules

The reader is supposed to be familiar with basic elements of membrane
computing, e.g., from [28]; comprehensive information can be found on the
P systems web page http://psystems.disco.unimib.it.

A P system with symport / antiport rules is a construct

Π = (O, µ, w1, . . . , wk, E, R1, . . . , Rk, i0)

where:

1. O is a finite alphabet of symbols called objects;

2. µ is a membrane structure consisting of k membranes that are labelled
in a one-to-one manner by 1, 2, . . . , k;

3. wi ∈ O∗, for each 1 ≤ i ≤ k, is a finite multiset of objects associated
with the region i (delimited by membrane i);

4. E ⊆ O is the set of objects that appear in the environment in an
infinite number of copies;

5. Ri, for each 1 ≤ i ≤ k, is a finite set of symport / antiport rules
associated with membrane i; these rules are of the forms (x, in) and
(y, out) (symport rules) and (y, out; x, in) (antiport rules), respectively,
where x, y ∈ O+;

6. i0 is the label of an elementary membrane of µ that identifies the
corresponding output region.

A P system with symport / antiport rules is defined as a computational
device consisting of a set of k hierarchically nested membranes that identify
k distinct regions (the membrane structure µ), where to each membrane
i there are assigned a multiset of objects wi and a finite set of symport /
antiport rules Ri, 1 ≤ i ≤ k. A rule (x, in) ∈ Ri permits the objects specified
by x to be moved into region i from the immediately outer region. Notice
that for P systems with symport rules the rules in the skin membrane of
the form (x, in), where x ∈ E∗, are forbidden. A rule (x, out) ∈ Ri permits
the multiset x to be moved from region i into the outer region. A rule
(y, out; x, in) permits the multisets y and x, which are situated in region
i and the outer region of i, respectively, to be exchanged. It is clear that
a rule can be applied if and only if the multisets involved by this rule are
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present in the corresponding regions. The weight of a symport rule (x, in)
or (x, out) is given by |x| , while the weight of an antiport rule (y, out; x, in)
is given by max{|x|, |y|}.

As usual, a computation in a P system with symport / antiport rules
is obtained by applying the rules in a non-deterministic maximally parallel
manner. Specifically, in this variant, a computation is restricted to moving
objects through membranes, since symport / antiport rules do not allow the
system to modify the objects placed inside the regions. Initially, each region
i contains the corresponding finite multiset wi, whereas the environment
contains only objects from E that appear in infinitely many copies.

A computation is successful if starting from the initial configuration, the
P system reaches a configuration where no rule can be applied anymore.
The result of a successful computation is a natural number that is obtained
by counting all objects (only the terminal objects as it done in [4], if in
addition we specify a subset of O as the set of terminal symbols) present
in region i0. Given a P system Π, the set of natural numbers computed in
this way by Π is denoted by N(Π). If the multiplicity of each (terminal)
object is counted separately, then a vector of natural numbers is obtained,
denoted by Ps(Π), see [28]. For short, we shall also speak of a P system
only when dealing with a tissue P system with symport / antiport rules as
defined above.

By
NOnPm(syms, antit)

we denote the family of sets of natural numbers (non-negative integers) that
are generated by a P system with symport / antiport rules having at most
n > 0 objects in O, at least m > 0 membranes, symport rules of size at most
s ≥ 0, and antiport rules of size at most t ≥ 0. By

NkOnPm(syms, antit)

we denote the corresponding families of recursively enumerable sets of nat-
ural numbers without initial segment {0, 1, . . . , k−1}. If we replace numbers
by vectors, then in the notations above N is replaced by Ps. When any of
the parameters m, n, s, t is not bounded, it is replaced by ∗; if the number
of objects n is unbounded, we also may just omit n. If s = 0, then we may
even omit syms; if t = 0, then we may even omit antit.

It may happen that P system with symport / antiport (symport) rules
can simulate deterministic register machines (i.e., register machines where
in each ADD-instruction q1 : (A (r) , q2, q3) the labels q2 and q3 are equal)
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in a deterministic way, i.e., from each configuration of the P system we
can derive at most one other configuration. Then, when considering these
P systems as accepting devices (the input from a set in PsRE is put as
an additional multiset into some specified membrane of the P system), we
can get deterministic accepting P systems; the corresponding families of
recursively enumerable sets of natural numbers then are denoted in the same
way as before, but with the prefix aD; e.g., from the results proved in [17]
and [13] we immediately obtain

PsRE = aDPsOP1(anti2).

Sometimes, the results we recall use the intersection with a terminal
alphabet, in that way avoiding superfluous symbols to be counted as a result
of a halting computation. In that case, we add the suffix T at the end of the
corresponding notation.

2.3 Tissue P Systems with Symport / Antiport Rules

Tissue P systems were introduced in [24], and tissue-like P systems with
channel states were investigated in [16]. Here we deal with the following
type of systems (omitting the channel states):

A tissue P system (of degree m ≥ 1) with symport / antiport rules is a
construct

Π =
(

m, O, w1, . . . , wm, ch,
(
R(i,j)

)

(i,j)∈ch

)

where

• m is the number of cells,

• O is the alphabet of objects,

• w1, . . . , wm are strings over O representing the initial multiset of ob-
jects present in the cells of the system (it is assumed that the m cells
are labelled with 1, 2, . . . , m) and, moreover, we assume that all objects
from O appear in an unbounded number in the environment,

• ch ⊆ {(i, j) | i, j ∈ {0, 1, 2, . . . , m} , (i, j) 6= (0, 0)} is the set of links
(channels) between cells (these were called synapses in [16]; 0 indicates
the environment), R(i,j) is a finite set of symport / antiport rules
associated with the channel (i, j) ∈ ch.
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A symport / antiport rule of the form y/λ, λ/x or y/x, respectively,
x, y ∈ O+, from R(i,j) for the ordered pair (i, j) of cells means moving the
objects specified by y from cell i (from the environment, if i = 0) to cell j,
at the same time moving the objects specified by x in the opposite direction.
For short, we shall also speak of a tissue P system only when dealing with
a tissue P system with symport / antiport rules as defined above.

The computation starts with the multisets specified by w1, . . . , wm in the
m cells; in each time unit, a rule is used on each channel for which a rule can
be used (if no rule is applicable for a channel, then no object passes over it).
Therefore, the use of rules is sequential at the level of each channel, but it
is parallel at the level of the system: all channels which can use a rule must
do it (the system is synchronously evolving). The computation is successful
if and only if it halts.

The result of a halting computation is the number described by the
multiplicity of objects present in cell 1 (or in the first k cells) in the halting
configuration. The set of all (vectors of) natural numbers computed in this
way by the system Π is denoted by N(Π) (Ps(Π)). The family of sets N(Π)
(Ps(Π)) of (vectors of) natural numbers computed as above by systems with
at most n > 0 symbols and m > 0 cells as well as with symport rules of
weight s ≥ 0 and antiport rules of weight t ≥ 0 is denoted by

NOnt′Pm(syms, antit) (PsOnt′Pm(syms, antit)).

When any of the parameters m, n, s, t is not bounded, it is replaced by ∗.

In [16], only channels (i, j) with i 6= j are allowed, and, moreover, for any
i, j only one channel out of {(i, j) , (j, i)} is allowed, i.e., between two cells
(or one cell and the environment) only one channel is allowed (this technical
detail may influence considerably the computational power). The family of
sets N(Π) (Ps(Π)) of (vectors of) natural numbers computed as above by
systems with at most n > 0 symbols and m > 0 cells as well as with symport
rules of weight s ≥ 0 and antiport rules of weight t ≥ 0 is denoted by

NOntPm(syms, antit) (PsOntPm(syms, antit)).

3 Descriptional Complexity - a Historic Overview

In this section we review the development of computational completeness
results with respect to descriptional complexity parameters, especially con-
cerning the number of membranes and cells, respectively, and the weight of
the rules as well as the number of objects.
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3.1 Rules Involving More Than Two Objects

We first recall results where rules involving more than two objects are used.
As it was shown in [27], two membranes are enough for getting computa-
tional completeness when rules involving at most four objects, moving up
to two objects in each direction, are used, i.e.,

NRE = NOP2(sym2, anti2).

Using antiport. The result stated above was independently improved in
[12], [20], and [15] - one membrane is enough:

NRE = NOP1(sym1, anti2).

In fact, only one symport rule is needed; this can be avoided for the price
of one additional object in the output region:

N1RE = N1OP1(anti2).

It is worth mentioning that the only antiport rules used are those exchanging
one object by two objects.

Using symport. The history of P systems with symport only is longer.
In [23] the results

NRE = NOP2(sym5) = NOP3(sym4) = NOP5(sym3)

are proved, whereas in [19]

N13RE = N13OP1(sym3)

is shown; the additional symbols can be avoided if a second membrane is
used:

NRE = NOP2(sym3).

In this paper we now will show that we can bound the number of addi-
tional symbols by 7:

N7RE = N7OP1(sym3).

Determinism. It is known that deterministic P systems with one mem-
brane using only antiport rules of weight at most 2 (actually, only the rules
exchanging one object for two objects are needed, see [17], [10]) or using only
symport rules of weight at most 3 (see [17]) can accept all sets of vectors
of natural numbers (in fact, this is only proved for sets of numbers, but the
extension to sets of vectors is straightforward), i.e.,

PsRE = aDPsOP1(anti2) = aDPsOP1(sym3).
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3.2 Minimal Cooperation

Already in [27] it was shown that

NRE = NOP5(sym2, anti1),

i.e., five membranes are already enough when only rules involving two ob-
jects are used. However, both types of rules involving two objects are used:
symport rules moving up to two objects in the same direction, and antiport
rules moving two objects in different directions.

Minimal cooperation by antiport. We now consider P systems where
symport rules move only one object and antiport rules move only two ob-
jects across the a membrane in different directions. The first proof of the
computational completeness of such P systems can be found in [8]:

NRE = NOP9(sym1, anti1),

i.e., these P systems have nine membranes. This first result was improved
by reducing the number of membranes to six [21], five [9], and four [18, 22],
and finally in [31] it was shown that

N5RE = N5OP3(sym1, anti1),

i.e., three membranes are sufficient to generate all recursively enumerable
sets of numbers (with five additional objects in the output membrane).

In [5], a stronger result was shown where the output membrane did not
contain superfluous symbols:

PsRE = PsOP3(sym1, anti1),

In [4] it was shown that even two membranes are enough to obtain compu-
tational completeness, yet only modulo a terminal alphabet:

PsRE = PsOP2(sym1, anti1)T ,

In this paper we now will show that we can bound the number of additional
symbols by 3:

N3RE = N3OP2(sym1, anti1).
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Minimal cooperation by symport. We now consider P systems moving
only one or two objects by a symport rule; these systems were shown to be
computationally complete with four membranes in [20]:

NRE = NOP4(sym2).

In [5], this result was improved down to three membranes even for vectors
of natural numbers:

PsRE = PsOP3(sym2).

Moreover, in [5] it was also shown that even two membranes are enough to
obtain computational completeness (modulo a terminal alphabet):

PsRE = PsOP2(sym2)T

In this paper we will show that the number of additional objects in the
output region can be bound by six:

N6RE = N6OP2(sym2)

The tissue case. If we do not restrict the graph of communication to be
a tree, certain advantages appear. It was shown in [33] that

NRE = NOtP3(sym1, anti1),

i.e., three cells are enough when using symport / antiport rules of weight
one. This result was improved in [7] to two cells, again without additional
objects in the output cell, and an equivalent result holds if antiport rules of
weight one are replaced by symport rules of weight two:

PsRE = PsOtP2(sym1, anti1) = PsOtP2(sym2).

Moreover, it was shown in the same article that accepting can be done
deterministically:

PsRE = aDPsOtP2(sym1, anti1) = aDPsOtP2(sym2).

A nice aspect of the proof is that it not only holds true for P systems with
channels operating sequentially (as it is usually defined for tissue P systems),
but also for P systems with channels operating in a maximally parallel way
(like in standard P systems, generalizing the region communication structure
of P systems to the arbitrary graph structure of tissue P systems).
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Below computational completeness. In [7], it was also shown that

NOP1(sym1, anti1) ∪ NOtP1(sym1, anti1) ⊆ NFIN.

Together with the counterpart results for symport systems,

NOP1(sym2) ∪ NOtP1(sym2) ⊆ NFIN

obtained in [19], this is enough to state the optimality of the computational
completeness results for the two-membrane/ two-cell systems.

The most interesting open questions remaining in the cases considered
so far concern the possibility to reduce the number of extra objects in the
output region in some of the results stated above.

3.3 Small Number of Objects

In the preceding subsections, a survey of computational completeness results
depending on the number of membranes or cells and the weights of the rules
has been given. We now follow another direction of descriptional complexity:
we try to keep the number of membranes or cells and especially the number
of objects small, yet on the other hand allow rules of unbounded weight.

P systems. A quite surprising result was presented in [29]: using sym-
port / antiport rules of unbounded weight, P systems with four membranes
are computationally complete even when the alphabet contains only three
symbols:

NRE = NO3P4(sym∗, anti∗).

Then it has been shown in [1] that

NRE = NO5P1(sym∗, anti∗),

i.e., for P systems with one membrane, even five objects are enough for
getting computational completeness.

The original result was improved in [3]; in sum, the actual results for P
systems can be found there:

NRE = NOnPm(sym∗, anti∗)
for (n, m) ∈ {(5, 1) , (4, 2) , (3, 3) , (2, 4)} .

The same article presents undecidability results for the families
NO2P3(sym∗, anti∗) and NO3P2(sym∗, anti∗); moreover, it is shown that

NO1P2(sym∗, anti∗) ∩ NO2P1(sym∗, anti∗) ⊇ NREG.
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The results mentioned above are presented as part of a general picture
(“complexity carpet”), including results for generating/ accepting/ com-
puting functions on vectors of specified dimensions.

Several questions are still open; the most interesting one is to determine
the computational power of P systems with one symbol (we conjecture that
they are not computationally complete, even if we can use an unbounded
number of membranes and symport / antiport rules of unbounded weight).

Tissue P Systems. The question concerning systems with only one object
has been answered in a positive way in [14] for tissue P systems:

NRE = NO1tP7(sym∗, anti∗) = NO1t
′P6(sym∗, anti∗).

In [2] the “complexity carpet” for tissue P systems was completed:

NRE = NOntPm(sym∗, anti∗)
for (n, m) ∈ {(4, 2) , (2, 3) , (1, 7)} ,

but
NREG = NO∗tP1(sym∗, anti∗) = NO2tP1(sym∗, anti∗)

and
NFIN = NO1tP1(sym∗, anti∗) = NO1t

′P1(sym∗, anti∗).

Using two channels between a cell and the environment, one cell can
sometimes be saved, and one-cell systems become computationally complete:

NRE = NOnt′Pm(sym∗, anti∗)
for (n, m) ∈ {(5, 1) , (3, 2) , (2, 3) , (1, 6)} .

3.4 Computational Completeness - Summary

We now finish our historical review with repeating (some of) the best known
results of computational completeness:

One membrane

aDPsOP1(anti2) = aDPsOP1(sym3) = PsRE,
N1RE = N1OP1(anti2),
N7RE = N7OP1(sym3).
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P systems - minimal cooperation

PsRE = PsOP2(sym1, anti1)T = PsOP2(sym2)T ,
N3RE = N3OP2(sym1, anti1),
N6RE = N6OP2(sym2).

Tissue P systems - minimal cooperation

PsRE = aDPsOtP2(sym1, anti1) = aDPsOtP2(sym2),
PsRE = PsOtP2(sym1, anti1) = PsOtP2(sym2).

P systems - small number of objects

NRE = NOnPm(sym∗, anti∗)
for (n, m) ∈ {(5, 1) , (4, 2) , (3, 3) , (2, 4)} .

Tissue P systems - small number of objects

NRE = NOntPm(sym∗, anti∗)
for (n, m) ∈ {(4, 2) , (2, 3) , (1, 7)} .

NRE = NOnt′Pm(sym∗, anti∗)
for (n, m) ∈ {(5, 1) , (3, 2) , (2, 3) , (1, 6)} .

4 New Results

We first improve the result N13OP1(sym3) = N13RE from [19]. For the
proof, we use the variant of counter machines with conflicting counters and
implement the semantics that if two conflicting counters are non-empty at
the same time, then the computation is blocked without producing a result.

Theorem 1. N7OP1(sym3) = N7RE.

Proof. Let L be an arbitrary set from N7RE and consider a counter au-
tomaton M = (d, Q, q0, qf , P, C) with conflicting counters generating L − 7
(= {n − 7 | n ∈ L}); C is a finite set of pair sets of conflicting counters {i, ı̄} .
We construct a P system simulating M :

Π = (O, E, [1 ]1, w1, R1, 1),
O = {xi | 1 ≤ i ≤ 6} ∪ Q ∪ {(p, j) | p ∈ P, 1 ≤ j ≤ 6}

∪ {ai, Ai | i ∈ C} ∪ {#, b, d} ,
E = {ai, Ai | i ∈ C} ∪ {x2, x3, #}

∪ Q ∪ {(p, j) | p ∈ P, j ∈ {2, 4, 5, 6}}
w1 = l0dx1x4x5x6

∏

p∈P (p, 1) (p, 3) b.
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The following rules allow us to simulate the counter automaton M :

• The rules (daiaı̄, out) implement the special semantics of conflicting
counters {i, ı̄} with leading to an infinite computation by applying the
rules (d#, out) and (d#, in).

• The simulation of the instructions of M is initiated by also sending out
x1 in the first step; the rules (x1x2x3, in) as well as (x2x4x5, out) and
(x3x6, out) then allow us to send out the specific signal variables x4, x5,
and x6 which are needed to guide the sequence of rules to be applied.

• The instruction p : (l → l′, i−) is simulated by the sequence of rules

(l(p, 1)x1, out),
((p, 1)x4(p, 2), in),
((p, 2)(p, 3)ai, out), ((p, 2)(p, 3)d, out),
((p, 3)x5(p, 4), in),
((p, 4)(p, 5), out),
((p, 5)x6l

′, in).

In case that no symbol ai is present (which corresponds to the fact
that counter i is empty), the rule ((p, 2)(p, 3)d, out) leads to an infi-
nite computation by applying the rules (d#, out) and (d#, in). Oth-
erwise, decrementing is successfully accomplished by applying the rule
((p, 2)(p, 3)ai, out).

• The instruction p : (l → l′, i+) is simulated by the sequence of rules

(l(p, 1)x1, out),
((p, 1)x4(p, 2), in),
((p, 2)(p, 3)Ai, out),
((p, 3)x5l

′, in),
(Aix6ai, in).

The symbol Ai is sent out to take exactly one symbol ai in.

• A simulation of M by Π terminates with sending out the symbols
from {(p, 1) , (p, 3) | p ∈ P} ∪ {Ai | i ∈ C} which were used during the
simulation of the instructions of M as soon as the halting label lh of
M appears:

(lhbx, out),
x ∈ {(p, 1) , (p, 3) | p ∈ P} ∪ {Ai | i ∈ C},
(lhb, in).
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If the system halts, the objects inside correspond with the contents of
the output registers, and the extra symbols are lh, d, b, x1, x4, x5, x6,
i.e., seven in total.

We now show that two membranes are enough to obtain computational
completeness with symport / antiport rules of minimal size 1 with only three
additional objects remaining in halting computations.

Theorem 2. N3OP2(sym1, anti1) = N3RE.

Proof. We simulate a counter automaton M = (d, Q, q0, qf , P ) which starts
with empty counters. We also suppose that all instructions from P are
labelled in a one-to-one manner with elements of {1, . . . , n} = I; I is the
disjoint union of {n} as well as I+, I−, and I=0 where by I+, I−, and I=0

we denote the set of labels for the “increment”-, “decrement”-, and “test
for zero”-instructions, respectively. Additionally we suppose, without loss
of generality, that on the first counter of the counter automaton M only
“increment” instructions - of the form (qi → ql, c1+) - are operating.

We construct the P system Π1 as follows:

Π1 = (O, [1 [2 ]2 ]1, w1, w2, E, R1, R2, 2),

O = E ∪ {Ic, q
′
0, F1, F2, F3, F4, F5, #1, #2, bj , b

′
j | j ∈ I},

E = Q ∪ {aj , a
′
j , a

′′
j | j ∈ I} ∪ C ∪ {F2, F3, F4, F5},

w1 = q′0Ic#1#1#2#2,

w2 = F1F1F1

∏

j∈I

bj

∏

j∈I

b′j ,

Ri = Ri,s ∪ Ri,r ∪ Ri,f , i = 1, 2.

The functioning of this system may be split into two stages:

1. simulating the instructions of the counter automaton.

2. terminating the computation.

We code the counter automaton as follows:
Region 1 will hold the current state of the automaton, represented by a

symbol qi ∈ Q; region 2 will hold the value of all counters, represented by
the number of occurrences of symbols ck ∈ C, k ∈ D, where D = {1, ..., d}.
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We also use the following idea realized by the phase “START” below: from
the environment, we bring symbols ck into region 1 all the time during the
computation. This process may only be stopped if all stages finish correctly;
otherwise, the computation will never stop.

We split our proof into several parts that depend on the logical separation
of the behavior of the system. We will present the rules and the initial
symbols for each part, but we remark that the system we present is the
union of all these parts. The rules Ri are given by three phases:

1. START (stage 1);

2. RUN (stage 1);

3. END (stage 2).

The parts of the computations illustrated in the following describe dif-
ferent stages of the evolution of the P system given in the corresponding
theorem. For simplicity, we focus on explaining a particular stage and omit
the objects that do not participate in the evolution at that time. Each rec-
tangle represents a membrane, each variable represents a copy of an object
in a corresponding membrane (symbols outside of the outermost rectangle
are found in the environment). In each step, the symbols that will evolve
(will be moved) are written in boldface. The labels of the applied rules are
written above the symbol ⇒.

1. START.

R1,s = {1s1 : (Ic, in), 1s2 : (Ic, out; ck, in), 1s3 : (ck, out) | ck ∈ C}

∪ {1s4 : (q′0, out; q0, in)},

R2,s = ∅

Symbol Ic brings one symbol ck from the environment into region 1 (rules
1s1, 1s2), where it may be used immediately during the simulation of the
“increment” instruction and then moved to region 2. Otherwise symbol ck

returns to the environment (rule 1s3). Rule 1s4 is used for synchronizing
the appearance of the symbols ck and qi in region 1.

We illustrate the beginning of the computation as follows:
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ck1
q0ajck2

q′
0Ic bj ⇒1s2,1s4 Icq

′
0ajck2

q0ck1
bj ⇒1s1,1s3,1r1

q′0q0ck1
ck2

ajIc bj ⇒1s2,2r1 q′0q0ck1
Ic ck2

bj aj · · ·

2. RUN.

R1,r = {1r1 : (qi, out; aj , in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {+,−, = 0}}

∪ {1r2 : (bj , out; a′j , in), 1r3 : (aj , out; bj , in),

1r4 : (#1, out; bj , in) | j ∈ I}

∪ {1r5 : (a′j , out; a′′j , in) | j ∈ I+ ∪ I−} ∪ {1r6 : (#1, out; #1, in)}

∪ {1r7 : (b′j , out; a′′j , in), 1r8 : (a′j , out; b′j , in),

1r9 : (#1, out; b′j , in) | j ∈ I=0}

∪ {1r10 : (a′′j , out, ql, in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {+,−, = 0}}

∪ {1r11 : (bj , out), 1r12 : (b′j , out) | j ∈ I},

R2,r = {2r1 : (bj , out; aj , in) | j ∈ I}

∪ {2r2 : (aj , out; ck, in) | (j : qi → ql, ck+) ∈ P}

∪ {2r3 : (a′j , in) | j ∈ I+}

∪ {2r4 : (a′j , out; bj , in) | j ∈ I+ ∪ I−}

∪ {2r5 : (aj , out) | j ∈ I− ∪ I=0}

∪ {2r6 : (ck, out; a′j , in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {−, = 0}}

∪ {2r7 : (b′j , out; bj , in), 2r8 : (b′j , in) | j ∈ I=0}

∪ {2r9 : (aj , out; #2, in) | j ∈ I+} ∪ {2r10 : (#2, out; #2, in)}.

“Increment”-instruction:

aja
′
ja

′′
j ql qick#1#1 bj ⇒1r1 a′ja

′′
j qiql ajck#1#1 bj ⇒2r1

a′
ja

′′
j qiql bjck#1#1 aj ⇒1r2,2r2 bja

′′
j qiql aja

′
j#1#1 ck

Now there are two possibilities: we may either apply
a) rule 1r5 or
b) rule 2r3.

It is easy to see that case a) leads to an infinite computation:
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bja
′′
j qiql aja

′
j#1#1 ck ⇒1r5,1r3

aja
′
jqiql bja

′′
j #1#1 ck ⇒1r2,1r10 ajbjqia

′′
j a′

jql#1#1 ck

After that rule 1r4 will eventually be applied, object #1 will be moved to
the environment and then applying rule 1r6 leads to an infinite computation.

Now let us consider case b):

bja
′′
j qiql aja

′
j#1#1 ck ⇒1r3,2r3 aja

′′
j qiql bj#1#1 a′

jck

We cannot apply rule 1r2 as this leads to an infinite computation (see
above). Hence, rule 2r4 has to be applied:

aja
′′
j qiql bj#1#1 a′

jck ⇒2r4 aja
′′
j qiql a′

j#1#1 bjck ⇒1r5

aja
′
jqiql a′′

j #1#1 bjck ⇒1r10 aja
′
ja

′′
j qi ql#1#1 bjck

In that way, qi is replaced by ql and ck is moved from region 1 into region 2.

“Decrement”-instruction:

aja
′
ja

′′
j ql qi#1#1 bjck ⇒1r1 a′ja

′′
j qiql aj#1#1 bjck ⇒2r1

a′
ja

′′
j qiql bj#1#1 ajck ⇒1r2,2r5 bja

′′
j qiql aja

′
j#1#1 ck ⇒1r3,2r6

aja
′′
j qiql bjck#1#1 a′

j ⇒2r4 aja
′′
j qiql a′

jck#1#1 bj ⇒1r5

aja
′
jqiql a′′

j ck#1#1 bj ⇒1r10 aja
′
ja

′′
j qi qlck#1#1 bj

In the way described above, qi is replaced by ql and ck is removed from
region 2 to region 1.

“Test for zero”-instruction:
qi is replaced by ql if there is no ck in region 2, otherwise a′j in region 1

exchanges with ck in region 2 and the computation will never stop.

(i) There is no ck in region 2:
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aja
′
ja

′′
j ql qi#1#1 bjb

′
j ⇒1r1 a′ja

′′
j qiql aj#1#1 bjb

′
j ⇒2r1

a′ja
′′
j qiql bj#1#1 ajb

′
j

Now there are two possibilities: we apply either
a) rule 2r7 or
b) rule 1r2.

It is easy to see that case a) leads to an infinite computation:

a′ja
′′
j qiql bj#1#1 ajb

′
j ⇒2r7,2r5 a′ja

′′
j qiql ajb

′
j#1#1 bj ⇒2r1,2r8

a′ja
′′
j qiql bj#1#1 ajb

′
j ⇒2r7,2r5 · · · ⇒2r1,2r8

a′
ja

′′
j qiql bj#1#1 ajb

′
j ⇒1r2,2r5

bja
′′
j qiql aja

′
j#1#1 b′j ⇒1r3 aja

′′
j qiql bja

′
j#1#1 b′j

Again there are two possibilities: we can apply either
c) rule 1r2 or
d) rule 2r7.

Case c) leads to an infinite computation (rules 1r4 and 1r6).

Now let us consider case d):

aja
′′
j qiql bja

′
j#1#1 b′

j ⇒2r7 aja
′′
j qiql b′

ja
′
j#1#1 bj ⇒1r7

ajb
′
jqiql a′′

j a
′
j#1#1 bj ⇒1r8,1r10 aja

′
ja

′′
j qi qlb

′
j#1#1 bj

There are two possibilities: we can apply either
e) rule 1r7 or
f) rule 2r8.

Case e) leads to infinite computation (rules 1r9 and 1r6).

In case f), the object b′j comes back to region 2.

(b) There is some ck in region 2:

Consider again case d):
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aja
′′
j qiql bja

′
j#1#1 b′

jck ⇒2r7,2r6 aja
′′
j qiql b′

jck#1#1 a′jbj

⇒1r7

ajb
′
jqiql a′′

j ck#1#1 a′jbj ⇒1r9,1r10 aja
′′
j #1qi qlb

′
jck#1 a′jbj

Now the application of rule 1r6 leads to an infinite computation.

Finally, let us notice that applying the rules 1r11 and 1r12 during the
phase RUN leads to infinite computation. Hence, we model correctly the
“test for zero” instruction.

3. END.

R1,f = {1f1 : (F1, out; F2, in), 1f2 : (F2, out; F3, in),

1f3 : (F3, out; F4, in), 1f4 : (F4, out; F5, in),

R2,f = {2f1 : (F1, out; qf , in), 2f2 : (qf , out; Ic, in),

2f3 : (qf , out; #1, in), 2f4 : (qf , out; #2, in), 2f5 : (F5, out),

2f6 : (bj , out; F5, in), 2f7 : (b′j , out; F5, in)}.

We illustrate the end of computations as follows:

F2F3F4F5Icck1
ck2

qf#1#1#2#2 F1F1F1bj1b
′
j2

⇒2f1,1s1

F2F3F4F5ck1
ck2

Ic#1#1#2#2F1 qfF1F1bj1b
′
j2

⇒2f3,1s2,1f1

F2F3F4F5Icck2
F1 F2ck1

#1#2#2qf #1F1F1bj1b
′
j2

⇒1s1,1s4,1f2,2f1

F2F3F4F5ck1
ck2

F1 F3Ic#1#2#2F1 qf#1F1bj1b
′
j2

⇒1s2,1f1,1f3,2f3

F2F3F4F5ck1
IcF1F1 F2F4ck2

#2#2qf #1#1F1bj1b
′
j2
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⇒1s1,1s4,1f2,1f4,2f1

F2F3F4F5ck1
ck2

F1F1 F3F5Ic#2#2F1 qf#1#1bj1b
′
j2

Notice that now rule 2f2 will be applied eventually, as otherwise the
application of rule 2f4 will lead to an infinite computation (rule 2r10).
Hence, we continue as follows:

F2F3F4F5ck1
ck2

F1F1 F3F5Ic#2#2F1 qf#1#1bj1b
′
j2

⇒1f1,1f3,2f2,2f6

F2F3F4F5ck1
ck2

F1F1F1 F2F4#2#2bj1qf Ic#1#1F5b
′
j2

⇒1f2,1f4,1r11,2f5

F2F3F4F5ck1
ck2

F1F1F1bj1 F3F5F5#2#2qf Ic#1#1b
′
j2

We continue in this manner until all objects bj , b
′
j , j ∈ I from the el-

ementary membrane 2 have been moved to the environment. Notice that
the result in the elementary membrane 2 (multiset ct

1) cannot be changed
during phase END, as object Ic now is situated in the elementary mem-
brane and cannot bring symbols c1 from the environment. Recall that the
counter automaton can only increment the first counter c1, so all other com-
putations of P system Π1 cannot change the number of symbols c1 in the
elementary membrane. Thus, at the end of a terminating computation, in
the elementary membrane there are the result (multiset ct

1) and only the
three additional objects Ic, #1, #1.

A “dual” class of systems with minimal cooperation is the class where
two objects are moved across the membrane in the same direction rather
than in the opposite ones. We now prove a similar result for this class using
six additional symbols.

Theorem 3. N6OP2(sym2) = N6RE.

Proof. As in the proof of Theorem 1 we simulate a counter automaton M =
(d, Q, q0, qf , P ) that starts with empty counters. Again we suppose that
all instructions from P are labelled in a one-to-one manner with elements
of {1, . . . , n} = I and that I is the disjoint union of {n} as well as I+,
I−, and I=0 where by I+, I−, and I=0 we denote the set of labels for the
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“increment”-, “decrement”-, and “test for zero”-instructions, respectively.
Moreover, we define I ′ = {1, 2, . . . , n + 4}, Qk = {qk

i }, 1 ≤ k ≤ 5, i ∈ K,
K = {0, 1, . . . , f}, and C = {ci | 1 ≤ i ≤ d}.

We construct the P system Π2 as follows:

Π2 = (O, [1 [2 ]2 ]1, w1, w2, E, R1, R2, 2),

O = {#0, #1, #2, $
1, $2, $3, â, b̂, Ic} ∪ {ak | 1 ≤ k ≤ 5} ∪ Q

⋃

1≤k≤5

Qk ∪

C ∪ {aj , a
′
j , ǎj , âj , bj , dj , d

′
j , d

′′
j | j ∈ I} ∪ {et, ht | t ∈ I ′}

E = {a1, a3, a5, #0} ∪ {aj , a
′
j | j ∈ I} ∪ {ht | t ∈ I ′} ∪ Q ∪ Q2 ∪ Q4 ∪ C,

w1 = #1âb̂a2a4$3
∏

j∈I

ǎj

∏

j∈I

d′j
∏

j∈I

d′′j
∏

t∈I′

et

∏

i∈K

q̂i,
∏

i∈K

q1
i ,

∏

i∈K

q3
i ,

∏

i∈K

q5
i

w2 = #2 $1$1 . . . $1
︸ ︷︷ ︸

n+1

$2
∏

j∈I

âj

∏

j∈I

bj

∏

j∈I

dj ,

Ri = Ri,s ∪ Ri,r ∪ Ri,f , i ∈ {1, 2}.

The functioning of this system again may be split into two stages:

1. simulating the instructions of the counter automaton;

2. terminating the computation.

We code the counter automaton as in Theorem 1 above: region 1 will
hold the current state of the automaton, represented by a symbol qi ∈ Q;
region 2 will hold the value of all counters, represented by the number of
occurrences of symbols ck ∈ C, k ∈ D, where D = {1, ..., d}. We also use
the following idea (called “Circle”) realized by phase “START” below: from
the environment, we bring symbols ck into region 1 all the time during the
computation. This process may only be stopped if all stages finish correctly;
otherwise, the computation will never stop.

We split our proof into several parts that depend on the logical separation
of the behavior of the system. We will present the rules and the initial
symbols for each part, but we remark that the system that we present is the
union of all these parts.

The rules Ri again are given by three phases:

1. START (stage 1);

2. RUN (stage 1);
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3. END (stage 2).

1. START.

R1,s = {1s1 : (Ic, out), 1s2 : (Icck, in), 1s3 : (ck, out) | k ∈ D},

R2,s = ∅.

Symbol Ic brings one symbol c ∈ C from the environment into region 1
(rules 1s1, 1s2) where it may be used immediately during the simulation
of an “increment”-instruction and moved to region 2. Otherwise symbol c
returns to the environment (rule 1s3).

2. RUN.

R1,r = {1r1 : (qiq̂i, out) | i ∈ K}

∪ {1r2 : (aj q̂i, in) | (j : qi → ql, kγ) ∈ P, γ ∈ {+,−, = 0}, k ∈ D}

∪ {1r3 : (aj â, out) | j ∈ I+ ∪ I−} ∪ {1r4 : (aj b̂, out) | j ∈ I=0}

∪ {1r5 : (#2, out), 1r6 : (#2, in)} ∪ {1r7 : (bj ǎj , out) | j ∈ I}

∪ {1r8 : (bj#1, out) | j ∈ I} ∪ {1r9 : (âj#1, out) | j ∈ I}

∪ {1r10 : (#0#1, in), 1r11 : (#0b̂, in)} ∪ {1r12 : (a′jbj , in) | j ∈ I}

∪ {1r13 : (âa1, in), 1r14 : (a1a2, out), 1r15 : (a2a3, in)}

∪ {1r16 : (a3a4, out), 1r17 : (a4a5, in), 1r18 : (a5, out)}

∪ {1r19 : (a′jq
1
l , out) | (j : qi → ql, kγ) ∈ P, γ ∈ {+,−, = 0}, k ∈ D}

∪ {1r20 : (q1
i q

2
i , in), 1r21 : (q2

i q
3
i , out), 1r22 : (q3

i q
4
i , in) | i ∈ K}

∪ {1r23 : (q4
i q

5
i , out), 1r24 : (q5

i qi, in) | i ∈ K}

∪ {1r25 : (dj â, out), 1r26 : (dj#0, in) | j ∈ I+ ∪ I−}

∪ {1r27 : (dj ǎj , in) | j ∈ I} ∪ {1r28 : (dj#1, out) | j ∈ I+ ∪ I−}

∪ {1r29 : (djd
′
j , out) | j ∈ I=0} ∪ {1r30 : (d′j b̂, in) | j ∈ I=0},

R2,r = {2r1 : (aj ǎj , in) | j ∈ I} ∪ {2r2 : (bj ǎj , out) | j ∈ I}

∪ {2r3 : (ajck, out) | (j : qi → ql, kγ) ∈ P, γ ∈ {−, = 0}, k ∈ D}

∪ {2r4 : (aj#2, out) | j ∈ I−} ∪ {2r5 : (aj âj , out) | j ∈ I+}

∪ {2r6 : (#0, in), 2r7 : (#0, out)}

∪ {2r8 : (ckâj , in) | (j : qi → ql, k+) ∈ P, k ∈ D}

∪ {2r9 : (a′jbj , in) | j ∈ I} ∪ {2r10 : (a′jdj , out) | j ∈ I}

∪ {2r11 : (dja
5, in) | j ∈ I+ ∪ I−} ∪ {2r12 : (a5, out)}

∪ {2r13 : (djd
′′
j , in) | j ∈ I=0} ∪ {2r14 : (ajd

′′
j , out) | j ∈ I=0}.
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“Increment”-instruction:

ajc Icqiq̂iǎj â bj âj ⇒1r1,1s1 qiq̂iajIcc ǎj â bj âj ⇒1r2,1s2

qi Iccq̂iaj ǎj â bj âj , where c ∈ C

Now there are two variants of computations (depending on the applica-
tion of rule 2r1 or rule 1r3). It is easy to see that the application of rule
1r3 leads to an infinite computation (by “Circle”). Consider applying rule
2r1:

qick Iccq̂iajǎjâ bj âj ⇒2r1,1s1,1s3

qiIcckc q̂iâ bjǎjajâj ⇒2r2,2r5,1s2

qic Icckq̂iâbj ǎjaj âj

Notice that object âj cannot be idle, as the application of the rules
1r9, 1r10, 2r6, 2r7 leads to an infinite computation. Hence, rule 2r8 will
be applied and object ck will be moved to region 2 (thus, we increase the
number of objects ck in region 2 by one and model the increment-instruction
of the counter automaton). In an analogous way, object bj cannot be idle,
as applying rules 1r8, 1r10, 2r6, 2r7 leads to an infinite computation. Thus,
rule 2r1 cannot be applied and rule 1r7 will eventually be applied.

ca′ja
1a3a5 Icckq̂iâbjǎjajâja

2a4q1
l

Icca
′
jbjǎjaj âa

1a3a5 q̂ia
2a4q1

l âjck ⇒1r12,1r13,1s2

ǎjaja
3a5 Iccq̂iâa1a2a4q1

l a
′
jbj âjck

Notice that applying rule 1r19 leads to an infinite computation, as object
bj cannot be idle. Thus, rule 2r9 will eventually be applied.

ǎjaja
3a5q2

l q
4
l Iccq̂iâa

1a2a4q1
l a

′
jbjq

3
l q

5
l dj âjck

⇒2r9,1r14,1s1,1s3
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Iccǎjaja
1a2a3a5q2

l q
4
l q̂iâa4q1

l q
3
l q

5
l dja

′
jbj âjck

⇒2r10,1r15,1s2

ǎjaja
1a5q2

l q
4
l Iccq̂ia

2a3a4âdja
′
jq

1
l q3

l q
5
l bj âjck

⇒1r19,1r25,1r16,1s1,1s3

Iccaj ǎjdjâa
1a3a4a5a′jq

1
l q

2
l q4

l q̂ia
2q3

l q
5
l bj âjck

⇒1r27,1r13,1r17,1r20,1s2

aja
3a′jq

4
l Iccq̂iâa1a2a4ǎjdja

5q1
l q

2
l q

3
l q

5
l bj âjck

Now we can apply the rules 1r25, 1r18 or 2r11. It is easy to see that
applying rule 1r25 leads to an infinite computation (rules 1r26, 2r6, 2r7),
which is true for rule 1r18, too (rules 1r28, 1r10, 2r6, 2r7). Hence, now
consider applying rule 2r11.

aja
3a′jq

4
l ql Iccq̂lq̂iâa

1a2a4ǎjdja
5q1

l q
2
l q

3
l q5

l bj âjck

⇒2r11,1r21,1r14,1s1,1s3

Iccaja
1a2a3a′jq

2
l q

3
l q

4
l ql q̂lq̂iâa4ǎjq

1
l q

5
l dja

5bj âjck

⇒2r12,1r15,1r22,1s2

aja
1a′jq

2
l ql Iccq̂lq̂iâa2a3a4a5ǎjq

1
l q

3
l q

4
l q

5
l djbj âjck

⇒1r16,1r18,1r23,1s1,1s3

Iccaja
1a3a4a5a′jq

2
l q

4
l q

5
l ql q̂lq̂iâa2ǎjq

1
l q

3
l djbj âjck

⇒1r17,1r24,1s2

aja
1a3a′jq

2
l q

4
l Iccqlq̂lq̂iâa2a4a5ǎjq

1
l q

3
l q

5
l djbj âjck

⇒1r1,1r18,1s1,1s3

Iccaja
1a3a5a′jq

2
l q

4
l qlq̂l q̂iâa2a4ǎjq

1
l q

3
l q

5
l djbj âjck

Thus, we begin a new circle of modelling.

“Decrement”-instruction.
If there is an object ck in region 2, we obtain the following computation:
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aj qiq̂iǎj â bjck#2 ⇒1r1 qiq̂iaj ǎj â bjck#2 ⇒1r2

qi q̂iaj ǎj â bjck#2

Now there are two variants of computations (depending on the applica-
tion of rule 2r1 or rule 1r3). It is easy to see that the application of rule
1r3 leads to an infinite computation (by “Circle”). Now consider applying
rule 2r1:

qi q̂iajǎjâ bjck#2 ⇒2r1 qi q̂iâ bjǎjajck#2 ⇒2r2,2r3

qi q̂ibj ǎj âajck #2

Thus, object ck is moved from region 2 to region 1 (thus, we decrease
the number of objects ck in region 2 by one and model the “decrement”-
instruction of the counter automaton).

The case when there is no object ck in region 2 leads to an infinite
computation (rules 2r4, 1r5, 1r6), hence, again we correctly model the
“decrement”-instruction. The further behavior of the system is the same
as in the case of modelling the “increment”-instruction.

“Test for zero”-instruction:
qi is replaced by ql if there is no ck in region 2 (case a)), otherwise the

computation will never stop (case b)).

Case a):

aj qiq̂iǎj b̂d
′
jd

′′
j bjdj#2 ⇒1r1 qiq̂iaj ǎj b̂d

′
jd

′′
j bjdj#2 ⇒1r2

qi q̂iaj ǎj b̂d
′
jd

′′
j bjdj#2

Now there are two variants of computations (depending on the applica-
tion of rule 2r1 or rule 1r4). It is easy to see that the application of rule 1r4
leads to an infinite computation (by “Circle”). Consider the application of
rule 2r1:

qiq
2
l q

4
l qla

′
j q̂iajǎjq

1
l q

3
l q

5
l b̂d

′
jd

′′
j bjdj#2 ⇒2r1
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qiq
2
l q

4
l qla

′
j q̂iq

1
l q

3
l q

5
l b̂d

′
jd

′′
j aj ǎjbjdj#2 ⇒2r2

qiq
2
l q

4
l qla

′
j q̂iǎjbjq

1
l q

3
l q

5
l b̂d

′
jd

′′
j ajdj#2 ⇒1r7

qiq
2
l q

4
l qlǎjbja

′
j q̂iq

1
l q

3
l q

5
l b̂d

′
jd

′′
j ajdj#2 ⇒1r12

qiq
2
l q

4
l qlǎj q̂ibja

′
jq

1
l q

3
l q

5
l b̂d

′
jd

′′
j ajdj#2

Again there are two variants of computations, depending on the appli-
cation of rule 1r19 or rule 2r9. Notice that applying rule 1r19 leads to an
infinite computation, as object bj cannot be idle (rules 1r8, 1r10, 2r6, 2r7).
Hence, we only consider the case of applying rule 2r9:

qiq
2
l q

4
l qlǎj q̂ibja

′
jq

1
l q

3
l q

5
l b̂d

′
jd

′′
j ajdj#2 ⇒2r9

qiq
2
l q

4
l qlǎj q̂iq

1
l q

3
l q

5
l b̂d

′
jd

′′
j ajbja

′
jdj#2 ⇒2r10

qiq
2
l q

4
l qlǎj q̂ia

′
jq

1
l q

3
l q

5
l b̂djd

′
jd

′′
j ajbj#2

Now there are two variants of computations, depending on the applica-
tion of rule 2r13 and 1r29. It is easy to see that applying rule 2r14 leads
to an infinite computation (rules 2r14, 1r4, 1r11, 2r6, 2r7). Hence, consider
applying rule 1r29:

qiq
2
l q

4
l qlǎj q̂ia

′
jq

1
l q3

l q
5
l b̂djd

′
jd

′′
j ajbj#2 ⇒1r29,1r19

qia
′
jq

1
l q

2
l q4

l qlǎjdjd
′
j q̂iq

3
l q

5
l b̂d

′′
j ajbj#2 ⇒1r20,1r27

qia
′
jq

4
l qld

′
j q̂iq

1
l q

2
l q

3
l q5

l b̂ǎjdjd
′′
j ajbj#2 ⇒1r21,2r13

qia
′
jq

2
l q

3
l q

4
l qld

′
j q̂iq

1
l q

5
l b̂ǎj djd

′′
j ajbj#2 ⇒1r22,2r14

qia
′
jq

2
l qld

′
j q̂iq

1
l q

3
l q

4
l q

5
l d′′jajb̂ǎj djbj#2 ⇒1r4,1r23

qia
′
jq

2
l q

4
l q

5
l qlajb̂d′

j q̂iq
1
l q

3
l d

′′
j ǎj djbj#2 ⇒1r24,1r30

qia
′
jq

2
l q

4
l aj q̂iq

1
l q

3
l q

5
l qlb̂d

′
jd

′′
j ǎj djbj#2
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Thus, qi is replaced by ql in region 1.

Case b):

aj qiq̂iǎj b̂ ckbjdj#2 ⇒1r1 qiq̂iaj ǎj b̂ ckbjdj#2 ⇒1r2

qi q̂iaj ǎj b̂ ckbjdj#2

Again there are two variants of computations (depending on the appli-
cation of rule 2r1 or rule 1r4). It is easy to see that the application of rule
1r4 leads to infinite computation (by “Circle”). Consider the applying of
rule 2r1:

qi q̂iajǎjb̂ ckbjdj#2 ⇒2r1 qi q̂ib̂ ckajǎjbjdj#2 ⇒2r2,2r3

qi q̂iǎjbjckaj b̂ dj#2

There are two variants of computations, depending on the application
of rule 2r1 or rule 1r4. Notice that they both lead to infinite computa-
tions. Indeed, if rule 2r1 will be applied, then rules 1r8, 1r10, 2r6, 2r7 will
be applied (applying rules 2r6, 2r7 leads to an infinite computation). If
rule 1r4 will be applied, it again leads to an infinite computation (rules
1r11, 2r6, 2r7). Thus, we correctly model a “test for zero”-instruction.

3. END.

R1,f = {1f1 : ($1ǎj , out) | j ∈ I}

∪ {1f2 : ($2e1, out), 1f3 : ($1$3, out)}

∪ {1f4 : (etht, in) | t ∈ I ′}

∪ {1f5 : (htet+1, out) | 1 ≤ t ≤ n + 3}

R2,f = {2f1 : (qf , in), 2f2 : (qf$1, out), 2f3 : (qf$2, out)}

∪ {2f4 : ($1â, in), 2f5 : ($1#1, in), 2f6 : ($1Ic, in)}

∪ {2f7 : (hn+4, in)}

∪ {2f8 : (hn+4âj , out) | j ∈ I}

∪ {2f9 : (hn+4bj , out) | j ∈ I}

∪ {2f10 : (hn+4dj , out) | j ∈ I}
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At first, all objects ǎj will be moved to the environment and the objects
â,#1, Ic to region 2 (thus, we stop without continuing the loop) and after
that all objects âj , bj , dj will be moved from region 2 to region 1. Hence,
in region 2 now there are only the objects c1 (representing the result of the
computation) and the six additional objects #1, #2, â, Ic, qf , hn+4.

Both constructions from Theorem 2 and Theorem 3 can easily be modi-
fied to show that

PsOP2(sym1, anti1)T = PsRE and

PsOP2(sym2)T = PsRE,

i.e., the results proved in Theorem 2 and Theorem 3 can be extended from
sets of natural numbers to sets of vectors of natural numbers.

5 Final Remarks

In this paper we have proved the new results that P systems with minimal
cooperation, i.e., P systems with symport / antiport rules of size one, are
computationally complete with only two membranes: they generate all re-
cursively enumerable sets of vectors of nonnegative integers excluding (at
most) the initial segment {0, 1, 2}. In an analogous manner, P systems
with symport rules of size two are computationally complete with only two
membranes: they generate all recursively enumerable sets of vectors of non-
negative integers excluding (at most) the initial segment {0, 1, 2, 3, 4, 5}. On
the other hand it is known that systems with such rules in only one mem-
brane cannot be universal, see [19, 32, 6]. Hence, the results we have proved
in this paper are optimal with respect to the number of membranes. Notice
that for tissue P systems with minimal cooperation this problem has already
been solved successfully ([7]), i.e., it was proved that two cells are enough
to generate all recursively enumerable sets of natural numbers.

Moreover, for P systems with symport rules of weight three we already
obtain computational completeness with only one membrane modulo the
initial segment {0, 1, 2, 3, 4, 5, 6}, which improves the result of [19], where
thirteen objects remained in the skin membrane at the end of a halting
computation.

As so far we have not been able to completely avoid additional symbols
that remain after a computation has halted, the interesting open question
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remains to find the minimal numbers of these additional objects that permit
to obtain computationally completeness in the cases described above.
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F. Sancho-Caparrini (Eds): Second Brainstorming Week on Membrane
Computing. Technical report of Research Group on Natural Comput-
ing, University of Seville, TR 01/2004 (2004), 206–223 and Theoretical
Computer Science 330 (2005), 101–116.
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Bicocca, Italy, June 14 - 16, 2004, 422–431.

[32] S. Verlan: Optimal results on tissue P systems with minimal sym-
port/antiport. Presented at EMCC meeting, Lorentz Center, Leiden,
The Netherlands, 22–26 November, 2004.

[33] S. Verlan: Tissue P systems with minimal symport/antiport. In: C.S.
Calude, E. Calude, M.J. Dinneen (Eds): Developments in Language
Theory, DLT 2004. Lecture Notes in Computer Science 3340, Springer-
Verlag, Berlin (2004), 418–430.

78



On Evolutionary Lineages of Membrane

Systems
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Campus de Montegancedo s/n, Boadilla del Monte

28660 Madrid, Spain

2Institute of Computer Science, Silesian University,
74601 Opava, Czech Republic

E-Mail: {petr.sosik,ondrej.valik}@fpf.slu.cz

Abstract

We introduce a simple model of P system motivated by certain
restrictions found in biological systems. Its computational power is
rather limited and corresponds to that of a finite transducer. An im-
portant characteristics of the model is its interactive behavior. Then
we study a computational power of evolutionary lineages of such P sys-
tems. Referring to known results from the structural complexity the-
ory (Karp and Lipton, Wiedermann and van Leeuwen), we show that a
super-Turing computational potential can emerge in non-uniform lin-
eages of these restricted P systems.

Furthermore, key features of our model are related to lineages of
biological systems. Hence our results provide another argument sup-
porting thesis from [14] and others that a super-Turing potential is
naturally and inherently present in evolution of living organisms.

1 Introduction

Membrane systems (recently called P systems) are biologically inspired (par-
ticularly, cell inspired) formal computational models introduced in [8]. For
an overview of membrane computing theory we refer the reader to [9]. Com-
putational operations in P systems are motivated by some properties of liv-
ing cells which are mathematically abstracted and generalized. Many of the
recently studied variants of P systems achieve universal (in Turing sense)
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computational power, provided that their membranes can contain an unlim-
ited number of objects.

In this paper, however, we try to get a bit closer relation of our results
to the computational potential of biological cells and their lineages and,
too, to the potential of a physically feasible “wet computer”. Therefore we
adopt the assumption that each living cell or a multicellular organism is
a finite body and its behavior can in principle be modelled by a finite-size
model, however complicated. A similar approach can be found also in the
recently developed model of P colonies [7]. One can argue that organisms
can use their (potentially infinite) environment as an external memory, but
even then there is a barrier of their limited length of life during which only
a limited portion of “memory” can be used.

An important part of our model are certain properties of living organisms
which, due to [12, 14], give them power beyond level of classical formal
automata:

(i) interactivity, i.e. continuous flow of information, contrasting with a
beforehand-given input of conventional automata;

(ii) unpredictability of interactions and information exchange (notice the
difference from a nondeterministic Turing machine where all possible
configurations can be found and simulated by its deterministic vari-
ant);

(iii) continuous lineage of individuals, transferring information from one
generation to another, and capable of continuous changes due to in-
tensive interactions with their environment.

Also nowadays computers connected into a worldwide network possess ex-
actly the same properties (i)–(iii). Indeed, they intensively interact in an
unpredictable manner (often too unpredictable to our taste). When solving
difficult problems, they can consult other network machines. They get con-
tinuous upgrade through the network, often without our knowledge. Last,
but not least, there exists a continuity between their generations. Therefore,
the original paradigm of a computer as a Turing machine does not corre-
spond to the recent situation and maybe the time has come for its change
[13].

Based on this argumentation, we incorporate the properties (i)–(iii) into
our P system model and study its power. Rather surprisingly, we show that
the resulting lineage of simple P systems reaches a super-Turing computa-
tional potential.
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The history of super-Turing computation originates, paradoxically, in
the Turing’s dissertation thesis [11]. Here the modified variant of the Tur-
ing machine augmented with the oracle device has been introduced and its
power studied. The machine has a special oracle tape and a corresponding
query state. The machine can write a question at the oracle tape and enter
the query state. Then in one step, an (in principle uncomputable) answer
appears at the oracle tape. There have been also considered limitations on
the size of the oracle’s answer. In 1980 there was defined a bit weaker advice
Turing machine [6]. The advice differs from the oracle in the following: while
the oracle assigns an individual answer to each query, the advice provides
an answer due to the length of the query and ignores its content. Therefore,
all queries with the same length are given the same answer. Usually, length
of the advice is polynomially restricted w.r.t. the length of the query. We
denote the advice Turing machine by TM/A. We refer the reader e.g. to [1]
for more information on non-uniform complexity classes.

In 1980’s and 1990’s many super-Turing models were studied, as Inter-
action Machines, Site and Internet Machines, π-Kalkl, $-Kalkl etc. The
reader is referred to [3] or [4] for an overview. We mention two super-Turing
computational models with biological inspiration. In [2], authors show a
super-Turing power of deterministic P systems which can speed up their
operations gradually (a reversed Achilles and Tortoise principle). Another
paper [15] introduces the model called bacterioid which combines computa-
tional and non-computational mechanisms. The bacterioid conforms with
the requirements for a minimal artificial life and exhibits also rudimentary
cognitive properties.

In this context we argue together with [12, 14] and others that super-
Turing potential can naturally emerge in evolutionary lineages of finite (bio-
logical or other) systems. Indeed, the requirements (i)–(iii) form elementary
components of biological evolutionary processes. Together with the finite-
ness of living organisms we obtain a reasonable scenario suggesting that a
super-Turing potential is not only possible, but probably rather necessary
phenomenon during biological evolution.

2 Interactive Finite Machines

In this section we focus on the first natural property of the living entities –
interactivity. We fix some basic notation first. An alphabet Σ is a finite and
nonempty set of symbols. The set of all words over Σ is denoted by Σ∗. This
set includes the empty word ǫ. The set of all nonempty words Σ∗ \ {ǫ} is
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denoted by Σ+. The length of a word w is denoted by |w|. For a nonnegative
integer n and a word w, we use wn to denote the word that consists of n
concatenated copies of w. For more information on formal language theory
we refer the reader to [10].

Now we present a canonical model of an interactive finite machine – the
interactive finite transducer (IFT), introduced in [12], which is an analogy
of Mealy automaton. Recall that Mealy automaton is a finite-state ma-
chine which at each computational step inputs and outputs symbols from a
given alphabet. Of course, when considering suitable computational models
for embodiment of the lineages of evolving organisms, we may think about
finite-state neural networks or other models with evolutionary capabilities.
However, as they are in general finite-state machines, IFT’s appear to be a
proper choice for study of their computational limits due to its simplicity.

Definition 2.1 A Mealy automaton is a six-tuple M = (I, O, Q, δ, ρ, q0),
where

– I is an input alphabet,

– O is an output alphabet,

– Q is a finite nonempty set of states,

– δ : Q × I −→ Q is a transition function,

– ρ : Q × I −→ O is an output function,

– q0 ∈ Q is an initial state.

The input of the Mealy automaton is an input tape containing a finite
word over the input alphabet. At each step, the Mealy automaton reads
a symbol from the input tape, changes eventually its state due to δ and
outputs a symbol from the output alphabet selected by ρ.

IFT’s differ from Mealy automata mainly in their computational sce-
nario. Unlike a Mealy automaton, an IFT inputs a (potentially infinite)
input stream over and input/output alphabet Σ via its input channel and
outputs a (potentially infinite) output stream. Therefore we do not assume
that the whole input is fixed and written in a tape beforehand. Let Σω

denote the set of all infinite streams over the alphabet Σ. Hence an IFT
realizes a translation φ : Σω −→ Σω. In the sequel, however, we use Mealy
automata as a formal representation of IFT’s.
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2.1 Interactive Finite P Systems

Membrane computing offers a computational framework in which the as-
sumptions (i)–(iii) from the section 1 can be naturally implemented. We
build on a “classical” variant of P system computing with multisets of ob-
jects. However, we impose some restrictions motivated by reflections in
Section 1. Also, communication with the outer environment is performed
via an input and an output channel similarly as in P automata with commu-
nication rules [5]. At each step our model can receive at most one symbol
via its input channel and send at most one symbol via its output channel.
Of course, living organisms receive at each moment an n-tuple of “inputs”
via their “input channels”, but let us assume that n is limited from above
and hence the the set of all such n-tuples can be mapped one-to-one into a
finite alphabet. The resulting model is called Interactive Finite P System
(IFPS).

Definition 2.2 An interactive finite P system of degree n, n ≥ 1, is the
construct

Π = (Σ, Γ,⊔, µ, w1, . . . , wn, R1, . . . , Rn),

where:

(i) Σ is an alphabet; its elements are called objects;

(ii) Γ ⊂ Σ is an input/output alphabet;

(iii) ⊔ ∈ Γ is a special symbol denoting an undefined input/output;

(iv) µ is a hierarchical structure of n membranes, with membranes denoted
by integers 1, . . . , n; the outermost membrane is called also the skin
membrane;

(v) wi, 1 ≤ i ≤ n, is an initial content of region i of the membrane struc-
ture µ; formally, wi is a word in Σ∗ representing by its Parikh vector
a multiset m(wi) over Σ;

(vi) Ri, 1 ≤ i ≤ n, is a finite set of evolutional rules u → v over Σ belonging
to region i of the structure µ; forms of the rules can be:

(a) a → bτ , a, b ∈ Σ, τ ∈ ({here} ∪ {in j | 1 ≤ j ≤ n}); if [i]i is not
the skin membrane, then it is also allowed that τ = out ;

(b) ab → aτ1cτ2, a, b, c ∈ Σ, τ1, τ2 ∈ ({here} ∪ {in j | 1 ≤ j ≤ n}); if
[i]i is not the skin membrane, then it is also allowed that τ1 = out
or τ2 = out or both;
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(c) ab → aτ boutccome , a ∈ Σ, b, c ∈ Γ, τ ∈ ({here} ∪ {in j | 1 ≤ j ≤
n}); these rules can exist only within the skin membrane.

The components w1, . . . , wn form an initial state of Π. Generally, each
n-tuple w′

1, . . . , w
′
n is called a configuration of Π. For two configurations

C1 = (w′
1, . . . , w

′
n) and C2 = (w′′

1 , . . . , w′′
n) we write C1 =⇒ C2, and we say

that we have a transition from C1 to C2, if we can pass from C1 to C2 by
using the evolution rules appearing in R1, . . . , Rn in the following manner:

• If an object appears in v in a form ahere , then it will remain in the
same region i (instead of ahere we often write simply a).

• If an object appears in v in a form aout , then a will exit the membrane
i and will become an element of the region immediately outside it; or,
in case of (c)-type rules, it is sent out of the system via its output
channel.

• If an object appears in a form ainq , then a will be added to the multiset
m(w′

q), provided that a is adjacent to the membrane q.

• If an object appears in a form acome , then a is imported into the skin
membrane via input channel. At each step, only one rule of type (c)
can be applied.

All these operations are done in parallel, for all possible applicable rules
u → v, for all occurrences of multisets u in the region associated with the
rules, for all regions at the same time. The system continues these parallel
steps until there remain any applicable rules in any compartment of Π. Both
an input and an output of the system are infinite streams of symbols in Γω.

In this paper we restrict ourselves to deterministic IFPS’s, which at each
configuration C1 and for each symbol in the input channel can pass to at
most one possible configuration C2 and sent at most one possible symbol to
its output channel.

Definition 2.3 A translation mapping φ : Σω −→ Σω is called an inter-
active translation realized by a deterministic IFPS Π if the following holds:
φ(x) = y iff Π with the input x never halts and outputs y, for x, y ∈ Σω.

It follows by the above definition that those IFPS’s which halt after a
finite number of steps, as well as those which input/output only a finite
number of symbols, do not realize an interactive translation.
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Example 2.4 The following IFPS Πab searches the input stream for strings
ab, see Fig. 1. Its response to such a string is the output #. In other cases
the system just copies an input string to the output.'

&

$

%

c a b#

ca → cin2
aoutacome

cb → cboutbcome

caa → caaoutacome

ca# → ca;in2
#outbcome bb → b#

1

'

&

$

%

d

dc → dca;out

dca → dcout

2

Figure 1: The interactive finite P system Πab.

Let Πab = (Σ, Γ,⊔, µ, w1, w2, R1, R2) be an IFPS of degree 2, where

Σ = {a, b, c, ca, d,⊔, #}
Γ = {⊔, a, b,#}
µ = [1[2]2]1
w1 = cab#
w2 = d
R1 = {r1 : ca → cin2

aoutacome ,
r2 : cb → cboutbcome ,
r3 : caa → caaoutacome ,
r4 : ca# → ca;in2

#outbcome ,
r5 : bb → b#}

R2 = {r6 : dca → dcout , r7 : dc → dca;out}

The system Πab works as follows:

1. In the initial configuration only the rules r1 or r2 are applicable. If
the input is:

(a) then r1 is applied, the object a is copied to the output and c is
sent to region 2; we continue by step 2;

(b) then r2 is applied, b is sent to the output and we continue in the
same configuration.
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2. In region 2 the rule r7 is now applicable, rewriting c to ca and sending
it to region 1.

3. Now in region 1 the rules r3 or r4 are applicable. If the input is:

(a) then r3 is applied, copying a to the output without a change of
the recent configuration;

(b) then r4 is applied, sending # to the output as an indicator of the
input ab, sending simultaneously ca into region 2, and we continue
by step 4.

4. Rules r5 and r6 are simultaneously applied, turning the system back
into the initial configuration, and we continue by step 1.

2.2 Equivalence of IFT and IFPS

We show that interactive P systems compute exactly the same translation
functions as IFT’s. Our result extends Theorem 1 in [14] which states
the equivalence of IFT with several other computational models as discrete
neural nets or combinatorial circuits.'

&

$

%

v0 q0 y1 . . . yl

1

'
&

$
%Q0

'
&

$
%Q1

v1
. . .

'
&

$
%Qn

vn

Figure 2: The interactive P system simulating IFT.

Theorem 2.5 For a translation φ : Σω → Σω the following is equivalent:

(i) φ is realized by an interactive finite transducer;

(ii) φ is realized by a deterministic interactive finite P system.

Proof. (i)⇒(ii) Let M = (I, O, Q, δ,⊔, q0) be a Mealy automaton, where
I = {x1, . . . , xk}, O = {y1, . . . , yl} and Q = {q0, . . . , qn}.

We construct a deterministic interactive P system ΠM =
(Σ, Γ,⊔, µ, w1, . . . , wm, R1, . . . , Rm) of degree m = n + 2 realizing the
same translation.
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• Γ = {⊔, x1, . . . , xk, y1, . . . , yl}

• Σ = {q0, . . . , qn, p0, . . . , pn} ∪ Γ

• µ = [1[Q0
]Q0

. . . [Qn ]Qn ]1

• w1 = q0p0y1 . . . yl, wQ0
= ǫ and wQi

= pi, 1 ≤ i ≤ n

• R1 is constructed as follows: for each pair of rules δ(qi, x) = qj ,
ρ(qi, x) = y, qi, qj ∈ Q, x ∈ I, y ∈ O, we add to R1 the rules:

{piy → pi;inQi
youtxcome} (1)

{qix → qi;inQj
y} (2)

• RQi
= {pip → pi;outqi;out | ∃ p ∈ Q, x ∈ I : δ(p, x) = qi}, 0 ≤ i ≤ n.

Each step of the automaton M is simulated by the P system ΠM as follows.

1. Input and output of a symbol: presence of an object pi, 0 ≤ i ≤ n, in
the skin membrane represents the state qi of M. An application of a
rule ρ(qi, x) = y of M is simulated by a rule of type (1). Notice that
a complete set of output objects y1, . . . , yl is present within the skin
membrane.

2. State transition – phase I: A rule of type (2) completes the set of
output objects within the skin membrane. Simultaneously it sends
the object qi into the membrane Qj which is equivalent to the rule
δ(qi, x) = qj of M.

3. State transition – phase II: Now the membrane Qj contains objects pj

and qi. The object qi is rewritten to qj and sent to the skin membrane
together with pj to represent the new state qj of M.

It follows by the above description that the deterministic IFPS ΠM realizes
the same translation as the IFT M.

(i)⇐(ii) Let Π = (Σ, Γ,⊔, µ, w1, . . . , wn, R1, . . . , Rn) be a deterministic
IFPS which realizes a translation φ. Let us denote by CΠ the set of all
configurations of Π. The number of all possible configurations is determined
by the membrane structure µ, the size of the alphabet l = |Σ|, and the initial
number of objects within the system, m = |w1|+ |w2|+ . . . + |wn|. Observe
that the number of objects does not change during the work of the system.
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The reader can verify that the system has |CΠ| = (m+ ln−1)!/(m!(ln−1)!)
possible configurations.

Then the IFPS Π can be simulated by a Mealy automaton MΠ =
(Γ, Γ, Q, δ, ρ, C0), where:

• Q = {C0} ∪ {C ∈ C | C0 ⇒∗ C ′ ⇒r C, r = ab → aτ boutccome},

• δ(C, c) = C ′ and ρ(C, c) = b, b, c ∈ Γ, if and only if C ⇒+
Π C ′, and

this sequence of transitions involves exactly one application of a rule
ab → aτ boutccome in its last step, for some a ∈ Σ, τ ∈ ({here} ∪ {in j |
1 ≤ j ≤ n}).

Due to the determinism of Π, it is guaranteed that the sequence of transitions
C ⇒+

Π C ′ is unique for a given c ∈ Γ. The above description shows that the
translation φ realized by Π is identical with the translation realized by MΠ.
2

3 From Machines to Lineages

In this section we consider the other two mentioned properties of commu-
nities of living organisms: continuous lineages of unpredictably evolving
individuals. Similarly as in the previous section, we present first a canonical
model of lineage [12] based on theory of finite automata. We denote by U a
universe of possible states of all automata in the lineage.

Definition 3.1 Let A = {A1, A2, . . .} be a sequence of IFT’s over an in-
put/output alphabet Σ and let Qi ⊆ U be a set of states of Ai. Let
G = {G1, G2, . . .} be a sequence of states from U such that Gi ⊂ Qi and
Gi ⊆ Gi+1, i ≥ 1. Then A together with G is called a sequence of IFT’s
with global states.

The sequence A is non-uniform, i.e. there is no algorithmic way how
to describe its members. The only way how to define the sequence is to
list all its members. The set

⋃
i Gi ⊆ U is called the set of global states of

A. The sequence A processes an infinite input stream from Σω as follows.
At the beginning, the automaton A1 processes the input stream using its
local states Q1 − G1. At a certain moment A1 enters a global state g ∈ G1,
finishes its computation and passes the control to A2. The input stream is
redirected to the input of A2 which starts its computation in the same state
g ∈ G2 and processes another symbol. After a certain number of steps in
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its local states, A2 enters a global state g′, passes control to A3 et cetera.
Although it is not explicitly mentioned in the definition, it is assumed that
the number of states of automata {A1, A2, . . .} increases, although possibly
non-monotonically (unlike the monotonic sequence G1 ⊆ G2 ⊆ G3 ⊆ . . .).

Therefore, the input stream is processed by automata with an increasing
index i. The next active automaton represents a new generation with poten-
tially richer configuration space. This mechanism allows for a transfer and
improvement of structural information from the previous generation. These
improvements are understood as a result of unpredictable interactions of an
individual (transducer) with its environment and other individuals.

3.1 Computational Potential of Lineages of IFT’s

We use an interactive advice Turing machine to characterize the compu-
tational power of non-uniform lineages of IFT’s. The interactive Turing
machine (ITM) is – similarly as an IFT – a computational device working
over infinite input and output streams. Unlike IFT, however, it has an in-
ternal architecture of Turing machine with an infinite tape and therefore its
configuration space is infinite. Besides tape operations in spirit of Turing
machine, ITM at each step reads a symbol from its input channel and sends
a symbol to its output channel. Moreover, after receiving a nonempty sym-
bol from its input channel, the ITM is required to send a nonempty symbol
to its output channel within a finite number of steps. In this way the ITM
realizes an interactive translation φ : Σω −→ Σω. We refer the reader to [12]
for more details.

The computational power of ITM is in principle equivalent to that of a
standard Turing machine. Indeed, an input/output of a standard TM can
be a part of input/output streams of ITM, on one hand. On the other hand,
each translation of ITM Pref(x) −→ Pref(y) for finite prefixes of x and y
of the same length is Turing-computable. The ingredient we add to ITM to
increase its power is the advice function introduced in Section 1.

Definition 3.2 An advice is a function f : N
+ −→ {0, 1}∗. We say that

an advice f is S(m)-bounded if |f(m)| ≤ S(m) for each m ∈ N.

The resulting device is called interactive advice Turing machine
(ITM/A). See [13] for motivation and more results about ITM/A. An
ITM/A can in a step t ask only a query of length t1 ≤ t. To get an ad-
vice, ITM/A is is equipped with a special advice tape and an advice state.
When ITM/A writes an argument t1 to the advice tape and enters the ad-
vice state, the value of f(t1) rewrites in one step the original content of the
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advice tape. Due to the possible non-computability of the advice, ITM/A is
a super-Turing computational device [12]. The following result can be found
in [14].

Theorem 3.3 A translation φ : Σω → Σω can be realized by a sequence of
IFT’s with global states iff it can be realized by an ITM/A.

3.2 Lineages of IFPS’s

Theorem 3.3 can be naturally extended to sequences of interactive finite P
systems. Consider an IFPS

Π = (Σ, Γ,⊔, µ, w1, . . . , wm, R1, . . . , Rm)

with a configuration C = (w1, . . . , wm). A state of Π is a pair (µ′, C ′), where
C ′ is obtained from C by omitting all empty strings ǫ corresponding to
membranes containing no objects, and µ′ is obtained from µ by omitting
these membranes. The universe of states U is the set of all possible states
(including all possible membrane structures).

Consider further a sequence of IFPS’s P = {Π1, Π2, ...} such that each
Πi is assigned a finite set of states Qi ⊆ U determined by its structure
and possible contents of its membranes. Some selected states form a set
Gi ⊂ Qi of global states. The sequence P must satisfy the conditions of
Definition 3.1: Gi ⊆ Gi+1, i ≥ 1. Then P is called an evolutionary sequence
of interactive P systems.

Example 3.4 Let P = {Π1, Π2, ...} be a sequence of IFPS’s. Denote by Qi

the set of states of Πi, i ≥ 1. Let ∆i ⊆ Γi be a nonempty alphabet of global
symbols, where Γi is the alphabet of Πi. Let further ∆i ⊆ ∆i+1, i ≥ 1. Let
global states of Πi be those of its states which contain a symbol from ∆i.

A transition from Πi to Πi+1 is realized by its mutation, during which:

– a rule can be added/deleted/replaced,

– a symbol can be added to the system’s alphabet,

– an empty membrane together with rules can be added.

When Πi enters a global state, it is changed to Πi+1 which starts from the
same state. Then Πi+1 operates over input/output streams until it enters
again a global state. This can happen even in its first step if all global
symbols are not removed during this step.
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Hence the sequence of IFPS’s P = Π1, Π2, ... satisfies the conditions of
Definition 3.1 and we have the following result:

Theorem 3.5 A translation φ : Σω → Σω can be realized by a sequence of
IFT’s with global states iff it can be realized by an evolutionary sequence of
IFPS’s.

Corollary 3.6 A translation φ : Σω → Σω can be realized by an evolution-
ary sequence of IFPS’s iff it can be realized by an ITM/A.

Note that all members of the sequence P operate with the same number
of objects. The evolution changes only their alphabet, membrane structure
and rules.

4 Conclusion

We study a simple variant of P system called the interactive finite P system
– IFPS. An IFPS can at each step contain only a fixed, pre-defined number of
objects and a fixed number of membranes, therefore its configuration space
is finite. It communicates with an outer environment via an input and an
output channel. The key ingredient increasing its power is the capability of
evolutionary lineages of IFPS’s to evolve from one generation to another in
an unpredictable, non-computable manner.

We have shown that evolutionary lineages of IFPS’s reach the super-
Turing computational potential. This result extends work of [12, 14, 15]
and others where authors study power of lineages of finite-state machines.
Our biologically inspired model of IFPS, however, is restricted to use ele-
mentary cell-like computational operations. We have therefore settled the
open question in [15] how to implement such lineages within the framework
of P systems.

One might ask whether now we are able to solve some concrete, a pri-
ori given undecidable problems with lineages of IFPS’s? On one hand, it
has been shown in [12] that ITM/A (and in turn also lineages of IFPS’s) is
strictly more powerful than ITM (and hence than standard Turing machine).
In other words, some undecidable problems (e.g. the Halting Problem) can
in principle be solved by lineages of IFPS’s in a finite number of steps. On
the other hand, computational evolutionary processes are by definition of
an interactive and unpredictable nature and can not be simulated by an
equivalent deterministic device in a finite number of steps. (Unlike a non-
deterministic TM which can be simulated by a deterministic TM with an
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exponential slowdown.) Therefore, one can not solve non-computable prob-
lems “on command” with IFPS’s. Which problems will be solved and when
depends on the evolutionary process. What one can do is to increase chances
for finding answers by providing a “rich and inspirative” evolutionary envi-
ronment.

There remain many other open questions. For instance, we imposed a few
restrictions on the form of evolution of IFPS’s. However, in [12] authors show
that polynomially bounded lineages of IFT’s are computationally equivalent
to logarithmic space-bounded ITM’s with a polynomially bounded advice.
Hence the complexity problems of lineages of IFPS’s are subject of further
research.

Similar open problems exist for uniform lineages of IFPS’s with various
evolutionary restrictions. We conjecture that NP-complete or PSPACE-
complete problems can be solvable in polynomial time by certain uniform
lineages of IFPS’s. Interesting question is whether similar results can be ob-
tained by even simpler membrane computing models, as recently introduced
P colonies [7]. Communities of IFPS’s or P colonies can not only reach the
computational power exceeding the limit of each of its members [7], but it
might also be useful for modelling complex social behavior of living cells,
e.g. bacteria.
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Alfonso ORTEGA DE LA PUENTE

Departamento de Ingenieŕıa Informática
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1 Introduction

P Systems are the basic model in Membrane Computing, and were proposed
in the late 90s by Gh. Păun [15] as distributed parallel computing devices
[16] that process multisets of objects in the space delimited by a set of
membranes called membrane structure. The contents of the membranes
are modeled by means of multisets of symbols (sets that allow repetitions).
These symbols can pass through membranes and some of them may act as
catalysts. A membrane and its contents is called region, and all of them
evolve simultaneously according to a set of production rules that describe
how the multisets of the regions change. One of the regions is considered
the output membrane; when the P Systems halts, this membrane contains
the result of the computation of the P System.

This paper tackles the simulation of P Systems with mobile catalysts
and without priority between their rules.

Java is currently one of the most popular object oriented programming
languages. Java may be slower than other programming languages for com-
putation - intensive problems. Nevertheless it is possible to run Java pro-
grams on a cluster of computers by means of a special Distributed Java Vir-
tual Machine (DJVM) which supports parallel execution of Java threads.
In this way, a multithreaded Java application runs on a cluster just as if it
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were running on a single machine, but with the same performance as a big
multi-processor machine. DJVMs are not included in the Sun’s standard
Java distributions. There are several different kinds of DJVM [9].

The work described in this paper is not the first attempt to code P Sys-
tem simulators. Previous approaches simulate different kinds of P Systems
with different features. There are applications written in Prolog ([10, 8]),
functional programming languages (LISP [19] or Haskell [2]), object oriented
programming languages (C++ [5] or Java [11]), etc. ([1, 12, 4, 6, 7, 18, 17]).
Some of them work only in batch mode (the user writes in a file the de-
scription of the P System, then he runs the simulator that shows the result
of the computation in an output file), while others include a graphic user
interface. Reference [12] describes a C library available at runtime, reference
[5] describes a C++ simulator running on a cluster of computers.

This paper shows a multithread Java P System simulator that runs on
a cluster of computers. This simulator is only the first step to build a Java
tool to automatically design P Systems to solve given tasks. Our tool will
include the hardware platform that will allow an efficient execution of the
programs. Our group is also interested in offering a full access to the tool by
means of Internet (applets, servlets, etc.). None of the existing simulators
exactly fit our needs, so we had to develop our own simulator.

2 Multithread Java P System Simulator Running

on a Cluster of Computers

Informal Description of the Classes

The following classes are used to simulate P Systems:

• MultiSetSymbol represents the simplest component of a region: a pair
with the symbol name and the number of its copies.

• MultiSet, for the left hand sides of the production rules and the con-
tents of the regions. It has a collection of MultiSetSymbols.

• RightMultiSetSymbol, for the simplest component of the right hand
side of the production rules. It contains a MultiSetSymbol and the
target region of the MultiSetSymbol.

• RightMultiSet, for the right hand side of the production rules. It has
a collection of RightMultiSetSymbols.
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• Rule is made of a MultiSet and a RightMultiSet. Its main method is
apply. They are implemented as Java threads because they are applied
simultaneously.

• A Region has a Body and a collection of Rules. Its main method is
applyRules.

• A Body, that stands for the content of a region, has the MultiSet with
the contents of the region. Its main methods are addMultiSet and
removeMultiSet, invoked by the rules. They can simultaneously access
the content of the Body, the mutual exclusion condition is ensured by
means of a Java monitor and Java synchronized methods.

• A P System has a collection of symbol names that represents its alpha-
bet, a collection of Regions and an output Region. Its main method
is compute, that applies the rules of each region in the P System.

Figure 1 shows the UML class diagram for the simulator.
Figure 2 shows a snapshot of the window in which the user defines the

P Systems.
When the user pushes the “ok” button, the simulation of the P System

begins. If it terminates, the results are shown as the contents of the output
region.

The work described in this paper uses JESSICA2 DJVM, that runs on
linux clusters. This DJVM supports the same code as the standard JVM, so
the programmer can assume that the code will run on a single JVM. JES-
SICA2 has three main building blocks: the thread scheduler, that balances
the load of each processor, the execution engine, and the global object space
module, that provides a distributed single heap to the Java threads. Each
computer communicates with each other by means of TCP connections.

3 Experiments Performed and Expected Results

The kind of P Systems simulated in this work has been previously used
to implement logical circuits. Reference [3] describes the way in which ba-
sic logical gates can be simulated by P Systems and how these gates are
combined to compute logical functions.

This paper shows the results of simulating the basic logical gates and
some other logical functions. The main goal is to compare the CPU time
spent by our cluster and by a two-processor linux server, and, subsequently,
to study the conditions in which the cluster is faster than the server.
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Figure 1: UML class diagram of the P System simulator
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Figure 2: Window to define the regions of the P System

For every P System the following experiments are made:

• A maximum number of copies (maxNumberOfCopies) is specified for
every P System

• The simulator is executed once for every number of copies (current-
Copies from 1 to maxNumberOfCopies) both on the cluster and on
the server.

• For every execution, the number of threads (numberOfThreads) and
the CPU time spent (CPUTime) are computed.

• For every P System the relationship between the number of copies,
threads and the time spent is analyzed and graphically represented.
The results of the cluster are compared with those of the server, and we
compute the values of currentCopies and numberOfThreads for which
the cluster is faster than the server.

4 Future Research Lines

Some of the authors of this paper have previously proposed Christiansen
Grammar Evolution [13], a new general purpose automatic programming
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algorithm that improves the performance of Grammar Evolution by adding
semantic restrictions.

Our group plans, in the future, to include this simulator into Christiansen
Grammar Evolution in order to automatically design P Systems for solving
given tasks. A first step is shown in [14], that proposes a Christiansen
Grammar that fully describes the kind of P Systems simulated in this paper.
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A. Salomaa (Eds.): Membrane Computing, International Workshop,
WMC 2003, Revised Papers. Lecture Notes In Computer Science 2933,
Springer-Verlag, Heidelberg (2004), 123–139.

[6] G. Ciobanu, D. Paraschiv: P System Software Simulator. Fundamenta
Informaticae 49 (1–3) (2002), 61–66.

[7] G. Ciobanu, G. Wenyuan: A parallel implementation of transition P
Systems. In A. Alhazov, C. Mart́ın-Vide, Gh. Păun (Eds.): Preproceed-
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Abstract

Proton pumping P systems are a variant of membrane systems with
both rewriting rules and symport/antiport rules, where a set of objects
called protons is distinguished, every cooperative symport or antiport
rule involves a proton, but no rewriting rule does. Time-freeness prop-
erty means the result of all computations does not depend on the rules
execution times.

This article’s aim is to improve (showing that two membranes are
sufficient) the known universality results on proton pumping P sys-
tems, establishing at the same time an upper bound on the number of
protons, namely one, or four for time-free systems.

All results mentioned are valid for proton pumping P systems with
non-cooperative rewriting and either symport/antiport rules of weight
1 (classical variant) or symport rules of weight at most 2. As a corol-
lary, we obtain the universality of P systems with one membrane and
one bi-stable catalyst, or the universality of time-free P systems with
one membrane and four bi-stable catalysts. All universality results are
stated as generating RE (except the time-free systems without targets
generate PsRE).
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1 Introduction

Membrane computing is a rapidly developing field, launched in 1998 by
Gheorghe Păun, see [13] for a systematic survey and [15] for a comprehensive
bibliography. It studies, among others, the computational power of devices
with multisets distributed over a tree-like membrane structure and rules
rewriting and/or moving objects (elements of these multisets).

In evolution-communication P systems as introduced in [5], there are
two types of rules: simple rewriting rules associated to regions and sym-
port/antiport rules associated to membranes. Rules of the first type change
the objects in the region where they are, while the latter ones move the ob-
jects across the membrane; thus, separating evolution and communication.

Proton pumping P systems as introduced in [4] are a restricted variant of
evolution-communication P systems: the set of protons is a subset of objects,
no evolution rule involves a proton, while every cooperative communication
rule has to involve exactly one proton. Thus, a proton is a “catalyst of
communication”. However, since the proton is also moved to another region,
this hints its “multi-stability” (bi-stability if it moves between two regions),
allowing the one-proton results of this paper.

It is worth mentioning that these models, although being formal and
abstract, are motivated by cell biology (e.g., in many bacteria, the only
antiports available are those that can exchange a proton with some chemical
objects), see [1] and [14].

Time-freeness is a property introduced in [8],[6]. Consider a fixed P
system Π and an arbitrary mapping e from the set of all rules to the set of
positive integers. If the result of all halting computations of Π, where the
rules are executed in the number of steps specified by e, is independent on
e, then Π is called time-free.

It has been established that EC P systems with 2 membranes are uni-
versal with non-cooperative evolution and either symport/antiport rules of
weight 1 ([2]) or symport rules of weight at most 2 ([10]); moreover, the
constructions can be made time-free ([3]). For the proton pumping P sys-
tems with non-cooperative evolution and symport/antiport rules of weight 1,
three membranes are enough for universality, while considering only one kind
of protons and strong or weak priority of proton pumping rules, at least
Parikh images of ET0L languages can be generated with two membranes.

In this article we improve the universality result of proton pumping P
systems with symport/antiport rules of weight 1 from three membranes and
an unbounded number of protons to only two membranes and only 4 protons;
moreover, the underlying system is even time-free. We also strengthen the
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universality result of time-free evolution-communication P systems with two
membranes and symport rules of weight at most 2 by proving the same result
for proton pumping P systems with 4 protons.

Surprisingly, one can decrease the number of kinds of protons to one by
giving up the time-freeness for the proton pumping P systems with non-
cooperative evolution, symport of weight 1 and either form of minimal co-
operation (antiport of weight 1 or symport of weight 2).

Finally, protons in two-membrane P systems behave like bi-stable cata-
lysts in one region, so the corresponding corollaries hold for one-membrane
P systems with bi-stable catalysts, improving results from [11], [6].

2 Definitions and Preliminaries

2.1 Proton Pumping

We will now recall from [4] the definition of proton pumping P systems.
The notation has been changed a little, and the definition has been slightly
reformulated (restricted). First, the multiset describing the initial contents
of the environment is no longer considered, as the environment is initially
empty. Second, all communicative rules are listed together (for a shorter de-
scription, symport and antiport rules associated to region i are not divided
any more into two sets). Third, we now also require that cooperative sym-
port rules also involve a proton (in [4], cooperative symport rules were not
studied). Fourth, the rules involving a proton are now restricted to involve
exactly one (like in the catalyst case).

Definition 2.1 A proton pumping P system of degree m ≥ 1, is defined as

Π = (O, P, µ, w1, w2, · · · , wm, R1, · · · , Rm, R′
1, · · · , R′

m, i0) where

• O is the alphabet of objects, P ⊆ O is a set of protons;

• µ is a membrane structure with m membranes injectively labeled
by 1, 2, · · · , m;

• wi are strings which represent multisets over O associated with
regions 1, 2, · · · , m of µ;

• Ri, 1 ≤ i ≤ m, are finite sets of simple evolution rules over O; Ri is
associated with the region i of µ;

• R′
i, 1 ≤ i ≤ m, are finite sets of symport/antiport rules over O of a

restricted form; R′
i is associated with the membrane i of µ;
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• i0 ∈ {0, 1, 2, · · · , m} is the output region; if i0 = 0, then it is the
environment, otherwise i0 is a label of some membrane of µ.

A simple evolution rule is of the form u → v, where u and v are strings
over O − P (the variant can be extended by allowing to assign the target
indications here, out, inj, to the symbols in v; for evolution–communication
P systems this was first used in [10]). The only symport/antiport rules
allowed are of the following forms: (a) uniport rules: (a, in), (a, out), a ∈ O
(notice that in this article we never use uniport of protons); (b) antiport rules
with a proton on one side: (x, out; p, in), (p, out;x, in), p ∈ P , x ∈ (O−P )+;
(c) symport rules with a proton: (px, out), (px, in), p ∈ P , x ∈ (O − P )+.

The m-tuple of multisets of objects present at any moment in the re-
gions of Π represents the configuration of the system at that moment (the
m-tuple (w1, · · · , wm) is the initial configuration). A transition between
configurations is governed by the mixed application of the evolution rules
and of the symport/antiport rules. All rules are applied in a maximally
parallel way (no rules are applicable to the objects that remain idle), chosen
non-deterministically.

The system continues parallel steps until there remain no applicable rules
(evolution rules or symport/antiport rules) in any region of Π. Then the
system halts, and we consider the number of objects in the output region i0
at the moment when the system halts as the result of the computation of Π.
The set of all natural numbers computed in this way is denoted by N(Π).
If instead of the total number, the multiplicities of objects are considered,
then the result is denoted by Ps(Π). In case of external output, one can also
consider the sequence in which the objects are sent into the environment,
denoting the result by L(Π).

A bi-stable catalyst is a pair of symbols c, c′ ∈ O such that all rules
where these symbols appear are of the following forms: ca → cv, ca → c′v,
c′a → cv, c′a → c′v. When speaking of a P system with bi-stable catalysts,
we will additionally specify the set Cb of bi-stable catalysts in the description
of the P system. We use the following notations

XProPk
m(α, tar, symi, antij)

to denote the family of languages (X = L), vector sets (X = Ps) or number
sets (X = N) generated by proton pumping P systems with at most m
membranes, k different types of protons (i.e., k is the cardinality of the set
P ), using symport rules of weight at most i, antiport rules of weight at most
j, and non-cooperative (α = ncoo) or bi-stable catalytic (α = 2catl) with l
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bi-stable catalysts evolution rules with targets. If targets are not allowed,
then tar is removed from the notation (like any other unused feature). If one
of the numbers m, k, i, j, l is unbounded, we write ∗ instead). For P systems
without protons, we will replace ProPk by OP in the notation and exclude
the specification of the set P , as well as the sets of symport/antiport rules
if they are not used, from the description of the P system.

2.2 Time-Freeness

We now recall from [8] the definition of time-free P systems for the case of
proton pumping P systems (for P systems without protons it is done in the
same way).

Given a time-mapping e : R1 ∪ · · · ∪ Rm ∪ R′
1 ∪ · · · ∪ R′

m −→ N1 and a
proton pumping P system Π as defined above, it is possible to construct a
timed proton pumping P system Π(e) working in the following way.

We suppose the existence of an external and global clock that ticks at
uniform intervals of time. At each time in the regions of the system we
have both rules (both evolution and transport) in execution and rules not
in execution. At each time all the evolution and transport rules that can be
applied (started) in each region, have to be applied. If a rule r ∈ Ri, R

′
i, 1 ≤

i ≤ m, is applied, then all objects that can be processed by the rule have
to evolve by this rule (a rule is applied in a maximally parallel manner as
standard in the P system area).

As usual, the rules from Ri are applied to objects in region i and the
rules from R′

i govern the communication of objects through membrane i.
There is no difference between evolution rules and communication rules:
they are chosen and applied in the non-deterministic maximally parallel
manner. When an evolution rule or a transport rule r is started at time j,
its execution terminates at time j+e(r). If two rules are started in the same
time unit, then possible conflicts for using the occurrences of symbol-objects
are solved assigning the objects in a non-deterministic way (again, in the
way usually defined in the P system area). Notice that when the execution
of a rule r is started, the occurrences of objects used by this rule are not
anymore available for other rules during the entire execution of r.

A proton pumping P system Π is time-free if and only if every system
in the set {Π(e) | e : R −→ N1} (where R = R1 ∪ · · · ∪Rm ∪ R′

1 ∪ · · · ∪R′
m)

produces the same result.
As all Π(e) generate the same result, in this case the set of natural

numbers (vectors, words) generated by a time-free proton pumping P system
Π is denoted by N(Π) (Ps(Π), L(Π)). For the notation of what is generated
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by a family of time-free P systems, we add f to the notation introduced
before: fXProPk

m(α, tar, symi, antij), fXOPk
m(α, tar, symi, antij).

2.3 Register Machines

In what follows, we will use register machines as an important tool for show-
ing the computational completeness results. Let us recall their definitions
from [12].

An n-register machine is a construct M = (n, l0, lh, I) where:

• n is the number of registers;

• I is a set of labeled instructions of the form (l : op(i), l′, l′′) where op(i)
is an operation on register i of M ; symbols l, l′, l′′ belong to the set of
labels associated in a one-to-one manner with instructions of I;

• l0 is the initial label;

• lh is the final label.

The instructions allowed by an n-register machine are:

• (l : A(i), l′, l′′) – add one to the contents of register i and proceed to
instruction l′ or to instruction l′′;

• (l : S(i), l′, l′′) – jump to instruction l′ if register i is empty; otherwise
subtract one from register i and jump to the instruction labeled by l′′

(these two cases are often called zero-test and decrement);

• (lh : halt) – finish the computation. This is the unique instruction
with label h.

If a register machine M = (n, l0, lh, I), starting from the instruction
labeled by l0 with all registers being empty, halts with values nj in register
j, 1 ≤ j ≤ m, and the contents of registers m + 1, · · · , n being empty, then
it generates the vector (n1, · · · , nk) ∈ N

m. Any recursively enumerable set
of vectors of nonnegative integers can be generated by a register machine.

It is known that register machines with m + 2 registers can generate all
recursively enumerable sets of m-dimensional vectors (we can also require
that the only instructions associated to the output registers are increment
instructions). Moreover, in this case, if incrementing register i (1 ≤ i ≤ m) is
interpreted as writing a symbol ai, (similar to reading a symbol ai by counter
machines), then a word is written instead of a vector being generated; in
this way, register machines can generate languages (with m+2 registers, any
recursively enumerable language over T = {a1, · · · , am} can be generated).
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3 Time-Free Results

Theorem 3.1 fPsProP 4
2 (ncoo, sym1, anti1) = PsRE.

Proof. We only prove the inclusion ⊇. Consider an arbitrary recursively
enumerable language with m symbols: L ⊆ {ai | 1 ≤ i ≤ m}∗. Then
there is a register machine M = (m + 2, l0, lh, I) generating L, and let
I− = {l : (S(i), l′, l′′) ∈ I}.

We will construct a P system Π simulating M in such a way that the
value of register i ∈ W = {m + 1, m + 2} is represented by the multiplicity
of the object ai in the skin region. The proton Di will be used to decrement
the value of register i, while Ei will be used to check if the register i is empty.

Π = (O, P, [1 [2 ]2 ]1, w1, w2, R1, R2, R
′
1, R

′
2), where

O = {ai | 1 ≤ i ≤ m + 2} ∪ {lj | l ∈ I−, 1 ≤ j ≤ 4} ∪ {#1,#2} ∪ I ∪ P,

P = {Di, Ei | i ∈ W},

w1 = l0Dm+1Dm+2Zm+1Zm+2#1, w2 = λ,

and the sets of rules are the following:
For each instruction l : (A(i), l′, l′′) ∈ I,

l → ail
′, l → ail

′′ ∈ R1.

Moreover, for 1 ≤ i ≤ m we have the rules

(ai, out) ∈ R′
1.

For each instruction l : (S(i), l′, l′′) ∈ I,

(l, in) ∈ R′
2,

(decrement) l → l4 ∈ R2,

(l4, out; Di, in), (Di, out; ai, in), (Di, out; #1, in) ∈ R′
2,

l4 → l′ ∈ R1,

(zero test) l → l1, l2 → l3 ∈ R2,

(Ei, in; l1, out), (Ei, out; ai, in), (Ei, out; l2, in) ∈ R′
2,

(l3, out) ∈ R′
2,

l1 → l2, l2 → #2, l3 → l′′ ∈ R1.

Finally, we also have the rules

#1 → #1 ∈ R2,

#2 → #2 ∈ R1.
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Figure 1: using (ncoo, sym1, anti1) decrement: left, zero-test: right

The system constructed in that way simulates the corresponding register
machine. The increment instructions are simulated in one step: the instruc-
tion symbol changes to a symbol corresponding to the next instruction and
a symbol corresponding to the register being incremented.

Decrement: l comes to region 2, changes to l4 and returns to region 1,
bringing Di to region 2, and then changes to l′. The “duty” of Di is to
decrement register i by returning to region 1 and removing one copy of ai

from region 1. If register i is empty, then Di exchanges with #1 and the
computation never halts (if decrement is possible, Di can still exchange with
#1, but this case is not productive).

Zero-test: after l has come to region 2, it changes to l1 and returns to
region 1, bringing Ei to region 2, and then changes to l2. The “duty” of
Ei is to check that register i is empty by waiting for l2. If register i is not
empty, then Ei will immediately exchange with ai and then l2 will change to
#2, so the computation will never halt (if Ei waits for l2, l2 can still change
to #2, but this case is not productive).

The decrement and zero-test are illustrated in Figure 1. From these
figures it is clear that the system is time-free: most of the correct simulation
is sequential, and we only remark one point - the time it takes to exchange
Di and ai is not relevant because after the start of the rule ai is already
unavailable in region 1, and, moreover, if Di still has not returned to region
1 for the next decrement instruction, the system will simply wait for it. 2

Theorem 3.2 fPsProP 4
2 (ncoo, sym2) = PsRE.

Proof. This is a “dual” theorem: the simulation of a register machine is
done in exactly the same way, except that the protons that were in region 1
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Figure 2: using (ncoo, sym2) decrement: left, zero-test: right

are now in region 2, and vice-versa. The system we consider is:

Π = (O, P, [1 [2 ]2 ]1, w1, w2, R1, R2, R
′
1, R

′
2), where

O = {ai | 1 ≤ i ≤ m + 2} ∪ {lj | l ∈ I−, 1 ≤ j ≤ 4} ∪ {#1,#2} ∪ I ∪ P,

P = {Di, Ei | i ∈ W},

w1 = l0#1, w2 = Dm+1Dm+2Zm+1Zm+2,

R1 = {l → ail
′, l → ail

′′ | l : (A(i), l′, l′′) ∈ I} ∪ {#2 → #2}

∪ {l4 → l′, l1 → l2, l2 → #2, l3 → l′′ | l : (S(i), l′, l′′) ∈ I},

R2 = {l → l4, l → l1, l2 → l3 | l : (S(i), l′, l′′) ∈ I} ∪ {#1 → #1},

R′
1 = {(ai, out) | 1 ≤ i ≤ m},

R′
2 = {(l, in), (l4Di, out), (aiDi, in), (#1Di, in),

(l1Ei, out), (aiEi, in), (l2Ei, in), (l3, out) | l : (S(i), l′, l′′) ∈ I}.

The system constructed above simulates the corresponding register ma-
chine. The increment instructions are simulated in one step: the instruction
symbol changes to a symbol corresponding to the next instruction and a
symbol corresponding to the register being incremented.

Decrement: l comes to region 2, changes to l4 and returns to region 1
with Di, and then changes to l′. The “duty” of Di is to decrement register
i by returning to region 2 and removing one copy of ai from region 1. If
register i is empty, then Di exchanges with #1 and the computation never
halts (if decrement is possible, Di can still exchange with #1, but this case
is not productive).

Zero-test: after l has come to region 2, it changes to l1 and returns to
region 1 with Ei, and then changes to l2. The “duty” of Ei is to check
that register i is empty by waiting for l2. If register i is not empty, then
Ei will immediately exchange with ai and then l2 will change to #2, so the
computation will never halt (if Ei waits for l2, l2 can still change to #2, but
this case is not productive).
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As in the previous proof, the time-freeness of the system immediately
becomes clear from the illustrations in Figure 2. 2

In the proofs of the preceding theorems the output symbols are generated
in the right order; however, generating languages by these constructions
is not time-free because the different execution times of the rules sending
output symbols to the environment might lead to changing the order of
symbols in the output word.

Nevertheless, if target indications are allowed, then, replacing rules l →
ail

′ ∈ R1, l → ail
′′ ∈ R1, (ai, out) ∈ R′

1 for 1 ≤ i ≤ m by l → (ai)outl
′ ∈ R1,

l → (ai)outl
′′ ∈ R1, one obtains time-free P systems generating RE.

Corollary 3.1 fLProP 4
2 (ncoo, tar, sym1, anti1) = RE,

fLProP 4
2 (ncoo, tar, sym2) = RE.

4 One Proton

We will now show that even one proton is enough for computational com-
pleteness, again with only two membranes.

Theorem 4.1 LProP 1
2 (ncoo, sym1, anti1) = RE.

Proof. We only prove the inclusion ⊇. Consider an arbitrary recursively
enumerable language with m symbols: L ⊆ {ai | 1 ≤ i ≤ m}∗. Then
there is a register machine M = (m + 2, l0, lh, I) generating L, and let
I− = {l : (S(i), l′, l′′) ∈ I}.

We will construct a P system Π simulating M in such a way that the
value of register i ∈ W = {m+1, m+2} is represented by the multiplicity of
the object ai in region i − m. The proton p will be used to decrement/zero
test the value of the working registers.

Π = (O, P, [1 [2 ]2 ]1, w1, w2, R1, R2, R
′
1, R

′
2), where

O = {ai, a
′
i | 1 ≤ i ≤ m + 2} ∪ {lj | l ∈ I, 1 ≤ j ≤ 9} ∪ I ∪ P

∪ {#, I2,4, I1,3, I0,2} ∪ {Ij | 0 ≤ j ≤ 2} ∪ {Oj | 0 ≤ j ≤ 5},

P = {p}, w1 = pI1, w2 = o0l0,

and the sets of rules are the following:
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Rules related to special objects which “wait” for a certain time and then
must exchange with the proton (or else the trap symbol will be introduced):

I2,4 → I1,3, I1,3 → I0,2 ∈ R2,

(I0,2, out) ∈ R′
2,

I0,2 → I0I2 ∈ R1,

Ij+1 → Ij ∈ R1, 0 ≤ j ≤ 1,

(p, out; I0, in) ∈ R′
2,

O0 → λ, I0 → #, # → # ∈ R1,

Oj+1 → Oj ∈ R2, 0 ≤ j ≤ 4,

(O0, out; p, in) ∈ R′
2,

I0 → λ, O0 → #, # → # ∈ R2.

Rules of interaction of the proton and register symbols:

(p, out; am+1, in), (am+2, out; p, in) ∈ R′
2.

For each instruction l : (A(i), l′, l′′) ∈ I,

l → a′il1O3O1I0,2 ∈ R2,

lj → lj+1 ∈ R2, 1 ≤ j ≤ 2,

l3 → l′, l3 → l′′ ∈ R2.

The register symbol ai in region max(i − m, 0) is produced by the rules

a′m+2 → am+2 ∈ R2,

(a′i, out) ∈ R′
2, 1 ≤ i ≤ m + 1,

a′i → ai ∈ R1, 1 ≤ i ≤ m + 1,

(ai, out) ∈ R′
1, 1 ≤ i ≤ m.

For each instruction l : (S(m + 1), l′, l′′) ∈ I,

(decrement) l → l1O1O3O5I2,4 ∈ R2,

lj → lj+1 ∈ R2, 1 ≤ j ≤ 4,

l5 → l′ ∈ R2,

(zero test) l → l6O1O4I1,3 ∈ R2,

lj → lj+1 ∈ R2, 6 ≤ j ≤ 8,

l9 → l′′ ∈ R2.
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For each instruction l : (S(m + 2), l′, l′′) ∈ I,

(decrement) l → l1O3I0,2 ∈ R2,

lj → lj+1 ∈ R2, 1 ≤ j ≤ 2,

l3 → l′ ∈ R2,

(zero test) l → l6O2O4I1,3 ∈ R2,

lj → lj+1 ∈ R2, 6 ≤ j ≤ 8,

l9 → l′′ ∈ R2.

For terminating the computation we have

lh → λ ∈ R2.

The simulation is illustrated by the tables below. Notice that every time an
antiport rule is possible it must be executed, otherwise one of the objects
O0, I0 will change to #, leading to an infinite computation.

The intuitive idea behind this construction is to create a “predefined
scenario” for the proton; if the system tries to decrement a empty register
or the system zero-tests a non-empty register, then the proton ends up in a
“wrong” region and cannot follow the “scenario” anymore. We now list the
scenarios for the proton, for different instructions:

• Decrement am+1: p exchanges with O0, then with I0, then with O0,
then with am+1, then with O0, and finally with I0.

• Zero-test am+1: p exchanges with O0, then with I0, then with O0, then
waits one step because there is no am+1, and finally with I0.

• Decrement am+2: p exchanges with O0, then with I0, then with am+2,
and finally I0.

• Zero-test am+2: p exchanges with O0, then with I0, then waits one
step because there is no am+2, then with O0, and finally I0.

• Increment any register: p exchanges with O0, then with I0, then with
O0, and finally I0.

Notice that the first two steps of the simulation are always the same.
This is needed to “keep the proton busy” while the object associated to the
instruction creates the rest of the scenario. The scenario is created by pro-
ducing objects O0 in region 2 and objects I0 in region 1, with corresponding
delays.
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When the output register is incremented, the corresponding symbol is
sent to the environment, contributing to the result. At the end of the correct
simulation, object lh is erased, registers m + 1 and m + 2 are empty, so no
objects are present in region 2, while region 1 only contains p. 2

Instr Decrement am+1 Zero-test am+1

Step Region 1 Region 2 Region 1 Region 2

1 am+1I1p lO0 I1p lO0

2 am+1I0O0 l1I2,4O5O3O1p I0O0 l6I1,3O4O1p
3 am+1p l2I1,3O4O2O0I0 p l7I0,2O3O0I0

4 am+1O0 l3I0,2O3O1p I0,2O0 l8O2p
5 I0,2p am+1l4O2O0 I2I0 l9O1p
6 I2I0O0 am+1l5O1p I1p l′′O0I0

7 I1p am+1l
′O0I0 Next instr. Next instr.

Instr Decrement am+2 Zero-test am+2

Step Region 1 Region 2 Region 1 Region 2

1 I1p am+2lO0 I1p lO0

2 I0O0 am+2l1I0,2O3p I0O0 l6I1,3O4O2p
3 I0,2p am+2l2O2I0 p l7I0,2O3O1I0

4 am+2I2I0 l3O1p I0,2p l8O2O0

5 am+2I1p l′O0I0 I2I0O0 l9O1p
6 Next instr. Next instr. I1p l′′O0I0

Instr Increment ai i≤m i=m+1 i=m+2 Terminate

R. 1 2 0 1 1 2 1 2

1 I1p lO0 pI1 lhO0

2 I0O0 l1a
′
iI0,2O3O1p O0I0 p

3 I0,2p l2O2O0I0 a′i a′m+1 am+2 p I0

4 I2I0O0 l3O1p ai am+1 am+2 p
5 I1p (l′ or l′′)O0I0 ai am+1 am+2 Halt Halt

Theorem 4.2 LProP 1
2 (ncoo, sym2) = RE.

Proof. This is a “dual” theorem: the simulation of a register machine is
done in exactly the same way, except that the proton that was in region 1
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is now in region 2, and vice-versa, and except that the halting is slightly
modified such that the proton stays in region 1.

Π = (O, P, [1 [2 ]2 ]1, w1, w2, R1, R2, R
′
1, R

′
2), where

O = {ai, a
′
i | 1 ≤ i ≤ m + 2} ∪ {lj | l ∈ I, 1 ≤ j ≤ 9} ∪ I ∪ P

∪ {#, I2,4, I1,3, I0,2} ∪ {Ij | 0 ≤ j ≤ 2} ∪ {Oj | 0 ≤ j ≤ 5},

P = {p}, w1 = I1, w2 = po0l0,

and the sets of rules are the following:

R1 = {I0,2 → I0I2, O0 → λ, I0 → #,# → #}

∪ {Ij+1 → Ij ∈ R1 | 0 ≤ j ≤ 1}

∪ {a′i → ai | 1 ≤ i ≤ m + 1},

R2 = {l → a′il1O3O1I0,2, l3 → l′, l3 → l′′ | l : (A(i), l′, l′′) ∈ I}

∪ {lj → lj+1 | 1 ≤ j ≤ 2, l : (A(i), l′, l′′) ∈ I}

∪ {l → l1O1O3O5I2,4, l5 → l′, l → l6O1O4I1,3, l9 → l′′

| l : (S(m + 1), l′, l′′) ∈ I}

∪ {l → l1O3I0,2, l3 → l′, l → l6O2O4I1,3, l9 → l′′

| l : (S(m + 2), l′, l′′) ∈ I}

∪ {lj → lj+1 | 1 ≤ j ≤ 4, l : (S(m + 1), l′, l′′) ∈ I}

∪ {lj → lj+1 | 1 ≤ j ≤ 2, l : (S(m + 2), l′, l′′) ∈ I}

∪ {lj → lj+1 | 6 ≤ j ≤ 8, l : (S(i), l′, l′′) ∈ I}

∪ {I2,4 → I1,3, I1,3 → I0,2, I0 → λ, O0 → #,# → #}

∪ {a′m+2 → am+2, lh → O1} ∪ {Oj+1 → Oj | 0 ≤ j ≤ 4},

R′
1 = {(ai, out) | 1 ≤ i ≤ m},

R′
2 = {(I0,2, out), (pI0, in), (pO0, out), (pam+1, in), (pam+2, out)}

∪ {(a′i, out) | 1 ≤ i ≤ m + 1}.

The simulation is illustrated by the tables below. Notice that every time
an antiport rule is possible it must be executed, otherwise one of the objects
O0, I0 will change to #, leading to an infinite computation.

Like in the previous proof, to arrive at a halting configuration, the proton
must follow the “predefined scenario” created by instruction objects. If the
system tries to decrement an empty register or the system zero-tests a non-
empty register, then the proton ends up in a “wrong” region and cannot
follow the “scenario”. We now list the proton’s scenarios.
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• Decrement am+1: p accompanies O0, then I0, then O0, then am+1,
then O0, and finally I0.

• Zero-test am+1: p accompanies O0, then I0, then O0, then waits one
step because there is no am+1, and finally goes with I0.

• Decrement am+2: p moves O0, then I0, then am+2, and finally I0.

• Zero-test am+2: p accompanies O0, then I0, then waits one step be-
cause there is no am+2, then goes with O0, and finally with I0.

• Increment any register: p accompanies O0, then I0, then O0, and
finally I0.

• Halt: p accompanies O0, then I0, and finally O0.

Again, the first two steps are the same, to “keep the proton busy” while
the object associated to the instruction creates the rest of the scenario. The
scenario is created by producing objects O0 in region 2 and objects I0 in
region 1, with corresponding delays.

When the output register is incremented, the corresponding symbol is
sent to the environment, contributing to the result. At the end of the correct
simulation, object lh changes to O0 in 3 steps, moving p to region 1. Since
registers m + 1 and m + 2 are empty, no objects are present in region 2,
while region 1 only contains p. 2

Instr Decrement am+1 Zero-test am+1

Step Region 1 Region 2 Region 1 Region 2

1 am+1I1 lO0p I1 lO0p
2 am+1I0O0p l1I2,4O5O3O1 I0O0p l6I1,3O4O1

3 am+1 l2I1,3O4O2O0I0p l7I0,2O3O0I0p
4 am+1O0p l3I0,2O3O1 I0,2O0p l8O2

5 I0,2 am+1l4O2O0p I2I0p l9O1

6 I2I0O0p am+1l5O1 I1 l′′O0I0p
7 I1 am+1l

′O0I0p Next instr. Next instr.
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Instr Decrement am+2 Zero-test am+2

Step Region 1 Region 2 Region 1 Region 2

1 I1 am+2lO0p I1 lO0p
2 I0O0p am+2l1I0,2O3 I0O0p l6I1,3O4O2

3 I0,2 am+2l2O2I0p l7I0,2O3O1I0p
4 am+2I2I0p l3O1 I0,2 l8O2O0p
5 am+2I1 l′O0I0p I2I0O0p l9O1

6 Next instr. Next instr. I1 l′′O0I0p

I. Increment ai i≤m i=m+1 i=m+2 Terminate

R. 1 2 0 1 1 2 1 2

1 I1 lO0p I1 lhO0p
2 I0O0p l1a

′
iI0,2O3O1 O0I0p O1

3 I0,2 l2O2O0I0p a′i a′m+1 am+2 I0O0p
4 I2I0O0p l3O1 ai am+1 am+2 O0p
5 I1 l′/l′′ O0I0p ai am+1 am+2 p

Consider either of the theorems above. Remove from the construction
all rules with a′i or ai, 1 ≤ i ≤ m on the left-hand side. Add rules a′i → ai

to R2. The output of the system is now internal: when it halts, one can
consider objects ai, 1 ≤ i ≤ m in the elementary membrane as a result (no
other objects will be there). Let the superscript int stand for systems with
internal output and let subscript ne mean that no rule uses the environment
and the skin membrane.

Corollary 4.1 PsProP 1,int
2,ne (ncoo, sym1, anti1) = PsRE,

PsProP 1,int
2,ne (ncoo, sym2) = PsRE.

5 Bi-stable Catalysts

An interesting observation is that, interpreting the same object in differ-
ent regions of the system as different objects in the same region (encoding
regions in objects), one can easily see that the proton becomes a bi-stable
catalyst. Let us explain this more formally.

Given a proton pumping P system with two membranes Π = (O, P ,
[1 [2 ]2 ]1, w1, w2, R1, R2, R

′
1, R

′
2) such that the communication rules are

minimally cooperative (either symport rules of weight at most two and an-
tiport rules of weight 1) and the only rules associated to the skin membrane
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are the rules that output the terminal symbols, one can construct a P system
with bi-stable catalysts in the following way:

Π′ = (O′, Cb, [1 ]1, w
′
1, R

′) where

O′ = {a, h(a) | a ∈ O} ∪ {bp | {p, h(p)} ∈ Cb},

Cb = {{p, h(p)} | p ∈ P},

w′
1 = hb(w1h(w2)),

R′ = R1 ∪ {h(u) → h(v) | (u → v) ∈ R2} ∪ R′′,

R′′ = {u → uout | (u, out) ∈ R′
1} ∪ {h(u) → u | (u, out) ∈ R′

2}

∪ {u → h(u) | (u, in) ∈ R′
2} ∪ {h(u)v → h(v)u | (u, out; v, in) ∈ R′

2}

∪ {h(p)bp → pbp | (p, out) | R′
2, p ∈ P}

∪ {pbp → h(p)bp | (p, in) | R′
2, p ∈ P},

where h : O → {a′ | a ∈ O} and hb : O → O∗ are morphisms defined by
h(a) = a′ for every a ∈ O, h(a) = a for a ∈ O − {p, p′ | p ∈ P}, h(p) = pbp

for p ∈ P , and h(p′) = p′bp: h is the priming morphism for objects of region
2, and hb is the morphism adding objects bp to objects p or p′.

It is easy too see that the behavior of Π′ is exactly the same as that of Π:
the objects in region 1 of Π are also in Π′, while the objects in region 2 of Π
are renamed (i.e., primed) and also placed in region 1 of Π, and the rules are
changed accordingly. The role of extra objects bp (one copy for every copy
of bi-catalytic symbols in w1 and w2) is to transform all non-cooperative
proton rules in cooperative bi-stable catalytic rules (because rules p → p′

or p′ → p, {p, p′} ∈ Cb, are forbidden by the definition of P system with
bi-stable catalysts).

Clearly, non-cooperative rules (except the uniport of protons) remain
non-cooperative, while other rules are changed as follows:

In Π (pa, out) (pa, in) (p, out; a, in) (a, out; p, in)

In Π′ p′a′ → pa pa → p′a′ p′a → pa′ pa′ → p′a

In Π (p, out) (p, in)

In Π′ p′bp → pbp pbp → p′bp

We can now claim that during this transformation the proton pumping
computational completeness constructions become the computational com-
pleteness constructions of P systems with (the same number as protons in
the original construction) bi-stable catalysts.

Example 5.1 Transformed time-free P system from Corollary 3.1 to Theo-
rem 3.2 (extra objects are not needed: the construction does not have uniport
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rules of protons).

Π = (O, Cb, [1 ]1, w1, R1), where

O = {ai, a
′
i | 1 ≤ i ≤ m + 2} ∪ {lj , l

′
j | l ∈ I−, 1 ≤ j ≤ 4}

∪ {#1,#2,#
′
1, #

′
2} ∪ {l, l′ | l ∈ I} ∪ P,

Cb = {{Di, D
′
i}, {Ei, E

′
i} | i ∈ W},

w1 = l0#1D
′
m+1D

′
m+2Z

′
m+1Z

′
m+2,

R1 = {l → (ai)outl
(1), l → (ai)outl

(2) | l : (A(i), l(1), l(2)) ∈ I, 1 ≤ i ≤ m}

∪ {l → ail
(1), l → ail

(2) | l : (A(i), l(1), l(2)) ∈ I, i ∈ W} ∪ {#2 → #2}

∪ {l4 → l(1), l1 → l2, l2 → #2, l3 → l(2) | l : (S(i), l(1), l(2)) ∈ I},

∪ {l′ → l′4, l
′ → l′1, l

′
2 → l′3 | l : (S(i), l(1), l(2)) ∈ I} ∪ {#′

1 → #′
1},

∪ {l → l′, l′4D
′
i → l4Di, aiDi → a′iD

′
i,#

′
1D

′
i → #1Di, l

′
1E

′
i → l1Ei,

aiEi → a′iE
′
i, l2Ei → l′2E

′
i, l

′
3 → l3 | l : (S(i), l(1), l(2)) ∈ I}.

Thus we obtain a (clearly, optimal) computational completeness result
for systems with one bi-stable catalyst: LOP1(2cat1, tar) = RE, improving
NOP5(cat2, 2cat1, tar) = NRE from [11]. Another new result (see the ex-
ample above) is that time-free systems with four bi-stable catalysts are com-
putationally complete: fLOP1(2cat4, tar) = RE (improving fPsOP1(2cat∗,
tar) = PsRE from [6]).

6 Concluding Remarks

We have studied proton pumping P systems, a variant of P systems which
is both biologically motivated and mathematically elegant. The obtained
results are then transferred to P systems with bi-stable catalysts. Since
every object only carries a finite amount of information, the cooperation of
objects (i.e., the exchange of information) is crucial to obtain any non-trivial
computational device. Here, the cooperation is reduced to the minimum:
objects can only cooperate directly with protons, by moving together to
another region, or with bi-stable catalysts, by changing their state.

Nevertheless, this is enough to reach computational completeness, even
with low parameters like rewriting objects in two regions and communi-
cating them across one membrane using just one proton, or rewriting
objects in one region using just one bi-stable catalyst. The latter result
nicely correlates with the computational completeness of P systems with
two catalysts, [9]. The same systems are computationally complete in a
time-free way with four protons/bi-stable catalysts instead of one.
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Yet another point worth mentioning is that the constructions in the
proofs have a low number of cooperative rules: four for both one-proton
constructions and |I+| + 2|I−| + 6 (where I+ is the number of ADD instruc-
tions and I− is the number of SUB instructions in the simulated register
machine) for both time-free constructions (exactly the same results can be
claimed for P system with bi-stable catalysts).

The one-proton results obtained here are optimal for P systems with ex-
ternal output in terms of number of membranes and protons, assuming that
the skin membrane is only used to output the result: with only one mem-
brane (i.e., output membrane) or zero protons the behavior of the system is
non-cooperative. However, some challenging open problems remain:

• Is rewriting in both regions necessary for completeness (most of the
constructions in evolution–communication and proton pumping P sys-
tems heavily rely on rewriting in all regions)?

• What is the generative power of proton pumping P systems with one
membrane and internal output?

• What about restricted proton pumping P systems, where the only
uniport rules allowed are uniport rules of protons (i.e., protons appear
in no evolution rules but in all communication rules)?

• Are four protons (or bi-stable catalysts) necessary for time-free com-
putational completeness?
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Abstract
We consider P systems with symport / antiport rules and small

numbers of symbols and membranes and present several results for
P systems with symport / antiport rules simulating register machines
with the number of registers depending on the number s of symbols and
the number m of membranes. For instance, any recursively enumerable
set of natural numbers can be generated (accepted) by systems with
s ≥ 2 symbols and m ≥ 1 membranes such that m + s ≥ 6. In partic-
ular, the result of the original paper [16] proving universality for three
symbols and four membranes is improved (e.g., three symbols and three
membranes are sufficient). The general results that P systems with
symport / antiport rules with s symbols and m membranes are able to
simulate register machines with max {m (s − 2) , (m − 1) (s − 1)} reg-
isters also allows us to give upper bounds for the numbers s and
m needed to generate/accept any recursively enumerable set of k-
dimensional vectors of non-negative integers or to compute any partial
recursive function f : N

α → N
β . Finally, we also study the compu-

tational power of P systems with symport / antiport rules and only
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one symbol: with one membrane, we can exactly generate the fam-
ily of finite sets of non-negative integers; with one symbol and two
membranes, we can generate at least all semilinear sets. The most in-
teresting open question is whether P systems with symport / antiport
rules and only one symbol can gain computational completeness (even
with an arbitrary number of membranes) as it was shown for tissue P
systems in [1].

1 Introduction

In the area of membrane computing there are two main classes of systems: P
systems with a hierarchical (tree-like) structure as already introduced in the
original paper of Gheorghe Păun (see [14]) and tissue P systems with cells
arranged in an arbitrary graph structure (see [11], [9]). We here consider
“classical” P systems using symport / antiport rules for the communica-
tion through membranes (these communication rules first were investigated
in [13]).

It is well known that equipped with the maximally parallel derivation
mode P systems / tissue P systems with only one membrane / one cell
already reach universal computational power, even with antiport rules of
weight two (e.g., see [4] and [8]); yet on the other hand, in these P systems
the number of symbols remains unbounded.

Considering the generation of recursively enumerable sets of natural
numbers we may also ask the question how many symbols we need for ob-
taining computational completeness in a small number of membranes. In
[16] the quite surprising result was proved that three symbols are enough in
the case of P systems with symport / antiport rules. The specific type of
maximally parallel application of at most one rule in each connection (link)
between two cells or one cell and the environment, respectively, in tissue
P systems allowed for an even more surprising result proved in [10]: The
minimal number of one symbol is already sufficient to obtain computational
completeness, e.g., it was shown that any recursively enumerable set of nat-
ural numbers can be generated by a tissue P system with at most seven cells
using symport / antiport rules of only one symbol. The question remained
open whether such a result for the minimal number of symbols can also be
obtained for “classical” P systems with symport / antiport rules.

The study of the computational power of tissue P systems depending
on the number of cells and symbols was continued in [1]; many classes of
these tissue P systems characterize the class of recursively enumerable sets
of natural numbers, and some of them were shown to characterize or at
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least to include the families of finite and regular sets of natural numbers,
respectively.

In this paper we continue the direction of [2] and consider “classical”
P systems with symport / antiport rules simulating register machines with
the number of registers depending on the number s of symbols and the
number m of membranes. After some definitions in Sections 2 and 3, in
Subsection 3.1, we show that P systems with one symbol and one membrane
can exactly generate the family of finite sets of non-negative integers. In
Subsections 3.2 and 3.3, some general results for the simulation of register
machines by P systems with symport / antiport rules with s symbols and
m membranes that allow us to give upper bounds for the numbers s and m
needed to generate/accept any recursively enumerable set of vectors of non-
negative integers or to compute any partial recursive function are elaborated:
We show that any recursively enumerable set of natural numbers can be
generated (accepted) by systems with s ≥ 2 symbols and m ≥ 1 membranes
such that m + s ≥ 6. In particular, the result of the original paper [16]
proving universality for three symbols and four membranes is improved (i.e.,
three symbols and three membranes or two symbols and four membranes are
shown to be sufficient). Finally, in Subsection 3.4 we show that P systems
with symport / antiport rules with one symbol and two membranes can
generate at least all semilinear (i.e., regular) sets of natural numbers. A
summary of the obtained results and some open questions conclude the
paper.

2 Preliminaries

For the basic elements of formal language theory needed in the following, we
refer to any monograph in this area, in particular, to [3] and [18]. We just
list a few notions and notations: N denotes the set of non-negative integers
(natural numbers). V ∗ is the free monoid generated by the alphabet V
under the operation of concatenation and the empty string, denoted by
λ, as unit element; by RE (RE (k)) we denote the family of recursively
enumerable languages (over a k-letter alphabet). By ΨT (L) we denote the
Parikh image of the language L ⊆ T ∗, and by PsFL we denote the set of
Parikh images of languages from a given family FL. PsRE (k) corresponds
with the family of recursively enumerable sets of k-dimensional vectors of
non-negative integers; for PsRE (1) we also write NRE. NlREG denotes
the family of regular sets of numbers not containing any number smaller
than l; if l = 0 we simply write NREG. NFIN denotes the family of finite
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sets of natural numbers.

2.1 Register Machines

The proofs of the main results established in this paper are based on the
simulation of register machines; we refer to [12] for original definitions, and
to [4] for definitions like those we use in this paper:

An n-register machine is a construct M = (n, R, l0, lh) , where n is the
number of registers, R is a finite set of instructions injectively labelled with
elements from a given set lab (M), l0 is the initial/start label, and lh is the
final label.

The instructions are of the following forms:

– l1 : (A (r) , l2, l3),
Add 1 to the contents of register r and proceed to one of the in-
structions (labelled with) l2 and l3. (We say that we have an ADD
instruction.)

– l1 : (S (r) , l2, l3),
If register r is not empty, then subtract 1 from its contents and go to
instruction l2, otherwise proceed to instruction l3. (We say that we
have a SUB instruction.)

– lh : halt,
Stop the machine. The final label lh is only assigned to this instruction.

(Deterministic) register machines can be used to compute any partial
recursive function f : N

α → N
β ; starting with (n1, ..., nα) ∈ N

α in registers
1 to α, M has computed f (n1, ..., nα) = (r1, ..., rβ) if it halts in the final
label h with registers 1 to β containing r1 to rβ. If the final label cannot be
reached, f (n1, ..., nα) remains undefined.

A deterministic register machine can also analyze an input (n1, ..., nα) ∈
N

α in registers 1 to α, which is recognized if the register machine finally stops
by the halt instruction with all its registers being empty. If the machine does
not halt, the analysis was not successful.

A (non-deterministic) register machine M is said to generate a vector
(s1, . . . , sk) of natural numbers if, starting with the instruction with label
l0 and all registers containing the number 0, the machine stops (it reaches
the instruction lh : halt) with the first k registers containing the numbers
s1, . . . , sk (and all other registers being empty).
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Without loss of generality, in the succeeding proofs we will assume that
in each ADD instruction l1 : (A (r) , l2, l3) and in each SUB instruction
l1 : (S (r) , l2, l3) the labels l1, l2, l3 are mutually distinct (for a short proof
see [9]).

The register machines are known to be computationally complete, equal
in power to (non-deterministic) Turing machines: they generate exactly the
sets of vectors of natural numbers which can be generated by Turing ma-
chines, i.e., the family PsRE.

The results proved in [5] (based on the results established in [12]) as well
as in [6] and [7] immediately lead to the following results:

Proposition 2.1 For any partial recursive function f : N
α → N

β there
exists a deterministic (max{α, β} + 2)-register machine M computing f in
such a way that, when starting with (n1, ..., nα) ∈ N

α in registers 1 to α, M
has computed f (n1, ..., nα) = (r1, ..., rβ) if it halts in the final label h with
registers 1 to β containing r1 to rβ, and all other registers being empty; if
the final label cannot be reached, f (n1, ..., nα) remains undefined.

In particular we know that k +2-register machines generate/ accept any
recursively enumerable set of k-dimensional vectors of non-negative integers
(see [4], [12]):

Proposition 2.2 For any recursively enumerable set L ⊆ N
β of vectors of

non-negative integers there exists a non-deterministic (β + 2)-register ma-
chine M generating L in such a way that, when starting with all registers 1
to β + 2 being empty, M non-deterministically computes and halts with ni

in registers i, 1 ≤ i ≤ β, and registers β + 1 and β + 2 being empty if and
only if (n1, ..., nβ) ∈ L.

Proposition 2.3 For any recursively enumerable set L ⊆ N
α of vectors of

non-negative integers there exists a deterministic (α + 2)-register machine
M accepting L in such a way that M halts with all registers being empty if
and only if M starts with some (n1, ..., nα) ∈ L in registers 1 to α and the
registers α + 1 to α + 2 being empty.

From the main result in [12] that the actions of a Turing machine can
be simulated by a 2-register machine (using a prime number encoding of the
configuration of the Turing machine) we also know that the halting problem
is undecidable for 2-register machines.

Moreover, it is well-known that 1-register machines can generate/ accept
NREG.
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2.2 P Systems with Symport / Antiport Rules

The reader is supposed to be familiar with basic elements of membrane
computing, e.g., from [15]; comprehensive information can be found on the
P systems web page http://psystems.disco.unimib.it.

A P system (of degree m ≥ 1) with symport / antiport rules (in the
following we shall only speak of a P system) is a construct

Π = (O, µ, w1, · · · , wm, R1, · · · , Rm) ,

where

• O is the alphabet of objects,

• µ is the membrane structure (it is assumed that we have m membranes,
labelled with 1, 2, . . . , m, the skin membrane usually being labelled
with 1),

• wi, 1 ≤ i ≤ m, are strings over O representing the initial multiset of
objects present in the membranes of the system,

• Ri, 1 ≤ i ≤ m, are finite sets of symport / antiport rules of the form
x/y, for some x, y ∈ O∗, associated with membrane i (if |x| or |y| equals
0 then we speak of a symport rule, otherwise we call it an antiport
rule).

An antiport rule of the form x/y ∈ Ri means moving the objects specified
by x from membrane i to the surrounding membrane j (to the environment,
if i = 1), at the same time moving the objects specified by y in the opposite
direction. (The rules with one of x, y being empty are, in fact, symport rules,
but in the following we do not explicitly consider this distinction here, as it
is not relevant for what follows.) We assume the environment to contain all
objects in an unbounded number.

The computation starts with the multisets specified by w1, . . . , wm in
the m membranes; in each time unit, the rules assigned to each membrane
are used in a maximally parallel way, i.e., we choose a multiset of rules at
each membrane in such a way that, after identifying objects inside and out-
side the corresponding membranes to be affected by the selected multiset of
rules, no objects remain to be subject to any additional rule at any mem-
brane. The computation is successful if and only if it halts; depending on
the function of the system, the input and the output may be encoded by

128



different symbols in different membranes, the input then being added in the
initial configuration as the corresponding number of respective symbols in
the designated membranes.

The set of all k-dimensional vectors generated/ accepted in this way by
the system Π is denoted by g (k) N(Π) and a (k)N(Π), respectively. The
family of sets g (k) N(Π)/ a (k) N(Π) of vectors computed as above by sys-
tems with at most m membranes and at most s symbols is denoted by
g (k)NOsPm and a (k)NOsPm, respectively. The family of functions from
k-dimensional vectors to l-dimensional vectors computed as above by P sys-
tems with at most m membranes and at most s symbols is denoted by
f (k, l)NOsPm. When any of the parameters k, l, m, s is not bounded, it is
replaced by ∗.

3 Results

We now establish our results for P systems with symport/ antiport rules
and small numbers of membranes and symbols. The main constructions
show that a P system with symport/ antiport rules and m ≥ 1 mem-
branes as well as s ≥ 2 symbols can simulate a register machine with
max {m (s − 2) , (m − 1) (s − 1)} registers. For example, in that way we
improve the result NRE = g (1) NO3P4 as established in [16] to NRE =
g (1)NO3P3 = g (1)NO2P4.

3.1 One Membrane

The following characterization of NFIN by P systems with only one mem-
brane and only one symbol corresponds with the similar characterization by
tissue P systems with only one cell and only one symbol as established in [1].

Example 3.1 g (1)NO1P1 = NFIN.
Consider an arbitrary non-empty set M ∈ NFIN . Then we construct

a P system Π = ({a}, [1 ]1, w1, R1) where w1 = am with m = max (M) + 1
and R1 = {am/aj | j ∈ M}.

Clearly, j < m for any j ∈ M , so the computation finishes in one step
generating the elements of M as the corresponding number of symbols a in
the skin membrane.

The special case of generating the empty set can be done by the following
trivial P system: Π = ({a}, [1 ]1, a, {a/a}). A computation in this system
will never halt.
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The inclusion NFIN ⊇ g (1) NO1P1 can easily be argued (like in [1]) as
follows:

Consider a P system Π = ({a}, [1 ]1, w1, R1).
Let m = min {j | j/i ∈ R1 for some i}. Then a rule from R1 can be ap-

plied as long as region 1 contains at least m objects. Therefore, g (1) N(Π) ⊆
{j | j < m}; hence, g (1)N(Π) ∈ NFIN .

Let us recall another relatively simple construction for tissue P systems
from [1] that also shows a corresponding result for the membrane case.

Example 3.2 g (1)NO2P1 ⊇ NREG.
We will use the fact that for any regular set M of nonnegative integers

there exist finite sets of numbers M0, M1 and a number k such that M =
M0 ∪ {i + jk | i ∈ M1, j ∈ N} (this follows, e.g., from the shape of the
minimal finite automaton accepting the unary language with length set M).

We now construct a P system Π = ({a, p}, [1 ]1, w1, R1) where w1 = pp
and R1 = {pp/ai | i ∈ M0} ∪ {pp/pa, pa/pak+1} ∪ {pa/ai | i ∈ M1}, which
generates Mas the number of symbols a in the skin membrane in halting
computations.

Initially, there are no objects a in region 1, so the system “chooses”
between generating an element of M0 in one step or exchanging pp by pa.
In the latter case, there is only one copy of p in the system. After an
arbitrary number j of applications of the rule pa/pak+1 a rule exchanging
pa by ai for some i ∈ M1 is eventually applied, generating jk + i symbols a.
Hence, g (1) N(Π) = M0 ∪ {i + jk | i ∈ M1, j ∈ N} = M .

We will now show two simple constructions to illustrate the accepting
power of P systems with one membrane.

Example 3.3 {ki | i ∈ N} ∈ a (1)NO1P1 for any k ∈ N.
The set of numbers divisible by a fixed number k (represented by the

multiplicity of the object a in the initial configuration) can be accepted by the
P system Π = ({a}, [1 ]1, w1, {a

k/λ, a/a}); w1 is the input of the P system
in the initial configuration. The rule ak/λ sends objects out in groups of k,
while the rule a/a “keeps busy” all objects not used by the other one. Hence,
the system halts if and only if a multiple of k symbols a has been sent out
in several steps finally not using the antiport rule a/a anymore.

Example 3.4 NFIN ⊆ a (1)NO2P1.
Any finite set M of natural numbers (represented by the multiplicity of

the object a in the initial configuration) can be accepted by the P system

130



Π = ({a, p}, [1 ]1, pw1, {a/a, p/p}∪{pan/λ | n ∈ M}); w1 is the input of the
P system in the initial configuration as the number of symbols a in the skin
membrane representing the corresponding element from M. The rule pan/λ
can send out p together with a “correct” number of objects a, while the rules
a/a and p/p (in the case of w1 = λ)“keep busy” all other objects.

Example 3.3 illustrates that even P systems with one membrane and
one object can accept some infinite sets (as opposed to the generating case,
where we exactly get all finite sets). Example 3.4 shows that when using
two objects it is already possible to accept all finite sets.

3.2 At Least Three Symbols

It was already shown in [2] that any d-register machine can be simulated
by a P system in one membrane using d + 2 symbols. In this subsection we
generalize this result: P systems with m membranes and s ≥ 3 symbols can
simulate m(s − 2)-register machines:

Theorem 3.1 Any mn-register machine can be simulated by a P system
with 2 + n symbols and m membranes.

Proof. Let us consider a register machine M = (d, R, l1, lhalt) with d = mn
registers. No matter what the goal of M is (generating / accepting vectors
of natural numbers, computing functions), we can construct the P system
(of degree m)

Π = (O, µ, w1, · · · , wm, R1, · · · , Rm),
O = {p, q} ∪ {aj | 1 ≤ j ≤ n} ,
µ = [1 [2 ]2 · · · [m ]m ]1,
w1 = w0

∏n
j=1 a

rj

j ,

wi =
∏n

j=1 a
rj+(i−1)n

j , 2 ≤ i ≤ m,

that simulates the actions of M as follows. The symbols p and q are needed
for encoding the instructions of M ; q also has the function of a trap symbol,
i.e., in case of the wrong choice for a rule to be applied we take in so many
symbols q that we can never again rid of them and therefore get “trapped”
in an infinite loop. Throughout the computation, the value of register j +
(i − 1)n is represented by the multiplicity of symbol aj in region i. In the
generating case, w1 = w0 and wi = λ for 2 ≤ i ≤ m; in the accepting case
and in the case of computing functions, the numbers of symbols aj as defined
above specify the input.
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An important part of the proof is to define a suitable encoding c : N →
N (a strictly monotone linear function) for the instructions of the register
machine: As we will use at most 6 different subsequent labels for each
instruction, without loss of generality we assume the labels of M to be
positive integers such that the labels assigned to ADD and SUB instructions
have the values 6i−5 for 1 ≤ i < t, as well as l0 = 1 and lhalt = 6 (t − 1)+1,
for some t ≥ 1.

For the operations assigned to a label l and working on register r, we will
use specific encodings by the symbols p and q which allow us to distinguish
between the operations ADD, SUBTRACT, and ZERO TEST. As we have
d registers, this yields 3d multisets for specifying operations. The number
of symbols p and q in these operation multisets is taken in such a way that
the number of symbols p always exceeds the number of symbols q. Finally,
the number of symbols q can never be split into two parts that could be
interpreted as belonging to two operation multisets.

Hence, the range for the number of symbols q is taken as the interval
[3d + 1, 6d] and the range for the number of symbols p is taken as the interval
[6d + 1, 9d + 1] . Thus, with h = 12d + 1 we define the following operation
multisets:

ADD : α+(r) = q3d+rph−(3d+r), 1 ≤ r ≤ d,

SUBTRACT : α−(r) = q4d+rph−(4d+r), 1 ≤ r ≤ d,

ZEROTEST : α0(r) = q5d+rph−(5d+r), 1 ≤ r ≤ d.

The encoding c : N → N which shall encode the instruction l of M to be
simulated as pc(l) also has to obey to the following conditions:

• For any i, j with 1 ≤ i, j ≤ 6t − 5, c (i) + c (j) > c (6t − 4) , i.e., the
sum of the codes of two instruction labels has to be larger than the
largest code we will ever use for the given M , hence, if we do not use
the maximal number of symbols p as interpretation of a code for an
instruction (label), then the remaining rest of symbols p cannot be
misinterpreted as the code for another instruction label.

• The distance g between any two codes c (i) and c (i + 1) has to be
larger than any of the multiplicities of the symbol p which appear
besides codes in the rules defined above.

As we shall see in the construction of the rules below, we may take

g = 2h = 24d + 2.
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In sum, for a function c fulfilling all the conditions stated above we can
take

c (x) = g(x + 6t − 4) for x ≥ 0.

For example, with this function, for arbitrary i, j ≥ 1 we get

c (i)+c (j) = g(i+6t−4)+g(j+6t−4) > g(6t−4+6t−4) =

c (6t − 4) .

Moreover, for l1 = 1 we therefore obtain

c (l1) = g (6t − 3) = (24d + 2) (6t − 3)

as well as

w0 = pc(l1) = p(24d+2)(6t−3).

Finally, we have to find a number f which is so large that after getting
f symbols we inevitably enter an infinite loop with the rule

qf/q3f ;

as we shall justify below, we can take

f = c (lhalt + 1) = 2g(6t − 4).

Equipped with this coding function and the constants defined above
we are now able to define the following set of symport / antiport rules
assigned to the membranes for simulating the actions of the given register
machine M :
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R1 =
{

pc(l1)/pc(l2)as, p
c(l1)/pc(l3)as |

l1 : (A(s), l2, l3) ∈ R, 1 ≤ s ≤ n}

∪ {pc(l1)/pc(l1+1)α+(s + (s′ − 1)n)as, p
c(l1+1)/pc(l1+2),

pc(l1+2)/pc(l1+3), pc(l1+3)α+(s + (s′ − 1)n)/pc(l2)

pc(l1+3)α+(s + (s′ − 1)n)/pc(l3) |
l1 : (A(s + (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 2 ≤ s′ ≤ m}

∪
{

pc(l1)as/pc(l2), pc(l1)/pc(l1+1)α0(s),

pc(l1+1)/pc(l1+2), α0(s)as/q3f ,

pc(l1+2)α0(s)/pc(l3) | l1 : (S(s), l2, l3) ∈ R, 1 ≤ s ≤ n
}

∪ {pc(l1)/pc(l1+1)α−(s + (s′ − 1)n), pc(l1+1)/pc(l1+2),

pc(l1+2)/pc(l1+3), pc(l1+3)α−(s + (s′ − 1)n)as/pc(l2),

pc(l1)/pc(l1+4)α0(s + (s′ − 1)n), pc(l1+4)/pc(l1+5),

pc(l1+5)α0(s + (s′ − 1)n)/pc(l3),
α−(s + (s′ − 1)n)/q3f |
l1 : (S(s + (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 2 ≤ s′ ≤ m}

∪
{

pc(lhalt)/λ, ph/q3f , qf/q3f
}

as well as for 2 ≤ s′ ≤ m

Rs′ = {λ/α+(s + (s′ − 1)n)as, α+(s + (s′ − 1)n)/λ |
l1 : (A(s + (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 2 ≤ s′ ≤ m}

∪ {as/α−(s + (s′ − 1)n), α−(s + (s′ − 1)n)/λ,
as/α0(s + (s′ − 1)n) |
l1 : (S(s + (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 2 ≤ s′ ≤ m}

The correct work of the rules can be described as follows:

1. Throughout the whole computation in Π, it is directed by the code
pc(l) for some l ≤ 6t− 5; in order to guarantee the correct sequence of
encoded rules the trap is activated in case of a wrong choice, which in
any case guarantees an infinite loop with the symbols q by the “trap
rule”

qf/q3f .

The minimal number of superfluous symbols p to start the trap is h
and causes the application of the rule ph/q3f .

2. For each ADD instruction l1 : (A(s), l2, l3) of M , i.e., for incrementing
register s for 1 ≤ s ≤ n, we use the following rules in R1:

pc(l1)/pc(l2)as, and
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pc(l1)/pc(l3)as.

In that way, the ADD instruction l1 : (A(s), l2, l3) of M for one of the
first n registers is simulated in only one step: the number of symbols
p representing the instruction of M labelled by l1 is replaced by the
number of symbols p representing the instruction of M labelled by l2
or l3, respectively, in the same moment also incrementing the number
of symbols as. Whenever a wrong number of symbols p is taken, the
remaining symbols cannot be used by another rule than the “trap
rule” ph/q3f , which in the succeeding computation steps inevitably
leads to the repeated application of the rule qf/q3f thus flooding the
skin membrane with more and more symbols q.
On the other hand, incrementing register s + (s′ − 1)n, for 1 ≤ s ≤ n,
2 ≤ s′ ≤ m, i.e., registers n + 1 to nm is accomplished by the rules

pc(l1)/pc(l1+1)α+(s + (s′ − 1)n)as,

pc(l1+1)/pc(l1+2)

pc(l1+2)/pc(l1+3),

pc(l1+3)α+(s + (s′ − 1)n)/pc(l2)

pc(l1+3)α+(s + (s′ − 1)n)/pc(l3)

in R1 as well as by the rules

λ/α+(s + (s′ − 1)n)as,

α+(s + (s′ − 1)n)/λ in Rs′

Hence, adding one to the contents of registers n + 1 to nm now needs
four steps: the number of symbols p representing the instruction of M
labelled by l1 is replaced by pc(l1+1) together with 3d + s + (s′ − 1)n
additional symbols q, h − (3d + s + (s′ − 1)n) symbols p and the
symbol as. In the second step, pc(l1+1) is exchanged with pc(l1+2),
while at the same time the additional 3d + s + (s′ − 1)n symbols
q and h − (3d + s + (s′ − 1)n) symbols p are introduced together
with as in membrane s′. In the third step, the c(l1 + 2) symbols
p in the skin membrane are exchanged with c(l1 + 2) symbols p
from the environment, whereas the additional 3d + s + (s′ − 1)n
symbols q and h− (3d + s + (s′ − 1)n) symbols p pass out from mem-
brane r. Finally, in the fourth step, these latter symbols together with
pc(l1+3) in the skin membrane are replaced by the number of symbols p
representing the next instruction of M labelled by l2 or l3, respectively.
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3. For simulating the decrementing step of a SUB instruction l1 :
(S(s), l2, l3) from R we introduce the following rules:

pc(l1)as/pc(l2)

for decrementing the contents of register s, for 1 ≤ s ≤ n, represented
by the symbols as in the skin membrane.
In that way, the decrementing step of the SUB instruction l1 :
(S(s), l2, l3) of M now is also simulated in one step: together with
pc(l1) we send out one symbol as and take in pc(l2), which encodes the
label of the instruction that has to be executed after the successful
decrementing of register s, for 1 ≤ s ≤ n.
For decrementing the registers s+(s′−1)n, for 1 ≤ s ≤ n, 2 ≤ s′ ≤ m,
we need the following rules:

pc(l1)/pc(l1+1)α−(s + (s′ − 1)n),

pc(l1+1)/pc(l1+2)

pc(l1+2)/pc(l1+3),

pc(l1+3)α−(s + (s′ − 1)n)as/pc(l2) in R1

as well as

as/α−(s + (s′ − 1)n),

α−(s + (s′ − 1)n)/λ in Rr.

In this case, the SUB instruction is simulated in four steps: pc(l1) is
replaced by pc(l1+1) together with the “operation multiset” α−(s+(s′−
1)n), i.e., q4d+rph−(4d+r), r = s + (s′ − 1)n, for 1 ≤ s ≤ n, 2 ≤ s′ ≤ m.
While in the next two steps, two intermediate exchanges of symbols
p with the environment take place, the symbol as is exchanged with
α−(s + (s′ − 1)n) in membrane r, that, in the third step, goes out
again to the skin membrane, where it can now together with pc(l1+3)

be exchanged with pc(l2), i.e., the representation of the next instruction
of M.
Again we notice that if we do not choose the correct rule, then the trap
is activated by the rule ph/q3f , especially if no symbol as is present
in membrane r, then we have to apply the “trap rule” α−(s + (s′ −
1)n)/q3f .

4. For simulating the zero test, i.e., the case where we check the contents
of register r to be zero, of a SUB instruction l1 : (S(s), l2, l3) from R
for registers 1 to n we take the following rules:

pc(l1)/pc(l1+1)α0(s),
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pc(l1+1)/pc(l1+2), and

pc(l1+2)α0(s)/pc(l3) in R1.

If the rule α0(s)as/q3f from R1 can be applied, then in the next step
we cannot apply pc(l1+2)α0(s)/pc(l3) from R1, hence, only a rule using
less than c(l1 +2) symbols p can be used together with the “trap rule”
ph/q3f .

For simulating the zero test, i.e., the case where we check the contents
of register r to be zero, of a SUB instruction l1 : (S(s), l2, l3) from R
for registers n + 1 to nm we now take the following rules:

pc(l1)/pc(l1+4)α0(s + (s′ − 1)n),

pc(l1+4)/pc(l1+5), and

pc(l1+5)α0(s + (s′ − 1)n)/pc(l3) in R1.

If the rule as/α0(s+(s′−1)n) from Rr can be applied, then in the next
step we cannot apply pc(l1+5)α0(s + (s′ − 1)n)/pc(l3) from R1, hence,
only a rule using less than c(l1 + 5) symbols p can be used together
with the “trap rule” ph/q3f .

5. The number of symbols p never exceeds c (lhalt) = 2g(6t−4) as long as
the simulation of instructions from R works correctly. By definition,
f = c (lhalt + 1) = 2g(6t − 4), hence, there will be at least three times
more symbols q in region 1 than symbols p in the system after having
applied a “trap rule”, thus introducing 3f symbols q. As by any rule
in R1, the number of symbols p coming in is less than double the
number sent out, the total number of symbols p in the system, in one
computation step, can at most be doubled in total, too. As every rule
that removes some symbols q from region 1 involves at least as many
symbols p as symbols q, the “trap rule” qf/q3f guarantees that in the
succeeding steps this relation will still hold true, no matter how the
present symbols p and q are interpreted for rules in Π. Therefore, if
as soon as a “trap rule” has been applied, then the number of objects
q will grow and the system will never halt.

6. Finally, for the halt label lhalt = 6t − 5 we only take the rule

pc(lhalt)/λ,

hence, the work of Π will stop exactly when the work of M stops (pro-
vided the trap has not been activated due to a wrong non-deterministic
choice during the computation).
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From the explanations given above we conclude that Π halts if and only
if M halts, and moreover, the final configuration of Π represents the final
contents of the registers in M. These observations conclude the proof. �

As already proved in [2], when using P systems with only one membrane,
at most five objects are needed to obtain computational completeness:

Corollary 3.1 g (1)NO5P1 = a (1) NO5P1 = NRE.

Moreover, from Theorem 3.1 we can also conclude that P systems with
two membranes are computationally complete with only four objects:

Corollary 3.2 g (1)NO4P2 = a (1) NO4P2 = NRE.

3.3 At Least Two Symbols and at Least Two Membranes

On the other hand, for s, m ≥ 2, we can show that P systems with s symbols
and m membranes can simulate (s − 1)(m − 1)-register machines:

Theorem 3.2 Any mn-register machine can be simulated by a P system
with n + 1 symbols and m + 1 membranes, with n, m ≥ 1.

Proof. Consider a register machine M = (d, R, l0, lhalt) with d = mn regis-
ters. We construct the P system

Π = (O, µ, w1, · · · , wm+1, R1, · · · , Rm+1),
O = {p} ∪ {aj | 1 ≤ j ≤ n},
µ = [1 [2 ]2 · · · [m+1 ]m+1 ]1,
w1 = w0,

wi+1 =
∏n

j=1 a
rj+(i−1)n

j , 1 ≤ i ≤ m,

that simulates the actions of M as follows. The contents of register j+(i−1)n
is represented by the multiplicity of symbols aj in region i + 1, whereas the
symbol p is needed for encoding the instructions of M ; this time, too many
copies of a1 in the skin membrane have the function of trap symbols.

Again, an important part of the proof is to define a suitable encoding
c : N → N for the instructions of the register machine, and at most 6 different
subsequent labels will be used for each instruction, hence, without loss of
generality we assume the labels of M to be positive integers such that the
labels assigned to ADD and SUB instructions have the values 6i − 5 for
1 ≤ i < t, as well as l0 = 1 and lhalt = 6 (t − 1) + 1, for some t ≥ 1.
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Since one copy of as will be used for addition/subtraction, now the op-
eration multisets will be encoded by even numbers of object a1, i.e., we take
h = 2 (12d + 1) = 24d + 2 and define the following operation multisets:

ADD : α+(r) = a1
6d+2rph−(6d+2r), 1 ≤ r ≤ d,

SUBTRACT : α−(r) = a1
8d+2rph−(8d+2r), 1 ≤ r ≤ d,

ZEROTEST : α0(r) = a1
10d+2rph−(10d+2r), 1 ≤ r ≤ d.

In a similar way as before, we now take

g = 2h = 48d + 4

and define the function c by

c (x) = g(x + 6t − 4) for x ≥ 0.

For l1 = 1 we therefore obtain

c (l1) = g (6t − 3) = (48d + 4) (6t − 3)

as well as

w0 = pc(l1) = p(48d+4)(6t−3).

Finally, for f we again take

f = c (lhalt + 1) = 2g(6t − 4)

which is so large that after getting f symbols we inevitably enter an infinite
loop with the rule

a1
f/a1

3f .

Equipped with this coding function and the constants defined above
we are now able to define the following set of symport / antiport rules
assigned to the membranes for simulating the actions of the given register
machine M :
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R1 = {pc(l1)/pc(l1+1)α+(s + (s′ − 1)n)as, p
c(l1+1)/pc(l1+2),

pc(l1+2)/pc(l1+3), pc(l1+3)α+(s + (s′ − 1)n)/pc(l2),

pc(l1+3)α+(s + (s′ − 1)n)/pc(l3) |
l1 : (A(s + (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 1 ≤ s′ ≤ m}

∪ {pc(l1)/pc(l1+1)α−(s + (s′ − 1)n), pc(l1+1)/pc(l1+2),

pc(l1+2)/pc(l1+3), pc(l1+3)α−(s + (s′ − 1)n)as/pc(l2),
α−(s + (s′ − 1)n)/a1

3f ,

pc(l1)/pc(l1+4)α0(s + (s′ − 1)n), pc(l1+4)/pc(l1+5),

pc(l1+5)α0(s + (s′ − 1)n)/pc(l3) |
l1 : (S(s + (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 1 ≤ s′ ≤ m}

∪
{

pc(lhalt)/λ, ph/a1
3f , a1

f/a1
3f

}

and for 1 ≤ r ≤ m,

Rr+1 = {λ/α+(s + (s′ − 1)n)ar, α+(s + (s′ − 1)n)/λ |
l1 : (A(s + (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 1 ≤ s′ ≤ m}

∪ {as/α−(s + (s′ − 1)n), α−(s + (s′ − 1)n)/λ,
as/α0(s + (s′ − 1)n) |
l1 : (S(s + (s′ − 1)n), l2, l3), 1 ≤ s ≤ n, 1 ≤ s′ ≤ m}.

The operations ADD, SUBTRACT, and ZERO TEST now are carried
out for all registers r as in the preceding proof for the registers r > n. Hence,
we do not repeat all the arguments of the preceding proof, but stress the
following important differences:

We now take advantage that the operation multisets additionally satisfy
the property that now the number of symbols p can never be split into two
parts that could be interpreted as belonging to two operation multisets; this
guarantees that during a correct simulation, inside an elementary membrane
at most one operation can be executed - and if it is the wrong one (i.e., we
do not use all symbols p, but instead use more symbols a1 from the amount
representing the contents of a register), then we return a number of symbols
p which is too small to allow the correct rule to be applied from R1, instead
the “trap rule” ph/a1

3f will be applied. �

From the result proved above we can immediately conclude the following,
thus also improving the result from [16] where g (1)NO3P4 = NRE was
proved: we can reduce the number of membranes from four to three when
using only three objects or the number of symbols from three to two when
using four membranes.
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Corollary 3.3 NRE = g (1)NO3P3

= a (1)NO3P3

= g (1)NO2P4

= a (1)NO2P4.

3.4 One Symbol

If only one symbol is available, then so far we do not know whether compu-
tational completeness can be obtained even when not bounding the number
of membranes (in contrast to tissue P systems which have been shown to
be computationally complete with at most seven cells, see [1]). Yet at least
we can generate any regular set of natural numbers in only two membranes
(remember that with only one membrane we have got a characterization of
NFIN, see Example 3.1).

Example 3.5 g (1)NO1P2 ⊇ NREG.
Any finite set can be generated without using the second membrane (see

Example 3.1), so we proceed with infinite sets. Let M ∈ NREG − NFIN ,
then there exist finite sets M0, M1 with M1 6= ∅ and a number k > 0 such
that M = M0 ∪ {i + jk | i ∈ M1, j ∈ N}.

Let m be the smallest element of M such that m >
max (M0 ∪ M1 ∪ {2k}); moreover, let m′ = m + 2k (thus, m′ ∈ M).
Then we consider the P system constructed as follows:

Π = ({a}, [1 [2 ]2 ]1, a
m′

, λ, R1, R2) where
R1 = {am′

/ai | i ∈ M0} ∪ {am′

/am, am/am+k} ∪ {am/ai | i ∈ M1},
R2 = λ/a,

We assume the result of a halting computation to be collected in the second
membrane, and we claim g (1)N(Π) = M :

g (1) N(Π) ⊇ M :
The elements of M0 are generated in one step, while the rest of M can

be generated by
[1 am′

[2 ]2 ]1 ⇒ [1 am[2 ]2 ]1 => [1 am+k[2 ]2 ]1 ⇒j−1

[1 am+k[2 a(j−1)k ]2 ]1 ⇒ [1 ai[2 ajk ]2 ]1 ⇒ [1 [2 ai+jk ]2 ]1
or by

[1 am′

[2 ]2 ]1 ⇒ [1 am[2 ]2 ]1 ⇒ [1 ai[2 ]2 ]1 ⇒ [1 [2 ai ]2 ]1.
g (1)N(Π) ⊆ M :
What other derivations can we get different from those described above?
– If all m′ symbols enter membrane 2, m′ ∈ M .
– If all m symbols enter membrane 2 (possibly after some additions of

k), m + jk ∈ M (by the definition of m, m ∈ M and, moreover, it can be
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prolongued by multiples of k).
– If during the first step m copies of the symbol a are used instead of m′

(and 2k fall inside), then the system generates some number 2k + (i + jk)
or 2k + (m + jk); all these numbers belong to M , too.

Nothing else can happen, because m + k < m′ and max(M0 ∪ M1) < m
and because all symbols not used by R1 fall into region 2.

4 Summary and Open Questions

From the main theorems (Theorem 3.1 and Theorem 3.2) established in
the preceding section showing that P systems with symport/ antiport rules
and m ≥ 1 membranes as well as s ≥ 2 symbols can simulate a register
machine with max {m (s − 2) , (m − 1) (s − 1)} registers in combination with
Propositions 2.2 and 2.3 we infer the following general results:

Theorem 4.1 g (1)NOsPm = a (1)NOsPm = NRE, for m ≥ 1, s ≥ 2,
m + s ≥ 6.

We conjecture that these results establishing the computational com-
pleteness bounds are optimal.

As the halting problem for d-register machines is undecidable for d ≥ 2,
from Theorems 3.1 and 3.2 we also obtain the following result:

Theorem 4.2 The halting problem for P systems with symport/ antiport
rules and s ≥ 2 symbols as well as m ≥ 1 membranes such that m + s ≥ 5
is undecidable.

As 1-register machines can generate/ accept all regular number sets, we
obtain the following:

Theorem 4.3 g (1)NO3P1 ∩ g (1)NO2P2 ∩ a (1)NO3P1 ∩ a (1) NO2P2 ⊇
NREG.

The main results established in this paper now can be summarized in
the following table:
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Membranes
|O| 1 2 3 4 5 m

1 A B B B B B

2 C 1 2 (U) 3 4 m − 1

3 1 2 (U) 4 6 8 2m − 2

4 2 (U) 4 6 9 12 3m − 3

5 3 6 9 12 16 4m − 4
6 4 8 12 16 20 5m − 5

s s − 2 2s − 4 3s − 6 4s − 8 5s − 10 max{m (s − 2) ,
(m − 1) (s − 1)}

In the table depicted above, the class of P systems indicated by

A generates exactly NFIN ;

B generates at least NREG;

C generates at least NREG and accepts at least NFIN ;

d can simulate any d-register machine.

A box around a number indicates a known computational complete-
ness bound, (U) indicates a known unpredictability bound, and a
number in boldface shows the diagonal where Theorem 3.2 and Theo-
rem 3.1 provide the same result (because in that case m (s − 2) equals
(m − 1) (s − 1)); the numbers above this diagonal are taken from The-
orem 3.2, while the numbers below the diagonal are taken from The-
orem 3.1.

Based on these simulation results, we now could discuss in more detail
how many symbols s and membranes m at most are needed to accept or
generate recursively enumerable sets of vectors of natural numbers or com-
pute functions N

k→ N
l (e.g., recursively enumerable sets of d-dimensional

vectors, d ≥ 1, can be generated / accepted by P systems with symport /
antiport rules using at most d + 4 symbols in one membrane, see also [2]).
Yet as all these results are direct consequences of the corresponding compu-
tational power of the simulated register machines (see Propositions 2.3, 2.2,
2.1), we do not follow this line any further.

Some interesting questions still remain open, let us list a few of them:

• Are P systems with one symbol universal? (The corresponding result
holds for tissue P systems.)
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• Can P systems with one symbol accept NREG? Can they accept at
least NFIN?

• What is the class of number sets accepted by P systems with only one
membrane and only one symbol? (Conjecture: contained in NREG,
incomparable with NFIN.)
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Abstract

This paper presents a specific XML vocabulary for Transition P
systems, tpsML, that facilitates the interoperability among the dif-
ferent existing simulators. Moreover, two interactive tools for edition
and visualization of tpsMl documents, provide to P systems simula-
tors users of the necessary transparency from the persistence format
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of the P systems to simulate. It has been developed two translation
tools from previous P systems simulators to tpsML and vice versa.
They show the integration possibilities that they offer to the desired
interoperability. The development of these tools have produced SAX-
tpsML and DOM-tpsML libraries and XSL-tpsML, which increase the
productivity bench mark in the development of new simulators. This
improvement is produced because they (SAX-tpsML, DOM-tpsML and
XSL-tpsML) assume the lexical, syntactic and semantic analysis and
the error control, and then, it permits to concentrate only in the de-
velopment of the desired functionality.

1 Introduction

Membrane Computing was introduced by Gh. Păun in 1998 [15]. This
paradigm is based on the cell functioning and the way cells compute. The
most relevant characteristics of this new computational model are its non-
deterministic and massive parallelism. There are many different variant of
membrane systems, starting from the simplest models (Transition P sys-
tems) to the most complex (tissue P systems); with many different char-
acteristic related to evolution rules classes: catalyst, cooperative, non-
cooperative; with or without priorities; with actions δ and τ ; or even different
membrane classes: active, bilayer, etc.

Every new computational model requires an appropriate set of specific
tools for the model. This set of tools must constitute a complete soft-
ware development suite according to its characteristics. Nowadays, without
hardware specifically designed to P systems, many software simulators had
been developed. These simulators can execute some different variants of
P systems and they had shown their capability for proving some proposed
solutions to some problems. However, and with the growing interest in pro-
ducing simulators, it will be also necessary: editors to facilitate the edition
of P systems; analyzers, debuggers, tools for visualizations, and so on.

Each one of these tools need a grammar which determines the input
and/or output files format supporting the P system in a persistent manner
in the computer. If everyone of these tools establishes its own grammar for
these files, make their own lexical, syntactic and semantic analysis; there will
be a lot of redundant work and the production bench mark will decrease.
On the other hand, users of different tools will need the knowledge about
these tools. These two aspects, from the user and developer point of view,
redound against these tools interoperability because the produced output
by one tool cannot be used as input by another one, due to the different
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grammars in their working files.
In order to avoid this problem, a based XML solution is proposed. The

solution establishes a new standard vocabulary for Transition P systems
(tpsML) and specific libraries that permit to check the vocabulary. The
main goal is to facilitate the development of generic tools in such a way
that: grammars of different tools are transparent to users and to provide
to developer software reusability because they only need to define the new
functionalities.

The structure of this paper is the following: First of all, a brief art state
is presented about the different software tools available today. After that,
it is shown the appropriate XML technologies for improving the current
situation of software tools design in Membrane Computing. And then, the
new tpsML vocabulary model is established. It is also presented, starting
from tpsML vocabulary, the design of generic libraries (SAX-tpsML, DOM-
tpsML, XSL-tpsML) and the generic tools (editor, validator, categorizator,
visualizator, translators, etc.). Finally, some conclusions are presented about
the developed work.

2 Related Work

Today, there are several software tools and some hardware proposal for im-
plementing membrane systems in digital devices. Each one of the different
tools implements different variant of P systems: Transition P systems [2],
[19] and [5]; membrane systems with catalytic cells [18] and [7]; P systems
with Active membrane [9]; or even some variant of P systems in the same
simulator [11]. Moreover, each one of the implementations takes into ac-
count: the graphical interface for presenting the membrane system through
the configurations the system reaches [7] and [14]; the maximal paralleliza-
tion intra-inter regions [19]; a Web distributed system for the membrane
community [6], etc. On the other hand, each one of the different tools has
several limitations: memory, maximal number of membranes, rules, etc.; or
even they do not limit the number of evolution step what can drive the
system to an infinite process.

What it seams to be clear is that the objectives of researchers in mem-
brane computing must drive the software tools development for this research
area. Moreover, these objectives determine the programming language and
the technologies associated for implementing the software system. This situ-
ation is illustrated today by the number of different programming languages
and paradigms they have been used in membrane computing: declarative
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languages like Prolog [12] [9], Scheme [5], LISP [18] and Haskell [2]; im-
perative languages like C/C++ [6] and Java [13] [8]; and even also CLIPS
production rules systems [16].

A common aspect of each one of the analyzed tools is the presence of
configuration files including the P system to simulate. Sometimes, it is spec-
ified through a formal grammar [2], which determines the correction of these
configuration files. Sometimes, through syntactic structures accordingly to
the programming language used for implementing the corresponding tool
like in Prolog [9] or CLIPS [16]. Finally, in other cases the simulation tools
represent the P systems with owner format files. These files are dependent
of the implementation technology like in [7] using serialized objects with
Java.

In the case of hardware processors, a similar situation is found for the
different variants of P systems and different formats of the configuration files
for the P system. In this case it is possible to find from connectivity arrays
[3] to VHDL automatically generated [17].

It seems to be clear that this situation is going to be a problem. Each new
hardware/software simulation tool on new variants or with new goals could
establish new formats for the configuration files supporting the membrane
system to simulate. This situation has two different inconveniences for the
two different rôles of the tool: the P systems programmer (user) and the
tools developer:

i. One hypothetic case of use for the programmer could be the following:
he/she uses one simulator for a particular model with the classical
limitations and particular objectives. In this case, he/she desires to
analyze the possible results of his/her P system. In order to facilitate
the debug it could also be necessary to use a graphical representational
tool or a logs system; but this simulation tool does not support some of
them. However, there are other simulation tool, with other objectives,
that offers the needed services. Hence, it is necessary to translate the
configuration files to this new software and then to debug it. Moreover,
once the system has been debugged and in order to improve the system
performance, it is needed to implement it in a distributed system.
The current situation, in this case, obliges to interact with different
tools with their different editors and/or to learn different languages
grammar (Bio-language, Prolog, etc.)

ii. For a tools developer it may happen that some of the objectives
for the first version of a simulator determine the election of a given
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language/technology, but in the second version some new objectives
are incorporated and then it could be necessary to change the lan-
guage/technology for the development. In this case, it could be nec-
essary to re-encode the semantic, syntactic and lexical analysis of the
same grammar or to redefined the one of the file when it is dependent
of implementation language data structures.

In both rôles, programmer or developer, there is a work overload -which is
not necessary- due to the owner character of the configuration files grammar
supporting the P system with which software tools interact.

3 XML Technologies

This section shows the convenience of XML Technologies in order to avoid
the enumerated problem in the previous section. At the beginning the eX-
tensible Markup Language was designed oriented to electronic publication
in wide scale. Nowadays, it is playing a very important rôle in the field of
data interchange among computer systems due, mainly, to its simpleness
and independence. This important rôle is coincident with the necessity, pre-
viously stated, of data interchange among different software simulation tools
implemented with different technologies in the field of membrane systems.

Any XML document containing information is hierarchically structured.
Every relevant information is enclosed in between two nested labels or tags,
which include information about information -meta information. Hence, it
is a very good situation in order to define information about P systems
because such systems are, in essential, a hierarchy of membranes including
information about evolution rules and multisets of objects.

The extensible character of this technology is completely open, but also
it permits to restrict the set of tags and its hierarchy accordingly to the
necessities of a specific community of developers and users. Validation rules
for a particular community are defined through Document Type Definition
(DTD) or XML Schema. Moreover, for each technology assuming valida-
tion of XML documents, there are validators for checking the correctness of
the document accordingly to a DTD. Next section proposes a DTD model
for Transition P systems community.

On the other hand, there are libraries for almost every programming
language to manage any aspect of XML documents through processes in
execution in the system: Prolog [22], Esqueme [23], Haskell [24], Java and
C++ [25], Lips [26], etc.
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There also are, two standard programming interfaces independent of the
programming language: SAX -simple access xml- that improves efficiency in
sequential retrieving information from XML documents through a callbacks
based patterns, and DOM -document object model- for a random access,
which load information in memory through a composite pattern of nodes
associated to each tag. These two libraries are in charge of task related
to: syntactical and lexical analysis and control error of XML documents. In
this framework, the programmer only has to develop the synthesis phase: the
visualizator, the simulator, etc. Hence, the development of one transition P
system tool based on XML document only has to retrieve the information
about the P system, accordingly to the DTD which is presented in the next
section, and then to implement the simulation task. This avoid to develop
the lexical, syntactical and semantical analyzer and the error free check in
the input file.

As can be seen, incorporating XML technologies in the P systems soft-
ware simulators, focusing in the proposed tpsML vocabulary, avoid the prob-
lems presented in the previous section because:

i. Users do not need to know about different grammar. The new standard
is common to all of them. This increases the transparency bench mark
in using tools.

ii. Developers avoid to define a grammar for theirs input files to the
software tools they are developing. The grammar is given through the
corresponding DTD. Moreover, they do not need to implement the
corresponding analyzers. These is done by the SAX DOM libraries.
These facts increase the reusability and productivity bench marks.

Moreover, it can also be assumed every P system simulator previously
implemented. There is the XSL -styles language for XML- that permits to
translate it in a very easy way the supported information by a XML docu-
ment into several and different formats (text, HTML, pdf, etc.). In partic-
ular, a XSL can translate a tspML into a text accordingly to a determined
grammar that specify the input file for a given simulation tool of P systems
(bio-language, prolog, VHDL, etc.) without grammar modifications.

This is the way to achieve the interoperability among software and hard-
ware simulation tools. Every new software / hardware tool simulating P sys-
tems accordingly to the standard shall produce and shall consume tpsML
documents. Moreover, those previously developed can be incorporated to
the general interoperability with the appropriate translator.
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4 pstML Vocabulary

As it was shown in the previous section, the structure of a new vocabulary is
given by a Document Type Definition (DTD). The DTD will establish the
logical structure of the document that follows the vocabulary. The DTD
fixes tags and their attributes and the needed nests among tags in order
to facilitate the way of storing the appropriate information of P systems.
In particular, the DTD has tags collecting information about objects, rules
with their antecedent and consequent -with objects and their targets IN,
OUT, HERE; rules priorities, objects δ and τ as it is shown in Table 1

<!ELEMENT object EMPTY>

<!ATTLIST object value CDATA #REQUIRED

multiplicity CDATA #REQUIRED>

<!ELEMENT targetedObject (IN | OUT)?>

<!ATTLIST targetedObject value CDATA #REQUIRED

multiplicity CDATA #REQUIRED>

<!ELEMENT in EMPTY>

<!ATTLIST in target IDREF #IMPLIED>

<!ELEMENT out EMPTY>

<!ELEMENT rule (object+,targetedobject*)>

<!ATTLIST rule id ID #REQUIRED

action (d| T) #IMPLIED >

<!ELEMENT priority EMPTY>

<!ATTLIST priority greater CDATA #REQUIRED

minor CDATA #REQUIRED>

Table 1: Elements description in the DTD

In general, the vocabulary structures the information of static (Table 2)
and dynamic (Table 3) aspects of the P system. The static aspects take into
account the alphabet and the probably subset of catalyst in the P system
and, also, the hierarchical membrane structure with the rules they have.

The dynamical aspects will be determined by the consecutive config-
urations of the different multisets included inside membranes, with their
corresponding thickness, and the applied rules in order to achieve the tran-
sition between one configuration to the next one. This is included in order
to follow the evolution of the system through some visualization tools.

Finally, it is possible to establish some classification of P systems attend-
ing different criteria: kind of rules (cooperative, non cooperative, catalyst),
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<!ELEMENT alphabet (symbol+)>

<!ELEMENT symbol EMPTY>

<!ATTLIST symbol name CDATA #REQUIRED

catalityc (yes | no) "no">

<!ELEMENT membrane (rule*,priority*,membrane*)>

<!ATTLIST membrane id ID #REQUIRED>

Table 2: Static aspect of P system in the DTD

<!ELEMENT region (object*, region*)>

<!ATTLIST region id CDATA #REQUIRED

thickness (unthin | thin) #REQUIRED>

<!ELEMENT configuration (applied_rule*, object*, region,

configuration*)>

<!ELEMENT applied_rule EMPTY>

<!ATTLIST applied_rule idrule IDREF #REQUIRED

idmembrane IDREF #REQUIRED>

Table 3: Dynamic aspect of P system in the DTD

target of the rules consequents (weak - strong targeting) and permeability
control and/or dissolution (δ and/or τ). Optionally, is specified the output
membrane or in absence the environment is considered as the system output
(Table 4).

<!ELEMENT psystem (alphabet?, membrane, configuration?)

<!ATTLIST psystem rule-type (coo | ncoo | cat ) #IMPLIED

target-type (strong | weak) #IMPLIED

type (delta | tau | delta-tau) #IMPLIED

exit IDREF #IMPLIED>

Table 4: Classification of P systems in the DTD

This vocabulary has been designed with the proposal of be able to store
the different necessities of any Transition P systems simulation tools. Due
to the recursive character of the configuration tag, it is possible to establish
a configuration tree in which is included every possible P system execution.
This characteristic will make possible to analyze the P system evolution.
But also, the same framework, storing only one branch of the configuration
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tree one specific P system execution is represented. Taking into account only
the root of the tree, the initial configuration of the P system is depicted.
Moreover, in the total absence of the configuration tree, only the static
structure of the P system is represented; with the membrane hierarchy and
its rules, open to any initial multisets configuration like in [10] occurs in the
publication of general problem solutions.

5 Generic Libraries and Tools for tpsML

A kit of generic tools is presented here in order to facilitate the development
of new Transition P systems simulators. This kit is useful for completing
other specific tools necessities. All of them are developed in Java for Web
because its multi-platform character gives access to every user in the P
system community. The relation of these generic tools is:

• Document tpsML Editor (Figure 1) that is able to generate a valid
tpsML interacting with specific controls buttons. The editor incorpo-
rates the dynamic control of errors accordingly with the DTD of the
vocabulary.

Figure 1: tpsML Editor
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• Static Visualizator (Figure 2) for presenting the static component of
a valid tpsML document, and also the multisets values in a given
configuration. This tool does not can edit the tpsML document. It
incorporates also errors detection accordingly with the DTD of the
vocabulary.

Figure 2: tpsML Visualizator

• Translators from tpsML to Bio-language and Connectivity arrays.
These translators make feasible, first of all, to integrate into the new
technology a previously developed tool [1]; and secondly, the first
step to load information of the P system into a hypothetic membrane
processor [3]. These two features show the interoperability among
different tools.

The experience got in the development of these generic tools have pro-
duced the design of a class framework in Java. This framework is based in
the combination of several software patterns as composite, visitor, bridge,
etc. Moreover, the framework is completely reusable in the development
process of new specific tools. The SAX-tpsML and DOM-tpsML libraries
host this framework with specific class about the P systems domain. These
classes are different from the SAX and DOM classes because they have spe-
cific behavior accordingly to the P system domain. In a similar way, it
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has been also developed XSL-tpsML, incorporating specific templates cor-
responding to the proposed DTD. XSL-tpsML facilitates the development
of new translators only with a few knowledge about XSL technology.

Figure 3: Class diagram of DOM-tpsML

6 Future Work

The presented framework of the previous section is based on three main axes:
DTD defining the tpsML vocabulary, SAX-tpsML and DOM-tpsML libraries
and the generic tools for editing, presenting and translating P systems. The
main future working areas are addressed in these three directions.

On one hand, it is possible to study a new vocabulary taking into account
different membrane systems models (active membranes, tissue P systems,
etc.) or even, to abroad a new general vocabulary including other research
field related to membrane computing areas like NEP’s. Consequently, they
could be developed SAX and DOM libraries and XSL for these new vocabu-
laries. Finally, it is necessary consider to enrich the tools suite with dynamic
visualizators, debugger, etc. and to complete the interoperability with new
translator into simulator that they have been developed jet.
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7 Conclusions

P systems have demonstrated their usefulness as a new computational
model. This fact makes new development tools to be necessary for re-
searchers and developers. Those tools should be focused to this new para-
digm. It is considered necessary that development community joint efforts
to increase productivity and to make as transparent as possible this envi-
ronments. These objectives land in interoperability of simulators. Here, it
is presented a first step to this interoperability through a standard for the
persistence of P systems based on XML technologies. Tools and libraries in
this framework show the accomplishment of these objectives: transparency
for users and reusability for developers.
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Sancho-Caparrini, (Eds.): Second Brainstorming Week on Membrane
Computing. Sevilla, Spain (2004), 309–315 and Journal of Universal
Computer Science 10 (5) (2004), 620–619.
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[16] M. J. Pérez-Jiménez, F. J. Romero-Campero: A CLIPS simulator for
recognizer P systems with active membranes. Proceedings 2nd Brain-
storming Week on Membrane Computing, University of Sevilla Tech
Rep (2004), 387–413.

[17] B. Petreska, C. Teuscher: A hardware membrane system. In: A. Alha-
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Abstract

One objective of Systems biology is to create predictive quantita-
tive models of gene regulatory networks that govern numerous cellular
functions. Our aim1 is to model the functioning of genetic machinery
to elucidate the continuous aspects of gene structure-functional orga-
nization. A novelty of the DNA modelling is that the DNA (in genes)
is mapped by means of systems of elementary membranes, arranged
into chains, for capture in detail gene structure and all functional as-
pects of temporal behavior of gene expression regulation. A P trans-
ducer model of the living cell that provides system integration of all
interacting components at the main hierarchical levels of cell organi-
zation is introduced. Important properties of the gene function such
as continuous-valued internal state of a gene, different levels of gene
expression, differential gene expression, etc. are illustrated through
simulation. We also describe some generalizations of the P transducer
model of the living cell and discuss their relevance to the real-world
gene networks.

1This work is supported by CRDF-MRDA project, and BGP-II, Award No. MM2-3034.
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Introduction

Regulation of gene expression is a vital process in the cell and involves
the functional organization of the chromosomal DNA. It also involves the
action of specific protein factors, which can act at different steps in the gene
expression pathway. Methods to control gene expression are important both
for functional genomics and for potential therapeutic applications and will
be of strategic importance in biological research.

Numerous models have already been proposed for the analysis of gene
networks data. The most commonly used models rely on gene network
representation where each gene has one of only two states: on and off.
Examining some of the gene expression data sets, it is clear that genes spend
a lot of their time at intermediate values: gene expression levels tend to be
continuous rather than discrete, and discretization can lead to a large loss
of information [1]. Unlike other models, our gene regulatory network model,
based on membrane systems, opens a new view of gene regulatory network
representation. Continuous aspects of structure-functional organization of
the DNA (in genes) are elucidated by using continuous-time P systems of
elementary membranes, arranged into chains. Consequently, the integration
of gene expression models with other biological processes (cellular functions)
models is facilitated. This view in detail captures gene structure and all
functional features of temporal behavior of gene expression regulation. On
the one hand, this approach can easily describe the discrete aspects of gene
regulation such as all the relevant molecular interactions one-by-one with
the DNA. On the other hand, the continuous-valued internal state of each
gene, dictated by the gene regulatory network of the living cell, is illustrated.

It is known that Systems biology is focused on understanding cellular
networks (gene regulatory networks, protein networks, and membrane net-
works) to build integrated formal and computational models, with suitable
notations, necessary to describe all cellular networks as an entire system
[2]. Within this overall framework, we introduce the P transducer model
of the living cell, which can be seen as a coherent conceptual framework
that provides system integration of all interacting components of the main
hierarchical levels of organization: DNA, gene regulatory network, and cel-
lular levels. Using the concept of the P transducers [3] we introduce a new
quantitative computational model of the living cell as a basis of analysis and
simulation of real-wold gene networks, which govern cellular functions, and
the dynamic behavior of the living cell.
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1 Gene regulatory network modelling

An important role in gene regulation is played by specific proteins, called
transcription factors, which influence the transcription of particular genes
by binding to their regulatory regions. In this way a product of one gene can
influence the expression of another gene, and we can consider a network of
gene regulation. A gene regulatory network is a collection of DNA segments
(genes with their regulatory regions) which interact with each other and with
other substances in the cell, thereby governing the rates at which genes are
transcribed into mRNA. The molecular output of a gene regulatory network
is the constellation of RNAs and proteins encoded by network target genes,
each with a specific role to play. The structural and functional characteristics
of different types of cells are determined by the nature of the proteins present
[4].

Our goal is to model the structure-functional organization of genes with
their regulatory regions both for prokaryotic and eukaryotic cells for easy
analysis of important properties of gene function such as continuous-valued
internal state of a gene, all the relevant molecular interaction with DNA, all
functional aspects of real-time behavior of gene expression regulation, etc.

Genes with their regulatory regions show diversity in size and organi-
zation [5]. There are, however, several conserved features. We consider a
simplified view of a gene with its regulatory region as a structure consist-
ing of regulatory region (RR), gene coding region and gene transcription
termination site (T ) (Fig. 1).

Promoter Operator
No transcription

RNA polymerase
Transcription

RR

No repressor

gene  coding region T

Figure 1: A schematic representation of a gene with the negative regulation
of gene expression (for prokaryotic cell). RR – regulatory region consisting
of a promoter and an operator; T – transcription termination site.

To elucidate continuous features of gene expression (both for prokaryoric
and eukaryoric genes) we map the DNA (in a gene) by means of a system
of elementary membranes, arranged into a chain (Fig. 2). The direct com-
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Figure 2: Schematic representation of cellular structure-functional organiza-
tion on the basis of the P transducer concept. Genes with their regulatory
regions are mapped by systems of elementary membranes, arranged into
chains.

munication between elementary membranes along the chain is done in a
one-way manner. The first elementary membrane of the chain represents
the gene regulatory region consisting of a promoter and transcription factor
binding sites. The last elementary membrane of the chain represents the
gene transcriptional termination site. The rest of elementary membranes of
the chain represent the coding region of the gene. The number of elemen-
tary membranes of the chain correlates with the maximal number of RNA
polymerases simultaneously transcribing the activated gene.

High-speed and slow biochemical reactions (depending on the concen-
tration of the reactants) evolve in a continuous way and in parallel in living
cells. Such timing hierarchy is an essential, distinctive feature of biosys-
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tems. On the other hand, discrete-time P systems have limited applicability
to common biological data sets. We propose a new formalization of P sys-
tems, continuous-time P systems, that combines the discrete and continuous
aspects of biosystem representation. We introduce the notion of rate, de-
noted by symbol rm ∈ R , m ∈ N , associated to rule. A rule is applied
at the instant ti+1 ∈ R+ according to as follows. We consider time delay
(denoted by ∆t), which is inverse proportional to the rate rm, between the
instant ti ∈ R+ when the rule became to be available and the instant ti+1

when the rule is applied. ∆t = ti+1 − ti.

Definition 1 The continuous-time P systems of elementary membranes,
arranged into chains, representing continuous aspects of the structure-func-
tional organization of the gp genes linked as a network, are constructs of the
following forms:

Πgp = (Ogp , µgp , wgp(1), wgp(2), . . . , wgp(lp), E, Rgp(1), Rgp(2), . . . , Rgp(lp)),

1 ≤ p ≤ n,

where:

• n is the number of the gp genes linked as a network;

• lp ≥ 1 are degrees of the Πgp systems (number of elementary mem-
branes), 1 ≤ p ≤ n;

• Ogp are alphabets of objects associated with the Πgp systems,
1 ≤ p ≤ n;

• µgp are membrane structures of the Πgp systems, 1 ≤ p ≤ n. The Πgp

systems are formed by lp membranes, arranged into chains. The direct
communication between membranes along chains (representing the gp

genes with their regulatory regions) is done in an one-way manner:
gp(1) → gp(2) → gp(3) → . . . → gp(lp). The first membranes labelled
by gp(1) represent the gp gene regulatory region and they are named
the input/output membranes. The last membranes of the chains la-
belled by gp(lp), named as the output membranes, represent the tran-
scriptional termination sites. The elementary membranes labelled by
gp(2), gp(3), . . . , gp(lp−1) represent the gp gene coding regions;
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• wgp(1), wgp(2), . . . , wgp(lp) are objects over O∗
gp

(1 ≤ p ≤ n) initially
present in each elementary membrane of the membrane structure µgp ;

• E is the set of objects present in arbitrarily many copies in the envi-
ronment of the Πgp ;

• Rgp(1), Rgp(2), . . . , Rgp(lp) are finite sets of rules associated with each
membrane of the membrane systems µgp , 1 ≤ p ≤ n. They illustrate
the communication between the elementary membranes of the chains,
and between the membranes of the Πgp systems and their environment.
The rates rm ∈ R, m ∈ N of biological reactions, modelled by the rules
of the Πgp systems, are indicated as superscripts. All available rules
are applied according to their rates in a non-deterministic maximally
parallel manner. Only one object is specified in all rules described
below. Each rule has one of the following forms:

–(x, in)|rm
a or (x, in)|rm

¬a , x ∈ Ogp , means that from the environment
the object x enters the input/output membrane only in the presence
or in the absence of a, where a is a multiset of objects, a ⊂ O∗

gp
.

These conditional rules reflect the functional organization of the gene
regulatory region.

–(x, out)|rm , x ∈ Ogp , means that the object x is sent out, from the
elementary membrane with which the rule is associated, into the en-
vironment.

–(x, go)|rm , x ∈ Ogp , means that the object x leaves the membrane,
with which the rule is associated, and passes to the next membrane of
the chain.

–(y, out; x, go)|rm , means that the object y ∈ Ogp is sent out from the
input/output membrane into the environment and simultaneously the
object x ∈ Ogp leaves the input/output membrane and passes to the
next membrane of the chain.

These rules model in detail three stages of the gp gene transcription
process. Rules, associated with the input/output membrane, model
the initiation of transcription: RNA polymerase and transcription
factors interaction with the gene regulatory region. Rules, associated
with the membranes that map the gene-coding region, model the move-
ment of RNA polymerase along the DNA. Rules, associated with the
output membrane, model the RNA polymerase leaving the end of
gene.
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2 P Transducer model of the living cell

A living cell is a self-organizing, self-regulating, multi-scale, and multi-
functional unit that recognizes physical and chemical stimuli and produces
measurable signals in response to the environmental changes, considered
as input signals. The gene regulatory networks reveal that gene expres-
sion programs and cellular functions are highly connected. Cell structure
and functions are closely related and cellular membranes are essential for
cell’s integrity and function. The structure elements of the gene regula-
tory network are scattered throughout membrane-bound compartments and
organelles, showing dynamic architecture [4].

Proteins (regulatory enzymes, protein transcription factors) play central
role in a cell by responding to the various stimuli in the external environment
and regulating the expression of specific set of genes. Our goal is to present
a new view of the gene functional organization and dynamics in genome
activity that provides a direct, quantitative assessment of changes in gene
expression as a function of input signals. No matter which type of cell we
are considering, all cells can be modelled by means of P transducers:

a) the cellular structure may be represented by cell-like membrane sys-
tem;

b) the cellular tasks and functions may be modelled by the P transducer
rules (Fig. 2).

Gene regulatory networks that govern cellular functions can be mod-
elled by continuous-time P systems of elementary membranes, arranged into
chains.

Definition 2 A P transducer of the living cell is the construct:

Π = (Ogp , V, µgp , µcell, wgp(1), wgp(2), . . . , wgp(lp), w1, . . . , wk,

Rgp(1), Rgp(2), . . . , Rgp(lp), E, R1, . . . , Rk), 1 ≤ p ≤ n,

where:

• n is the number of the gp genes linked as a gene regulatory network;

• k ≥ 1 is the degree of the hierarchical cell-like membrane system
(number of cell-like membranes). The components of the Πgp systems,
which map the structural-functional organization of the gp genes, are
described in the previous section;
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• V is the alphabet of objects of the cell-like membrane system.
Ogp ⊆ V ;

• µcell is the membrane structure of the cell-like membrane system with
the skin membrane labelled by k;

• w1, . . . , wk are multisets of objects over V ∗ initially present in each
region of the membrane structure µcell. w1 is the multiset of objects
initially present in the environment of the Πgp systems;

• E ⊆ V is the set of objects which are supposed to appear in an arbi-
trarily large number of copies in the environment of the P transducer ;

• R1, . . . , Rk are finite sets of rules associated with the each membrane of
the cell-like membrane system. Rules of different types, such as: evo-
lution, symport, antiport rules, as well as rules of membrane division,
dissolving and creation [6] can be used for modelling cellular functions
(connected with protein networks, membrane networks, etc.). The
rates of biological processes, modelled by the rules of the P trans-
ducer, are indicated as superscripts rm, m ∈ N associated with the
rules. The rules of the P transducer are used in a non-deterministic
maximally parallel manner.

The rules associated with the skin membrane might contain both “un-
marked” and “marked” objects; the marked objects are of the form
(a, read) or (a, write), a ∈ V . (a, read) can be used being associate
with the command in, while (a, write) can be used having associate
the command out. As input, the P transducer takes input “marked”
objects from the “input tape” to be translated, as well as “unmarked”
objects from the environment. A symport rule of the form (x, in)
associated with the skin membrane means that “unmarked” objects
x ∈ V enter from the environment of the P transducer into the cell-
like system. Once the marked objects pass the skin membrane they
become unmarked, and they can be used without restrictions by the
other rules. The P transducer can provide a result in the form of the
marked objects a ∈ V which are written to the “output tape” [3].

The multisets of objects u and v can evolve according to given evolution
rules of the form (u → v)|rm , meaning that u is replaced by v. Rules
of the form (u, in)|rm or (u, out)|rm , associated with a membrane, and
stating that the object u can enter, respectively, exit the membrane,
are symport rules. Some rules can be used only in the presence of
certain objects and are named conditional rules. A conditional rule is
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allowed only if the condition is realized. Rules without conditions are
applied in the usual way. Creation rules of the form R : (u → v)|rm/r,
where r is a set of labels of possible rules can be used; when using the
rule R (one copy of it is consumed), the rules specified by r become
available for the next step [6].

3 P transducer model of the SOS response

In this section a P transducer model of conversion of environmental changes
(toxicity dose) into gene expression changes and of producing of output
signals (fluorescence) is described. The structure-functional organization of
the lexA recA gene regulatory network that control SOS repair system of
E. coli cell is mapped by means of continuous-time P systems of elementary
membranes, arranged into chains. The execution of the gene machine is seen
as a continuous process both in time and in concentration levels.

A scheme of transcriptional regulation of the lexA recA genetic system
of E.coli cells with the negative type of gene regulation is represented in Fig.
3. The lexA regulatory gene codes for the LexA repressor proteins. When the
LexA repressor molecules bind to the O1 and O2 operators, RNA polymerase
is unable to begin the transcription of the lexA and recA genes (i.e., the genes
are repressed). In the absence of the LexA repressors the RNA polymerases,
bound to the P1 or P2 promoter, start to move along genes, synthesizing
mRNA copies of the lexA or recA gene. The transcription termination sites
of these genes are denoted by T1 and T2, respectively [5].

lexA T2P1

LexA
RecA

O1 recAP2
O2T1

RNA po lymerase

LexA

DNA

nm

Figure 3: The scheme of the transcriptional regulation process of the lexA
recA genetic system.

The recA gene codes for the RecA regulatory enzyme, which is a multi-
functional protein, involved in the recombinational repair of damaged DNA
(i.e., DNA breaks) and SOS repair [7]. It activates the synthesis of many
proteins, including DNA repair proteins, that help a bacterium adapt to a
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variety of metabolic stresses. DNA damages can be induced by UV irra-
diation (the most studied case) or various other agents, such as chemical
mutagens, addition of drugs, etc. In a healthy bacterium cell there is a high
LexA protein concentration. LexA does not completely abolish the tran-
scription of the lexA and recA genes, these genes are expressed at low levels.
The trigger that activates the SOS repair system after damage is thought to
be single-strand DNA breaks (ssDNA) that activate the RecA regulatory
enzymes. Activated RecA enzymes split LexA proteins. Intracellular levels
of the LexA decrease removing the LexA barrier to recA gene transcrip-
tion. Thus, one of the two alternative functioning regimes (corresponding
to the activated/repressed states of genes) can be established in the molec-
ular genetic trigger system as a result of the influence of the environmental
circumstances on the regulatory enzymes.

Using methods of genetic engineering, a g gene that might code for fluo-
rescent proteins can be closely integrated to the recA gene. The fluorescence,
denoted by G, as indicator of gene expression, can be considered as output
signal. A biosensor, used for detection of mutagenic agents, can be imple-
mented on the basis of this genetic trigger system [8].

The P transducer of the SOS response to environmental stimuli is the
construct:

Π = (OlexA, OrecA, V, µlexA, µrecA, µcell, wlexA(1), wlexA(2), wlexA(3), wlexA(4),

wrecA(1), wrecA(2), . . . , wrecA(5), w1, RlexA(1), RlexA(2), RlexA(3), RlexA(4),

RrecA(1), RrecA(2), . . . , RrecA(5), E, R1),

where:

• OlexA, OrecA are alphabets of objects associated with the continuous-
time P systems of elementary membranes that map the structure-
functional organization of the lexA and recA&g genes.

OlexA = {L, p, pl, nl}, OrecA = {L, p, pr, nr}, where:

L represents the LexA repressor protein, encoded by the lexA gene;

p - RNA polymerase molecule (holoenzyme);

pl and pr - RNA polymerases (without sigma subunit, which is re-
sponsible for the recognition of the promoter by RNA polimerase)
transcribing the lexA and recA genes into mRNA copies, respectively;

nl, nr - number of the RNA polymerases transcribing the lexA and
recA genes into mRNA.
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• V is the alphabet of objects of the cell-like membrane system.
OlexA ∪ OrecA ⊆ V .

V = {L, R, G, p, pl, pr, nl, nr, u, v, nm, n, b}, where:

R represents RecA regulatory enzymes, encoded by the recA gene;

G - output signals, encoded by the g gene;

u - mRNA copies of the lexA gene;

v - mRNA copies of the recA and g genes;

nm - input signals;

n - ssDNA breaks;

b - objects in the environment (for instance, the temperature) which
influence the biochemical reactions rates and characteristic constants
of protein interaction processes with DNA loci;

• µlexA, µrecA are the membrane structures of the P systems of elemen-
tary membranes that map the structure-functional organisation of the
lexA and recA genes.

µlexA = [
lexA(1) lexA(1)

|
lexA(2) lexA(2)

|
lexA(3) lexA(3)

|
lexA(4) lexA(4)

]

is the elementary membrane structure, which represent the lexA gene
with its regulatory region. The elementary membrane labelled by
lexA(1) corresponds to the regulatory region (P1/O1 promoter/operator
site) of the lexA gene. The membranes labelled by lexA(2) and
lexA(3) represent the coding region of the lexA gene. The membrane
labelled by lexA(4) corresponds to the transcription termination site
of this gene.

µrecA = [
recA(1) recA(1)

|
recA(2) recA(2)

|
recA(3)

. . .
recA(4)

|
recA(5) recA(5)

]

is the membrane structure, modelling the recA and g genes with their
regulatory region. The membrane labelled by recA(1) corresponds to
the P2/O2 regulatory site of the recA and g genes. The membranes la-
belled by recA(2), recA(3), recA(4) represent the gene–coding region.
The membrane labelled by recA(5) corresponds to the transcription
termination site of these genes;

• µcell = [1 1 ] is the membrane structure of the cell-like membrane
system with the skin membrane labelled by 1. The P transducer mem-
brane structure consisting of the elementary membrane structures em-
bedded into the cell-like membrane labelled by 1 is:

µ = [1 [
lexA(1) lexA(1)

|
lexA(2) lexA(2)

|
lexA(3) lexA(3)

|
lexA(4) lexA(4)

]
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[
recA(1) recA(1)

|
recA(2) recA(2)

|
recA(3)

. . .
recA(4)

|
recA(5) recA(5)

] 1 ];

• wlexA(1), wlexA(2), wlexA(3), wlexA(4) and wrecA(1), wrecA(2), . . . , wrecA(5)

represent the initial sets of objects over OlexA and OrecA, associated
with each membrane of the elementary membrane structures µlexA and
µrecA, respectively;

• w1 is the initial multiset over V associated with the region delimited
by the skin membrane (cell cytoplasm). The initial configuration of
the P transducer (corresponding to the healthy cell in the absence of
mutagenic agents, nm = 0 ) can be represented as following:

wlexA(1) = {L}, wlexA(2) = {pl},
wrecA(1) = {L}, wrecA(3) = {pr},

w1 = {L, R, G, p, pl, pr, nl, nr, u, v}.

• E ⊆ V is the set of objects which are supposed to appear in an arbi-
trarily large number of copies in the environment of the P transducer.
The schematic representation of the initial state of the P transducer
model of the SOS response to environmental stimuli is shown in Dia-
gram 1.

• RlexA(1), RlexA(2), RlexA(3), RlexA(4) and RrecA(1), RrecA(2), . . . , RrecA(5)

are finite sets of rules associated with each membrane of the membrane
structures µlexA and µrecA, respectively. They illustrate the communi-
cation between the elementary membranes of the chains, and between
the elementary membranes and their environment. Only one object
is specified in these rules. All the relevant DNA–protein interactions
are modelled by these rules. In this way we model in detail the three
stages of the gene transcription process: initiation of transcription,
RNA polymerase movement along the DNA, and termination of tran-
scription;
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Diagram 1. Schematic representation of the initial state of the P transducer model of the SOS

response of the E.coli cell to environmental stimuli. The lexA and recA genes with their
regulatory regions are mapped by systems of elementary membranes. The sets of rules

associated with each membrane of the P transducer model are shown.

• R1 is a finite set of rules associated with the region delimitated by the
skin membrane of the cell-like membrane system (cell cytoplasm). The
rates of biological processes, modelled by the P transducer rules, are in-
dicated as superscripts rm , m ∈ N associated with the rules. All avail-
able rules are applied according to their rates in a non-deterministic
maximally parallel manner. Biochemical reactions (a part of cellular
protein network) that evolve in the cell cytoplasm are modelled by
evolution rules. The action of input signals on the living cell and the
cellular response (a part of cellular membrane network) are modelled
by the symport rules associated with the skin membrane of the P
transducer.

To get a clearer picture of the regulatory network that control SOS
repair and to monitoring small changes of gene activity profiles as response
to external stimuli, a predictive computational Visual Hybrid Petri Nets
(V HPN) [9] model of the P transducer of the living cell has been built.
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Figure 4: Electrophoretic analysis of DNA breaks in different samples of
the HB101 strain of E.coli bacterial cells, conditioned by UV irradiation
treatment for: 10, 15, 20, 25, 30, 35 min., denoted by nm = 1, . . . 6, (a):
M – molecular markers; 1 – control (without damage treatment); 2 – 7 –
DNA from bacterial cells after UV irradiation (10 min. to 35 min.); 8 –
11 – DNA from bacterial cells during DNA repair process (5 min. to 20
min.). RT-PCR analysis of the lexA and recA gene expression at 370C (c, d)
and after treatment with heat shock at 420C (e). The simulation results
(b, f, g, h) denote direct correlation between degree of cell response and the
environmental changes (dose of the UV radiation)

The advantages of the Petri Nets modelling of complex and distributed
systems consist in the possibility to compose models step by step from com-
ponents (subsystems). The simulation of objects processing shows the dy-
namic evolution of the system during computation directly on the Graphical
User Interface representation. The V HPN model comprises discrete loca-
tions, discrete transitions, discrete test arcs, flow arcs, inhibitory arcs and
guard functions. The simulation of the P transducer models permits us to
analyze the processing of objects (molecules) during the computation. For
every set of objects placed within each membrane and for every rule of the
P transducer model we put into correspondence a discrete location and a
discrete transition of the V HPN model, respectively. The number of tokens

175



corresponds to the number of object copies. The transition firing rates are
functions of the model’s parameters, reflecting actual values of the rates of
biochemical reactions.

In our experiments we study the coordinative transcription of the recA
and lexA genes to demonstrate the differential expression of these genes as
a response to low–level UV irradiation treatment (Fig. 4).

LexA (L) RecA (R)

G  protein (fluorescence) DNA breaks ( n )

Ll Rr

lexA gene repressing recA gene repressing

activated gene inactivated gene inactivated geneactivated gene

nn

Figure 5: The simulation results of the P transducer model in the presence
of mutagen agents at the 370C. It has been simulated the case when DNA
breaks are generated in a cell as a result of DNA damaging treatment (nm =
6).

Some simulation results of the P transducer model, using the V HPN
software tool on the basis of a special class of Timed Hybrid Petri Nets are
represented in Fig. 5.

It is known that by simulating a network we can make predictions and
compare them to experimental data. The previous graphics depict quanti-
tative assessment of changes in gene expression levels as a function of input
signals (toxicity dose). These results agree quite well with experimental
data.

The P systems models of gene expression regulation present great interest
in more efficient controlling ways of how cells self-regulate the expression of
their genes in vivo and for adequate description of the cellular processes,
and implicitly for solving different problems related to genetic medicine and
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environmental diagnostics, using cellular biosensors [8].

Figure 6: Correlation between the G fluorescent protein concentration (cell
response) and different degrees of DNA damaging treatment (a) and de-
pendence of the RecA enzyme concentration on temperature (b).

The P transducer model of the living cell permits us to develop efficient
in vivo computational models for monitoring and prediction gene expression
and protein profiles, and for determining protein interactions. Our study is
focused on elucidation of the molecular mechanisms underlying fundamental
cellular processes, to decipher gene function. It is shown that the continuous-
time P systems of elementary membranes, are appropriate for quantitative
modelling of real gene regulatory networks.

A predictive computational V HPN model of the P transducer of the
living cell that allows us to measure small and gradual changes of gene
expression profiles, differential gene expression, and to elucidate all the rel-
evant molecular interaction one-by-one with DNA, all functional aspects of
temporal behavior of gene expression regulation has been built. This model
allows us to obtain a broader view of complex cellular response under spe-
cific conditions and to measure delicate changes of gene expression levels
that are indispensable in disease diagnosis.

4 Final remarks

No conceptual framework to integrate all interacting components of the liv-
ing cell has been proposed [2]. We shown that the P transducer model of the
living cell is a suitable tool for unifying the main aspects of biological sys-
tems of high architectural complexity: a) structure-functional organization
both at DNA and cellular levels; b) integration of all cellular networks (gene
regulatory network, protein network, and membrane network) into an entire
system; c) interaction of all interacting components of the main hierarchical
levels; d) discrete-continuous aspects of multi-scale organization.
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Abstract

LP colonies, a new theoretical mechanism that integrates colonies
and linguistic P systems, are introduced. The objective of the new
integrative framework is to demonstrate that it is possible to give a
complete description of linguistic change by means of formal tools. In
this model each membrane system that form the LP colony is under-
stood as a specialized module for each part of language that evolve
in parallel. A very simple example that shows how to model a lexical
transformation from Latin to Spanish by means of the interaction of
two linguistic modules (phonetics and semantics) is given.

1 Introduction

In this paper we ‘play’ with two frameworks from the field of formal language
theory in order to model a linguistic problem traditionally far away from any
formalization. The two frameworks are: membrane systems and grammar
systems. The linguistic problem is: language evolution.

Membrane systems –introduced in [35]– are models of computation in-
spired by some basic features of biological membranes. They can be viewed
as a new paradigm in the field of natural computing based on the function-
ing of membranes inside the cell. Briefly, in a membrane system multisets of
objects are placed in the compartments defined by the membrane structure

∗This research has been supported by a Marie Curie European Reintegration Grant
(ERG) under contract number MERG-CT-2004-510644.
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–a hierarchical arrangement of membranes, all of them placed in a main
membrane called the skin membrane– that delimits the system from its en-
vironment. Each membrane identifies a region, the space between it and
all the directly inner membranes, if any exists. Objects evolve by means
of reaction rules also associated with the compartments, and applied in a
maximally parallel, nondeterministic manner. Objects can pass through
membranes, membranes can change their permeability, dissolve and divide.
Membrane systems can be used as generative, computing or decidability
devices. A membrane structure is shown in Figure 1.
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Figure 1: A Membrane Structure.

From the field of grammar systems we focus on the so-called colonies.
Colonies as well-formalized language generating devices have been proposed
in [25], and developed during the nineties in several directions in several
papers, e.g. [13, 27, 33, 1, 38, 29, 30, 26, 37, 15]. A colony, that consists of
a finite number of simple modules, behaves in a symbolic environment and
changes its states only through acts performed by the simple agents –the
components of the colony. Each state of the environment is modelled by a
(finite) string of symbols. The set of all possible states of the environment is
considered the language generated by the agents that form the colony. The
environment itself does not change its state autonomously, but only through
the activities of agents. Therefore, the global behaviour of the whole colony
emerges from the strictly individual behaviours of components. The scheme
of a colony is given in Figure 2.

Membrane systems and grammar systems theory offer features that seem
to be very appropriate in order to model natural languages. In fact, both
fields have been already applied to many natural languages issues. A general
application of membrane systems to linguistics was introduced in [2]. More
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Figure 2: A Colony.

specific applications of membrane systems can be found in [3, 4, 7, 5, 6].
The most important intuition for translating this natural computing model
to natural languages is that membranes can be understood as contexts. Con-
texts may be different words, persons, social groups, historical periods, lan-
guages. They can accept, reject, or produce changes in elements they have
inside. At the same time, contexts/membranes and their rules evolve, that
is, change, appear, vanish, etc. All these features make of membrane systems
an attractive model to deal with natural language.

Defining features of grammar systems such as easy generation of non-
context-free structures using context-free rules, modularity, parallelism, in-
teraction, cooperation, communication, distribution, interdependence among
parts and emergent behaviour have led to the idea that these systems might
be applied to a large range of topics in linguistics, from pragmatics to lan-
guage change. Applications of grammar systems to different linguistic issues
can be found in [10, 11, 17, 18, 19, 20, 21, 22]

Both membrane systems and grammar systems have been applied to the
topic of language evolution (cf. [2, 3, 10, 17, 20]). If we analyse such appli-
cations we realize that while the former answer in a very simple way to the
question what does it happen when a linguistic change takes place?, the lat-
ter can formally define how a language innovation spreads, who change lan-
guages and why a linguistic change takes place. So, we think that there exists
a complementarity between membrane systems and grammar systems. Tak-
ing into account this and considering the fact that in grammar systems we
can postulate any mechanism as component of the system, in this paper we
propose to define grammar systems -specifically, colonies– with membrane
systems as components in order to give a complete formal-language-model
of linguistic change. We are fully convinced that collaboration between both
models may provide a useful formalism that, due to its naturalness and sim-
plicity, might offer interesting results in a discipline traditionally far away
from any formalization as linguistic evolution is.
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2 LP Colonies

Grammar systems theory and membrane systems have been already related
in papers like [16] and [9] where the notions of a P-colony and an EP-colony
are introduced, respectively. Other papers in which the relation between
these two frameworks is emphasized are [14, 12]. In our model, LP colonies
are understood as colonies of Linguistic P systems (as introduced in [7]),
specially defined for the modelling of linguistic generation and evolution.
Both processes are usually considered as complex operations caused by the
interaction of several modules: phonetics, semantics, morphology and syn-
tax. Intuitively, each one of these parameters could be linked to different
linguistic P systems, which collaborate in a modular way in the generation
of linguistic objects as well as in the evolution of languages.

The P systems that form an LP colony do not need to have the same
features. The semantic module, for example, may be a Dynamic Mean-
ing Membrane System (cf. [7]), while modules devoted to phonetics and
morphology may be Linguistic Membrane Systems (cf. [2, 7]).

LP systems in an LP colony cooperate by performing evolutionary steps
on linguistic objects, that may be strings, symbols (form + meaning) or
sentences. For an LP system to modify the linguistic object, two conditions
are necessary:

• the object has to belong to the LP system’s domain,

• some rule in the input membrane must allow to play with the object.

In order to modify an object, the LP system takes it from the tape.
When computation in the LP system finishes, the output is replaced in
the tape, and it is ready to be taken by another membrane if conditions
are fulfilled. Therefore, parallelism –understood as the same object being
modified by more than one LP system at the same time– is not allowed
in the system. However, several LP systems can be working in parallel on
different linguistic objects. So, parallelism is allowed when it is understood
as different LP systems modifying different objects simultaneously, e.g. LP
system 1 modifies object 1 while LP system 2 modifies object 2, LP system
3 modifies object 3, etc.

Linguistic P systems integrated in LP colonies have a special feature:
the existence of input and output membranes. The input membrane is the
one where the object goes when it is taken by the LP system. The output
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Figure 3: An LP-Colony.

membrane is the one whose objects go to the tape when the computation
finishes in the LP system. It can exist more than one input and output
membrane. Every object placed in an output membrane goes to the tape,
therefore, the system can generate new objects.

Operations applied by membrane systems in linguistic objects may be
point mutations, duplication, transposition, splicing, rewriting, assignment
of meaning. Some modules can be specialized in some of these operations.
For example, phonetic modules, which work with linguistic strings, use point
mutations as a main method of evolution. Syntax, on the other hand, usu-
ally needs splicing or rewriting to explain changes in the configuration of
sentences.

Before introducing the formal definition of an LP-colony we want to
emphasize that what is proposed here is not at all a colony in the standard
meaning of the term, i.e. a system composed of very simple components
(regular grammars generating a finite language). Components of an LP-
colony are not simple, they are rather complicated mechanisms with an
intricate inner structure that perform different linguistic tasks.

2.1 Formal Definition

Definition 1 An LP colony (LPC) is a 3-tuple PC = (Π,V, S) where:

(i) Π = {Πi|1 ≤ i ≤ n} is a finite set of LP systems
Πi = (µ,Vi, Ri, Ii, Oi,Di) where:

– µi is the membrane structure,

183



– Vi = {V1 . . . Vi|1 ≤ i ≤ n} is the alphabet of the LP system,

– Ri is the set of rules,

– Ii is the input membrane,

– Oi is the output membrane,

– Di = {Di ∪ Ei} is the domain of the LP system.

This finite set of LP systems perform changes either in the form or
in the meaning of a string or object S. Mi will be referred to as a
component of LPC.

The domain is to be understood as the set of words, statements, ideas
and other linguistic units, a membrane is able to work with in a given
state of the computation. The domain is an active context.

(ii) V =
⋃

n

i=1(Vi) is the alphabet of the LP-colony.

(iii) S ∈ V is the linguistic object.

3 An LP Colony for Phonetic/Semantic Evolution

We introduce in this section a very simple system for dealing with phonetic
and semantic lexical evolution. Phonetics and semantics, as independent
modules, have assigned different LP systems. Therefore, we formalize an
LP colony with two LP systems that interact for modelling the evolution of
single words. A general scheme for this LP colony is shown in Figure 4.

Evolution described with these systems is a historical process. We are
dealing, thus, with diachrony, which usually implies the transformation of
a language into another one, by the transformation of lexical items. In the
LP colony we describe here, we model a small aspect of the evolution from
Latin to Spanish. The example aims to describe the transformation of the
Latin term regŭlam into two different Spanish words:

• regla (‘rule’ ), which is considered to be a cultism because there are
only a few changes from Latin to Spanish.

• reja (‘plough’ ), which is the popular derivation that has undergone a
deep transformation from Latin to Spanish.
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Figure 4: An LP Colony for the Interaction Phonetics-Semantics.

These Spanish words which come from the same Latin lexical item, have
two different meanings, given by the semantic module of the system.

To explain the double evolution of the word and the double final output
for Spanish, an LP colony is introduced, PC = (Π,V, O), where:

(i) Π = {Π1, Π2}

– Π1 = (µ1,V1, R1, I1, O1,D1) where:

∗ µ1 is [ [ ]1[ ]2[ ]3]0

∗ V1 = {regŭla, regla, reja}

∗ R1 is:

· ρ0 = regŭlam → regŭla, in M1

· ρ1 = regŭla → regla, in M2, M2

· ρ2 = regla → reja, in M3

∗ I1 = M0

∗ O1 = M3

∗ D1 = V1

– Π2 = (µ2, V2, R2, I2, O2,D2) where:

∗ µ2 is [ [ ]1[ ]2]0

∗ V2 = V ∪ Σ, being V = {regla, reja}, Σ = {‘rule’, ‘plough’}

∗ R2 is:

· ρ0 = reja → reja, in M1, M2

· ρ1 = ‘rule’ → regla
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· ρ2 = ‘plough’ → reja

∗ I2 = M0

∗ O2 = M1, M2

∗ D2 = D ∪ E, being D = V , E = Σ

(ii) V = V1 ∪ V2

(iii) Regŭlam is a linguistic string.

The initial configuration of the described system is shown in Figure 5.
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Figure 5: Initial Configuration.

In this LP colony, LP systems have nothing inside, while the object
regŭla is placed in the tape. Π1 starts the computations because it is the
only module whose domain contains that Latin word. The first step is
placing the object in the input membrane M0. Then, the phonetic module,
can start modifying the object.

Figure 6 shows the rules applied in Π1. First, the last consonant -m,
is deleted by ρ0, and the result, regŭla, is sent to the membrane 1. In M1

the word becomes regla, and it is sent to the membranes 2 and 3. M3, the
output membrane, has no rule to apply, in a way that the word goes to the
tape. On the other hand, M2 applies the rule gl → j, and sends the result
to M3. From here, the word goes also to the tape.

At this moment no more rules can be applied, so phonetic module Π1

can not play any more. The configuration of the system in this step is the
one shown in Figure 7.
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Figure 6: Work Performed by the Phonetic Module.
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Figure 7: Output after Phonetic Evolution.

As we have seen, only one input string (regŭla) has generated two output
strings (regla and reja). This fact demonstrates that multiple rules can be
applied for the evolution of only one object. But this can be a temporary
step in the pass from Latin to Spanish, since the evolution of meaning has
not been tackled yet. If only one of the objects is in the domain of the
second module, probably the other one will disappear because no meaning
will be assigned to it.

In this case, both regla and reja are elements in the domain of Π2,
therefore, both of them are taken by the LP system and placed in its input
membrane M0. From here, regla is sent to M1 and reja to M2. In these
membranes, the application of a semanteme to these linguemes is performed,
as shown in Figure 8.

After the modifications that occur in Π2 (the semantic module) the ob-
jects placed in the output membranes M1 and M2 go to the tape. No more
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Figure 8: Assignation of Meaning by the Semantic Module.

operations can be done in the system. Therefore, the configuration shown
in Figure 9 is the final one.
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Figure 9: Final Configuration.

Therefore, by means of this simple formal system an integrative descrip-
tion of lexical evolution that may be implemented by formal mechanisms
is given. This can be a good way to start strategies for the prediction of
language evolution by the characterization of the rules, taking into account
every modular aspect of linguistics.

4 Final Remarks

The paper shows how the interaction between different theories in theoretical
computer science can be very fruitful in the field of linguistics. In this case,
we have modelled linguistic evolution by combining P systems and colonies.
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The improvement and development of this ideas could give rise to a first
complete formal description of linguistic evolution.

The formalization and examples given in the paper are only a small
example of the possibilities of LP colonies. In the future, in order to give
account of the processes that take place in linguistic evolution, more complex
devices can be formalized, introducing variations in membrane systems for
different languages, dialects, periods, etc.

The practical application of the model can be the simulation and predic-
tion of the evolution of languages. Indeed, given certain rules and contexts,
probably the future shape of a given language can be foreseen, if formal
concepts have been correctly described.
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[10] E. Csuhaj-Varjú, M.D. Jiménez López: Cultural Eco-Grammar Sys-
tems: A Multiagent System for Cultural Change. In A. Kelemenová
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(Eds.): New Trends in Formal Languages. Lecture Notes Computer Sci-
ence 1218, Springer-Verlag, Berlin (1997), 288–298.

[23] J.J. Katz: Propositional Structure and Illocutionary Force. Crowell,
New York (1977).

[24] J.J. Katz, J.A. Fodor: The Structure of a Semantic Theory. Language
39 (1963), 170–210.
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Abstract

A specific type of P systems is considered and its behaviour defined
in terms of mass action law strategy. Such an approach is applied to the
modelling of the quorum sensing regulatory networks of the bacterium
Vibrio fischeri. In this respect, a formalisation of the network in terms
of P systems is provided and some simulation results concerning the
behaviour of a colony of such bacterium are reported. We also briefly
describe the implementation technique adopted by pointing out the
generality of our approach which appears to be fairly independent from
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the particular choice of P system variant and the language used to
implement it.

1 Introduction

Membrane computing represents a new and rapidly growing research area
which is part of the natural computing paradigm. Already a monograph
has been dedicated to this subject [10] and some fairly recent results can
be found in [11],[6],[7]. Membrane computing has been introduced with the
aim of defining a computing device, called P system, which abstracts from
the structure and the functioning of living cells [9]. The main results in this
area show that P systems are a very powerful computational model mostly
equivalent to Turing machines. Recent researches have been instead dedi-
cated to the study of P systems as a modelling tool for biological systems [3],
[4], [12] and system biology appears now to be a promising field of applica-
tion for membrane computing. In this domain of application, P systems are
not used as a computing paradigm, but rather as a formalism for describing
the behaviour of the system to be modelled. Therefore, there is a growing
interest in developing implementations for the membrane computing para-
digm in order to be able to execute P system model and run simulations of
biological phenomena of various interest. In this respect, a number of tools
have already been produced (some of them are available from [14]) but yet
correct implementation techniques need to be identified, especially when the
quantitative aspects featuring the “reality” of a biological phenomenon are
considered in the model.

In this paper, we present a variant of P systems (Section 2) where rules
are generalised boundary rules which allow us to express transformations
affecting simultaneously the objects placed on both sides of a membrane,
that is, both the objects placed inside that compartment and the objects
placed into the surrounding region. As well as this, each rule has associated
a real number providing a measure for the “intrinsic reactivity”of the rule
and roughly corresponding the kinetic coefficient which, in bio-chemistry, is
usually associated to each molecular reaction [12]. A mass action law will be
used to randomly pick up the next rule to be applied. The main difference
with respect to the usual approach adopted in membrane computing is that,
in our approach, there is no parallelism in the application of the rules as the
system evolves only by means of a rule at a time. Next, in Section 3, we
present, as a case-study, a P system model for the quorum sensing system of
the marine bacterium Vibrio fischeri together with some simulation results
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obtained by implementing the model in Scilab, a freely available software
package [16]. The novelty of our approach consists in the fact that we do not
only provide a description for the reactions involved in the quorum sensing
regulatory network but we are also able to provide a model for an arbitrarily
large colony of bacteria. In this respect, we can say our simulations provides
a snapshot of the behaviour of the colony as a whole complex system. Fi-
nally, the last section describes implementation techniques for our P system
model by presenting the data structures and the code that are necessary
to support its execution. Moreover, by following [8], we advocate the use
of the mark-up language SBML as a “machine-interpretable” language for
defining executable specifications of P systems and the corresponding code
that can be automatically generated from. In this respect, we want to stress
the generality of our approach which appears to be fairly independent with
the particular choice of a P system variant, the language used to implement
it, and flexible with the strategy for applying the rules.

2 The P System Model

The P system model used in this paper is a variant of cell-like P systems with
the rules being a generalisation of the boundary rules introduced in [2] and
having associated a certain rate of application. Cell-like P systems means
systems with a structure which is a tree of nested compartments delimited
by a corresponding number of membranes. Specifically, each membrane sep-
arates the inside of a compartment from its outside represented by the region
internal to the compartment associated with its parent node. In other words,
inside of a compartment is the space between its delimiting membranes and
the membranes delimiting its directly inner compartments (i.e., its directed
descendants in the tree structure). Thus, the objects contained in a com-
partment are supposed to be placed into this region and rules associated
with the compartment can be applied only to these specific objects. Such a
tree of nested compartments delimited by membranes is called a membrane
structure.

Membrane structures are represented as usual by means of strings of
matching pairs of square-brackets, with each pair of square-brackets repre-
senting a membrane and each one of them being labeled with a different
value in {1, 2, . . . , n}, for n the number of membranes in the structure. For
instance, the string [ [ [ ]3 ]2 [ [ [ ]6 ]5 ]4 [ ]7 ]1 represents a membrane structure
with seven membranes and seven compartments. Notice that the order of
the membranes placed at same level does not matter. We will use the ex-
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pression “compartment i” (or “membrane i”), with 1 ≤ i ≤ n, to refer to a
certain compartment (or a certain membrane).

A P system is then defined in the following way.

Definition 2.1. A P system is a construct

Π = (O, L, µ, C1, C2, . . . , Cn, R)

where:

• O is a finite alphabet of symbols representing objects;

• L is a finite alphabet of symbols representing labels for the compart-
ments;

• µ is a membrane structure consisting of n ≥ 1 membranes labeled in
an one-to-one manner with values in {1, 2, . . . , n};

• Ci = (li, wi), for each 1 ≤ i ≤ n, is the initial configuration of the
compartment i with li ∈ L and wi ∈ O∗ a finite multiset of objects;

• R is a finite set containing m ≥ 1 rules that are labelled in one-to-one
manner with values in {1, 2, . . . , m} and that are of the form

j : u [ v ]l
kj
→ u′[ v′ ]l

with 1 ≤ j ≤ m, u, v, u′, v′ ∈ V ∗ some finite multisets of objects, l ∈ L

a label for the compartment, and ki a real number.

Thus, a P system is characterised by a finite alphabet O for the ob-
jects placed into the compartments, a finite alphabet L for labelling the
compartments, a membrane structure µ, an initial configuration for each
compartment in the system, and a finite set R containing rules describing
transformations that can occur to the objects placed inside the compart-
ments.

Specifically, the initial configuration of a compartment consists of a label
from the alphabet L and a finite multiset of objects from O represented as
a string in O∗; these objects are those which are initially placed inside that
compartment. The rules R instead are generalized boundary rules where,
with respect to the original definition proposed in [2], transformation can
occur on both sides of the membrane without distinguishing between trans-
formation rules and communication rules. Thus, rules of this form allow us
to capture generic interactions occurring at the level of membranes between
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the internal region and the surrounding region of a given compartment.
Moreover, each rule in R has associated a real constant which is meant to
provide a measure of the “reactivity” of the rule and which, in general, affect
the “mass action law” associated to the rule to be applied in the next step
of evolution.

Here, as opposite to the maximal parallel approach usually considered in
membrane computing, a strategy for the application of the rules is adopted
that makes the system evolve only by means of a rule at a time; that is, in
each step, only one rule is selected to be applied inside a specific compart-
ment, which is the unique one to evolve in that step of computation.

3 Modelling Quorum Sensing in Vibrio fischeri

Bacteria are generally considered to be independent organisms. However it
has been observed that certain bacteria, like the marine bacterium Vibrio
fischeri, exhibit coordinated behaviour which allows an entire population
of bacteria to regulate the expression of certain or specific genes in a co-
ordinated way depending on the size of the population. This cell density
dependent gene regulation system is referred to as Quorum Sensing [13],[5].

This phenomenon was first investigated in the marine bacterium Vibrio
fischeri. This bacterium exists naturally either in a free-living planktonic
state or as a symbiont of certain luminescent squid. The bacteria colonise
specialised light organs in the squid, which cause it to luminesce. Lumi-
nescence in the squid is thought to be involved in the attraction of prey,
camouflage and communication between different individuals. The source
of the luminescence is the bacteria themselves. The bacteria only luminesce
when colonising the light organs and do not emit light when in the free-
living state. The Quorum Sensing System in Vibrio fischeri relies on the
synthesis, accumulation and subsequent sensing of a signal molecule, 3-oxo-
C6-HSL, an N-acyl homoserine lactone or AHL, we will call it OHHL. When
only a small number of bacteria are present these proteins are produced at
a low level. OHHL diffuses out of the bacterial cells and into the surround-
ing environment. At high cell density the signal accumulates in the area
surrounding the bacteria and can also diffuse to the inside of the bacter-
ial cells. The signal is able to interact with the LuxR protein to form the
complex LuxR-OHHL. This complex binds to a region of DNA called the
Lux Box causing the transcription of the luminescence genes, a small clus-
ter of 5 genes, luxCDABE. as well as the transcription of LuxR and OHHL,
which are therefore called autoinducers as they activate their own synthesis.
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In this way, bacteria can effectively communicate each other by responding
to changes in the concentration of signal molecules in their inside and in
the surrounding environment. A comprehensive literature about quorum
sensing in bacteria can be found in [13].

Next, a model for quorum sensing in Vibrio fischeri is obtained by consid-
ering a P system consisting of a number of distinct compartments placed
inside an unique main membrane, which represents the environment, and
where each one of these compartments represents a bacterium and contains
rules describing the reactions involved in the regulation of the luminescence
genes. Compartments representing bacteria interact each other by sending
objects into the environment and receiving some others from it. Specifically,
given a population of m ≥ 1 bacteria, we define the P system Π(m) such
that

Π(m) = (O, {e, b}, µ, C1, C2, . . . , Cm, Cm+1, R)

and where:

• O = {OHHL, LuxR, LuxR-OHHL, LuxBox}∪
∪{LuxBox-LuxR-OHHL},

• µ = [ [ ]1 [ ]2 . . . [ ]m ]m+1,

• Ci = (LuxBox, b), for each 1 ≤ i ≤ m,

• Cm+1 = (λ, e),

• R = Rb ∪ Re with Rb the set of rules to be used inside compartments
labeled by b and Re the set of rules to be used inside the compartment
labeled by e. Each compartment labeled by b represents a bacterium
whereas the unique compartment labeled by e represents the environ-
ment.

Notice that the P system Π(m) is a parametric one as its exact definition
depends on the value m, the number of bacteria in the colony, as well as on
the choice of the real number associated with each rule in R = Rb ∪ Re.

The set Rb contains the following rules.
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An unstressed bacterium produces the signal OHHL and the protein
LuxR at basal rates, very low rates that compensate with the degradation
rates:

1 : [ LuxBox ]b
k1→ [ LuxBox, OHHL ]b,

2 : [ LuxBox ]b
k2→ [ LuxBox, LuxR ]b.

The protein LuxR acts as a receptor and OHHL as its ligand. Both together
form the complex LuxR-OHHL which in turn can dissociate into OHHL and
LuxR again:

3 : [ LuxR, OHHL ]b
k3→ [ LuxR-OHHL ]b,

4 : [ LuxR-OHHL ]b
k4→ [ LuxR, OHHL ]b.

The complex LuxR-OHHL acts as a transcription factor or as a promoter
binding to a region of the bacterium DNA called LuxBox and starting the
transcription of different proteins involved in the production of light. The
complex LuxR-OHHL can also dissociate from the LuxBox:

5 : [ LuxBox, LuxR-OHHL ]b
k5→ [ LuxBox-LuxR-OHHL ]b,

6 : [ LuxBox-LuxR-OHHL ]b
k6→ [ LuxBox, LuxR-OHHL ]b.

The binding of the complex LuxR-OHHL to the LuxBox produces a massive
increase of the production of the signal OHHL and of the protein LuxR. In
this sense OHHL and LuxR are autoinducers:

7 : [ LuxBox-LuxR-OHHL ]b
k7→ [ LuxBox-LuxR-OHHL, OHHL ]b,

8 : [ LuxBox-LuxR-OHHL ]b
k8→ [ LuxBox-LuxR-OHHL, LuxR ]b.

OHHL is a small molecule that diffuses outside the bacterium and so it can
accumulate in the environment:

9 : [ OHHL ]b
k9→ OHHL [ ]b.

Due to the presence of proteases and other chemical substances OHHL,
LuxR and the complex LuxR-OHHL undergo a process of degradation in
the bacterium:

10 : [ OHHL ]b
k10→ [ ]b,

11 : [ LuxR ]b
k11→ [ ]b,

12 : [ LuxR-OHHL ]b
k12→ [ ]b.
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The set Re contains the following rules. When the signal OHHL accu-
mulates in the environment it can diffuse inside the bacteria. OHHL also
undergoes a process of degradation in the environment

13 : OHHL [ ]b
k13→ [ OHHL ]b,

14 : [ OHHL ]e
k14→ [ ]e.

3.1 Simulation Results and Discussion

The quorum sensing model has been implemented using SciLab, a scien-
tific software package for numerical computations providing a powerful open
computing environment for engineering and scientific applications [16].

In order to implement our model we have chosen the following kinetic
constants k1 = 2, k2 = 2, k3 = 9, k4 = 1, k5 = 10, k6 = 2, k7 = 250, k8 =
200, k9 = 1, k10 = 50, k11 = 30, k12 = 15, k13 = 20, k14 = 20. These values
have been set such that the degradation rates (k11, k12, k13, k14) compensate
the basal production of the signal and the protein (k1, k2) and such that the
production rates when the regulatory region is occupied (k7, k8) produce
a massive increase in the transcription of the signal and the protein. In
particular, when this region is occupied, we say the bacterium is quorated.
We have studied the behaviour of the system for populations of different sizes
to examine how bacteria can sense the number of bacteria in the population
and produce light only when the number of individuals is big enough.

First we have considered a population of 300 bacteria. Next we show the
evolution over time of the number of quorated bacteria and the number of
signal (OHHL) in the environment.
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It may be observed that the signal, OHHL, accumulates in the environment
until saturation and then, when this threshold is reached, bacteria are able
to detect that the size of the population is big enough. At the beginning, a
few bacteria get quorated and then they accelerate a process of recruitment
that makes the whole population behave in a coordinated way. There exists
a correlation between the number of signals in the environment and the
number of quorated bacteria such that, when the number of signals in the
environment drops, so does the number of quorated bacteria and when the
signal goes up it produces a recruitment of more bacteria.

Now we show the evolution over time of the average bacterium across
the population of the number of signal (OHHL), protein (LuxR) and the
complex (LuxR-OHHL).
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Note that in the average bacterium there is also a correlation among
the signal OHHL, the protein LuxR and the complex LuxR-OHHL. Besides
the patterns in the evolution of the average number of complexes across the
population and the number of quorated bacteria are similar.

In our approach the behaviour of each individual in the colony can be
tracked. We have taken a sample of two bacteria and have studied the cor-
relation between the amount of signal inside each bacterium (first row) and
the occupation of the LuxBox by the complex (second row) which represents
that the bacterium has been quorated.
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Above it is shown that the number of signal molecules inside the bac-
terium has to exceed a threshold in order to recruit the bacterium. It may
be observed that when the number of molecules is greater than the threshold
the bacterium gets quorated or up-regulated, but when there are less signals
molecules the bacterium switches off the system and goes down-regulated.

We can also study how rules are applied across the evolution of the sys-
tem. For instance, we can show the evolution of the number of applications
of the rule representing the basal production of the signal OHHL. and the
number of applications of the rules representing the production of the signal
OHHL after the binding of the complex to the LuxBox.
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This can be compared with the number of applications of the rules repre-
senting the production of the signal OHHL after the binding of the complex
to the LuxBox. In this way, we can show how at the beginning the basal
production rule is the most applied rule while the other one is seldom ap-
plied. But then, as a result of the recruitment process the bacteria sense
the size of the population and they behave in a coordinate way applying
massively the third rule. So the system moves from a down-regulated state
to an up-regulated one where the bacteria are luminescence. Specifically,
this can be clearly seen if you compare the last graph above with the next
one. Two similar graphs can be obtained for the rules producing the protein
LuxR
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Finally, in order to study how bacteria can sense the number of individ-
uals in the colony and get quorated only when the size of the colony is big
enough, we have examined the behaviour of a population of only 10 bacteria.
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For the case of only 10 bacteria the recruitment process does not take
place. Only one of the bacteria guessed wrong the size of the population and
got up-regulated but then it switches off after sensing that the signal does
not accumulate in the environment. The average number of molecules shows
no pattern which means that the colony is not coordinating its behaviour.

Below it is depicted the behaviour of two bacteria in the population; one
that never got quorated and the one that got quorated. Observe that this
bacterium got quorated because the number of signal inside it exceeded the
threshold of 7 signals.
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Finally, observe that in this situation the system remains in a down-
regulated state only applying the rules representing the basal productions
while the rules associated with the production of light are seldom applied.
This is illustrated in the next two graphs, which report the number of ap-
plication of the rules producing the signal OHHL.
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Summing up our simulations shows that Vibrio fischeri has a quorum
sensing System where a single bacterium can guess that the size of the
population is big enough and start to produce light. Then this bacterium
starts to massively produce signals, if the signal does not accumulate in
the environment meaning that the guess was wrong it switches off. On
the other hand if the signal does accumulate in the environment meaning
that the number of bacteria in the colony is big a recruitment process takes
place that makes the whole population of bacteria to luminescence. These
results agree well with in vitro experiments and with results obtained using
differential equations [5].

4 Implementation of the P System Model

We implemented the P system model of Definition 2.1 by following the ap-
proach proposed in [8] that is based on an initial specification in SBML of the
model and a subsequent automatic generation of the executable code. In this
section, we describe the data structures necessary to support the execution
of our variant of P systems and we provide some details about the implemen-
tation of the procedure for the application of the rules. The language chosen
is Scilab but similar considerations may apply to other commonly-used pro-
gramming languages, such as C, Java, MatLab. Moreover, our approach
appears to be fairly independent from the particular choice of P system
variant. An SBML specification of the P system modelling quorum sensing
in Vibrio fischeri is instead reported in appendix.

The data structure used to represent the different components of P sys-
tems are the following:
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• Rules:

Recall that we are using rules of the form:

j : u [ v ]l
kj
→ u′[ v′ ]l

Which will be represented as:

Comp father(l) l kj multisets

with multisets = length(u) u length(v) v length(u′) u′ length(v′) v′ and
where: Comp represents the compartment where the rule j can be applied,
father(l) represents the father of the membrane with label l in the mem-
brane structure, l is the label of the compartment involved in the rule and
kj is the kinetic constant. length(u), length(v), length(u′) and length(v′)
tell us the size of u, v, u′ and v′ respectively for the rule j. And u, v, u′ and
v′ are the string of objects representing the reactants and products of the
rule j.

• Compartments:

Each compartment is represented by:

label n-copies multiplicity-of -o1 · · · multiplicity-of -on

The first component represents the label associated with the compartment,
the second component is the number of instances of the compartment in the
initial configuration; the content is instead represented by reporting for each
object oi ∈ O its corresponding multiplicity inside that compartment.

• Configurations of the system:

A configuration of the system is made up of compartments; each com-
partment is represented:

identifier label multiplicity-of -o1 · · · multiplicity-of -on

identifier is an index associated in a one-to-one manner with each com-
partment, label is the label of the compartment and the last n components
of the row are the multiplicities of the objects in the compartment in the
current configuration of the system.

In what follows we briefly describe the implementation using the data
structure specify above:
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1. Initialisation

• Set the time of the simulation t = 0 and the number of applied
rules r = 0.

• Load the rules.

• Load the initial configuration.

• Create a stack of rules to be apply according to the semantics of
the application of the rules.

2. Iteration

• Take the first rule in the stack of rules to be applied.

• Move to the next configuration of the system by applying the rule,
that is, increase the multiplicity of the products (right hand side)
and decrease the multiplicity of the reactants (left hand side).

• Update the time of the simulation, the number of applied rules
and the stack of rules to be applied.

3. Termination

• Terminate the simulation when time of the simulation t reaches
or exceeds a preset maximal time of simulation or alternatively
when the number of applied rules r reaches or exceeds a preset
maximal number of rules applications.

5 Conclusions and Future Work

There is a growing interest in membrane computing in using P systems for
modelling biological systems. This often requires the introduction into the
model of quantitative aspects featuring the “reality” of the biological phe-
nomenon to be modelled which are not usually considered in the abstract
model of P systems. In this paper, these quantitative aspects have been
considered for P systems by associating to each rule a real number (i.e., a
kinetic constant), and by defining a mass law action strategy for the applica-
tion of the rules. This approach has been used to model the quorum sensing
process in a colony of Vibrio fischeri bacteria by obtaining some simulation
results which show the transition from a population of down-regulated cells
to a population of up-regulated cells.
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Our interest for the future is in developing a flexible software platform
for running in silico experiments that integrates tools for the specification,
execution and verification/validation of P system models. The details of
the implementation provided in this paper can be viewed as a first step in
this direction. A model checking approach is now being investigated that is
based on Maude term rewriting tool [1]. In this framework, a central issue
is the integration of the specification at individual level (e.g., a bacterium)
with the specification at population level (e.g., the colony) such us to allow
us to model more complex and larger biological systems. In this respect,
a number of case studies need to be identified together with appropriate
simulation/validation/verification techniques.
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Curtea de Argeş, Romania, (2002). Lecture Notes in Computer Science
2597, Springer-Verlag, Berlin, Heidelberg, New York (2003)..
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A An SBML Specification

Consider the P system Π(m), with m = 100, defined in Section 3.We start by
specifying the structure of the system by listing the compartments present
in the system and the relationships of inclusion between them.

<listOfCompartments>

<compartment id="e" />

<compartment id="b" outside="b"/>

</listOfCompartments>

There are two different “types” of compartments: compartments labeled
by e and compartment labeled by b; all the compartments labeled by b,
the bacteria, are included in a compartment with label e, the environment.
Specifically, this is just a shorthand for a membrane structure consisting of a
number of membranes, each one associated with a compartment labeled by b,
contained inside an unique main membrane associated with a compartment
labeled by e. The actual number of bacteria in the system is specified as a
parameter of the system together with the constants ki, 1 ≤ i ≤ 14.

<listOfParameters>

<parameter id="k1" value="2’’constant="true"/>

<parameter id="k2" value="2" constant="ture"/>

<parameter id="k3" value="9" constant="true"/>

<parameter id="k4" value="1" constant="true"/>

<parameter id="k5" value="10" constant="true"/>

<parameter id="k6" value="2" constant="true"/>

<parameter id="k7" value="250" constant="true"/>

<parameter id="k8" value="200" constant="true"/>

<parameter id="k9" value="1" constant="true"/>

<parameter id="k10" value="50" constant="true"/>

<parameter id="k11" value="30" constant="true"/>

<parameter id="k12" value="15" constant="true"/>

<parameter id="k13" value="20" constant="true"/>

<parameter id="k14" value="20" constant="true"/>

<parameter id="m" value="100" constant="true"/>

</listOfParameters>

Next, we specify the initial distribution of objects inside the system by listing
out the species and their initial concentration inside each compartment.

<listOfSpecies>
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<specie id="OHHL_e"

initialConcentration="0" compartment="e" />

<specie id="OHHL_b"

initialConcentration="0" compartment="b" />

<specie id="LuxR_b"

initialConcentration="0" compartment="b" />

<specie id="LuxR_OHHL_b"

initialConcentration="0" compartment="b" />

<specie id="Lux_Box_b"

initialConcentration="1" compartment="b" />

<specie id="Lux_Box_LuxR_OHHL_b"

initialConcentration="0" compartment="b" />

</listOfSpecies>

The objects that can be contained inside the environment are labeled by e

whereas the objects that can appear inside a bacterium are labeled by b.
Finally we specify the rules as a list of SBML reactions. We just report

here two of them as an example.

<reaction name="Reaction1" reversible="false">

<listOfReactants>

<specieReference specie="Lux_Box_b" />

</listOfReactants>

<listOfProducts>

<specieReference specie="Lux_Box_b" />

<specieReference specie="OHHL_b" />

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci>k1</ci>

<ci>Lux_Box_b</ci>

</apply>

</math>

</kineticLaw>

</reaction>

<reaction name="Reaction9" reversible="false">

<listOfReactants>

<specieReference specie="OHHL_b" />
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</listOfReactants>

<listOfProducts>

<specieReference specie="OHHL_e" />

</listOfProducts>

<kineticLaw>

<math xmlns="http://www.w3.org/1998/Math/MathML">

<apply>

<times/>

<ci>k9</ci>

<ci>OHHL_b</ci>

</apply>

</math>

</kineticLaw>

</reaction>

The movement of objects is specified by changing the labels of the products
according to the labels of the reactants.

213



P Systems and the Modeling

of Biochemical Oscillations

Luca BIANCO, Federico FONTANA, Vincenzo MANCA

University of Verona

Department of Computer Science

15 strada Le Grazie - 37134 Verona, Italy

E-mail: {fontana,bianco,manca}@sci.univr.it

Abstract

In this paper we discuss the role that P systems have in the descrip-
tion of oscillatory biochemical processes once the membrane system
evolution depends on the process parameters. This discussion focuses
on a specific application example, meanwhile it includes a general de-
finition of oscillation based on which we want to explore the meaning
of oscillatory behaviors more deeply. The symbolic-based approach to
biochemical processes such as that provided by P systems has recently
resulted in insightful model descriptions. For this reason we expect it
to turn useful in computational systems biology, whose models must
deal with the twofold nature of the cell that is a continuous biochemical
reactor ruled by discrete information contained in the DNA.

1 Introduction

Originally conceived to assess the expressive power of grammars and to clas-
sify formal languages [20], rewriting systems more recently have been applied
to the analysis of biological structures—for instance, they have demonstrated
capability to represent the development of living species such as the growing
of some simple organisms [12, 19]. Inspired by these investigations, P sys-
tems [16, 17, 15] have been concerned particularly with the dynamic aspect
of rewriting and its application to biology and biochemistry [22, 1]. Dy-
namic rewriting systems have led to alternative representations of several
biological phenomena [21] and to exploratory models of known pathological
processes [13, 18].

214



By our side, we have recently presented a symbolic rewriting algorithm
[2] in which production rules are given along with reaction maps, each one
specifying the “strength” of a rule in modifying a population of symbols
(denoting concentrations of chemical reactants, individuals, molecules, and
so on) in the system. This algorithm has successfully simulated some well-
known biochemical models: the Lotka-Volterra population dynamics [24],
and the Brusselator model of the BZ chemical reaction [8]. These early
results, along with the inherent advantages that rewriting systems offer in
terms of modeling flexibility, ask for doing further tests on more elaborate
biochemical models such as those presented in this paper.

After a brief description of the algorithm, we show results obtained sim-
ulating an extensive model of circadian rhythms in Drosophila melanogaster
[11], whose clarity and richness of quantitative data allows to make effective
comparisons between the numerical solutions of the differential equations
found in that model and the solutions coming out from our rewriting sys-
tem. Although still partial in front of the huge amount of simulations of
circadian rhythms that have been carried out through differential equation
system models, these results, along with those achieved in the simulation of
the aforementioned dynamics, confirm the effectiveness of our approach in
modeling elaborate biochemical behaviors such as those emerging in circa-
dian rhythms.

Inspired by the flexibility and power of this model we have started think-
ing about how to investigate on the meaning of oscillation taken as a phe-
nomenon per se. We have in fact discovered that no clear definition of this
phenomenon exists. This lack of a definition reflects an inherent difficulty to
characterize oscillation in formal (and consequently quantitative) terms, as
opposite to periodicity for which a huge amount of theoretical results have
been found, the Fourier analysis being of top of everything [9].

Unlike ideal oscillatory systems, biochemical processes never show exact
periodic behavior [5]. In the meantime it is crucial to find if, and how,
they oscillate. Gaining insight on the ultimate meaning of oscillation may
be useful to define formal tools that help giving an answer to these two
questions.

2 Algorithm Quick Overview

A detailed description of the algorithm we use to control the evolution of a
system has been previously given [2], furthermore a comprehensive formal-
ization of this algorithm in specific P system-based constructs is ongoing.
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Here, we briefly recall the concepts that are necessary to set up a represen-
tation of the circadian model.

Let a single-membrane system be made of a set R = {r1, . . . , rk} of
rewriting rules working over strings on an alphabet A = {X, Y, . . .} contain-
ing k symbols:

r1 : αr1 → βr1 , r2 : αr2 → βr2 , . . . rk : αrk
→ βrk

, (1)

in which αρ and βρ are strings respectively denoting consumed and produced
objects for each rule ρ ∈ R.

Let the state of our system be a k-tuple 〈q(X), q(Y ), . . .〉 containing the
number of objects X, Y, . . . in the system at every temporal step (here we
will make every step correspond to a system transition, though in general
this is not necessarily true). To every rule we associate a corresponding
reaction map Fr1 , Fr2 , . . . , Frk

, i.e., a real function of the state of the system
affecting the rule in the way we explain below.

By denoting with α(i) the ith symbol in a string α, with |α| the length
of the same string, and with |α|X the number of occurrences of the symbol
X in α, then we define the reaction weight Wr

(
αr(i)

)
for r : αr → βr with

respect to the symbol αr(i):

Wr

(
αr(i)

)
=

Fr
∑

ρ∈R |αr(i)∈αρ

Fρ

, i = 1, . . . , |αr| . (2)

Note that at the denominator we sum only over the rules containing the
symbol αr(i) in their left part.

If we, at this point, consider that every rule r cannot consume more
than the amount of the symbol (called also reactant) whose availability in
the system is lowest, then for every rule we have to minimize among all
reactants—each one taken with its own multiplicity in αr—participating to
the reaction. In this way for every symbol we find the population a rule
applies to during a transition of the system:

Λr = min
i=1,...,|αr|

{

Wr

(
αr(i)

)q
(
αr(i)

)

∣
∣αr

∣
∣
αr(i)

}

. (3)

In the end for every symbol X ∈ A the change in the number of objects due
to r is equal to |βr|X − |αr|X times Λr:

∆r(X) = Λr (|βr|X − |αr|X) . (4)
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A detailed explanation of the algorithm structure, in particular the way
it works with discrete populations rather than concentrations, and its ex-
tension to multiple reaction environments made using membrane systems,
is given in [2].

3 Application to Circadian Rhythms

We have applied the algorithm discussed in Section 2 to the simulation of a
known model of circadian cycles (or rhythms) in Drosophila melanogaster,
involving the oscillation of the Period (PER) and Timeless (TIM) proteins
[4]. Existing in every living organism, circadian rhythms are biochemical
cycles evoked by variations in the expression level of specific genes. Such
variations give rise to a surprisingly robust biological clock, synchronized
with daylight and performing a complete cycle about every 24 hours.

According to this model the genes involved in the process code for PER
and TIM proteins, meanwhile their expression is inhibited by the presence
of a PER-TIM protein complex, in its own made of PER and TIM. This
complex forms in the cytosol under certain conditions, then migrates inside
the nucleus where it behaves as a PER and TIM suppressor. Taken together,
gene expression and suppression result in a negative feedback network of
signal transduction that has been formalized by a non-trivial system made
of several nonlinear differential equations [5, 11].

A graphical scheme of the model is depicted in Figure 1. Details of its
functioning can be found in [11]. At least it is interesting to note that the
formation of the PER-TIM complex is regulated by the degradation induced
on mature TIM (denoted as T2) by light. Though, in our study we do not
include the effects of light.

In spite of its complexity, the PER and TIM model results in emergent
oscillatory concentrations of the biochemical elements considered. The tem-
poral evolution of such concentrations exhibits clear mutual relationships
between concentration onsets and decays. These relationships disclose the
causality existing between gene expression and the consequent change in
concentration of the transcribed mRNA and, hence, of the coded proteins.

Symbolic rewriting allows to describe this model by means of a set of
rules, avoiding the classical approach based on differential equations. By
looking at Figure 1 it is not difficult to figure out the following rewriting
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Figure 1: Model for circadian rhythms in Drosophila (from Leloup and
Goldbeter [11]).

rules:

r1 : λ → MP , r2 : λ → MT ,

r3 : MP → λ, r4 : MT → λ,

r5 : MP → MP P0, r6 : MP → MT T0,

r7 : P0 → P1, r8 : T0 → T1,

r9 : P1 → P0, r10 : T1 → T0,

r11 : P0 → λ, r12 : T0 → λ,

r13 : P1 → λ, r14 : T1 → λ,

r15 : P1 → P2, r16 : T1 → T2,

r17 : P2 → P1, r18 : T2 → T1,

r19 : P2 → λ, r20 : T2 → λ,

r21 : P2T2 → C, r22 : C → P2T2,

r23 : C → CN , r24 : CN → C,

r25 : C → λ, r26 : CN → λ.

(5)

In these rules the symbol λ as usual represents the null string. In this way
rules in the form λ → X are production rules, conversely rules in the form
X → λ are degradation rules.
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Furthermore, for each element X that is present in the system we in-
troduce a transparent rule in the form X → X. These rules do not cause
any change in the system. Rather, they are needed to model elements that
do not take part in a reaction (for example, reactants that are spatially far
from each other) [2].

Note that, besides the radical differences existing between the differential
and the rewriting system, our model differs from the continuous one espe-
cially for what concerns the formation of the PER-TIM complex—expressed
in our system by rule r21. This rule is, in fact, cooperative and in this case
we use the limiter Λr21, discussed in Section 2, in order to calculate the
variation of P2, T2, and C.

As we have previously seen each rule is coupled with a reaction map.
According to the formulas proposed in the original model, we have come up
with the following maps:

Fr1 = vsP
Kn

IP

Kn
1P + Cn

N
, Fr2 = vsT

Kn
IT

Kn
1T + Cn

N
,

Fr3 = vmP
KmP + MP

+ Kd, Fr4 = vmT
KmT + MT

+ Kd,

Fr5 = KsP , Fr6 = KsT ,

Fr7 = v1P
K1P + P0

, Fr8 = v1T
K1T + T0

,

Fr9 = v2P
K2P + P1

, Fr10 = v2T
K2T + T1

,

Fr11 = Kd, Fr12 = Kd,

Fr13 = Kd, Fr14 = Kd,

Fr15 = v3P
K3P + P1

, Fr16 = v3T
K3T + T1

,

Fr17 = v4P
K4P + P2

, Fr18 = v4T
K4T + T2

,

Fr19 = Kd + vdT
KdT + T2

, Fr20 = Kd + vdP
KdP + P2

,

Fr21 = K3, Fr22 = K4,

Fr23 = K1, Fr24 = K2,

Fr25 = KdC , Fr26 = KdN .

(6)

Moreover, in agreement with [11], we choose the following set of para-
meters (reported here dimensionless): vsP = vsT = 1, vmP = vmT = 0.7,
KmP = KmT = 0.2, KsP = KsT = 0.9, vdP = vdT = 2, K1 = 0.6,
K2 = 0.2, K3 = 0.5, K4 = 0.2, KIP = KIT = 1, KdP = KdT = 0.2,
n = 4 K1P = K1T = K2P = K2T = K3P = K3T = K4P = K4T = 2,
Kd = KdC = KdN = 0.01, v1P = v1T = v1P = v1T = 8, v2P = v2T = v4P =

219



v4T = 1. Note that the different interpretation given by r21 to the formation
of the PER-TIM compound, compared to that formalized by a numerical
equation (typically as the product of two reactants weighted by a proper
kinetic constant rate), suggested to employ different values for the variables
K3 and K4 as opposite to the values chosen in the continuous model, re-
spectively set to 1.2 and 0.6. In addition to that we have coupled a constant
reaction map Fr = 1 to every transparent rule r.

Figure 2 (above) shows the salient result we have obtained by simulating
circadian rhythms using the membrane model. Plots figure out the state
along 130 transitions of the system, i.e., every plot describes the evolution
along discrete time of the corresponding element in the k-tuple forming the
state. It can be seen that a stable oscillatory dynamics is achieved using the
symbolic approach.

Such plots are compared to the numerical solution of the corresponding
differential equation model, reported in Figure 2 (below). It can be noted
that the relative temporal shifts between concentration peaks are preserved
by our simulation. This means that comparable dynamic behaviors exist for
the two models. In particular, the membrane system correctly models the
sequence of concentration peaks of the phosphorilating PER protein (P0, P1

and P2), followed by the peak in the concentration of the cytosolic PER-
TIM complex C and, finally, by its nuclear counterpart CN . This dynamic
behavior corresponds to results obtained by Leloup and Goldbeter, which,
in their turn, match with experimental observations [25].

4 Toward a Characterization of Oscillations

For what we have seen in the previous example, oscillation is perhaps the
most important emergent property featured by a biochemical system. In-
vestigating its onsets, temporal extension, robustness against parameter
changes, characteristic evolution along time, deviation from an ideal pe-
riodic track, is crucial for extracting many properties inherently present in
the system structure. These properties range from the topology of the signal
transduction network underlying the communication flows that are active in
the system, to its distinctive parameters which determine the modalities by
which this evolution develops along time.

Curiously, oscillation is not yet well defined. On one hand this depends
on the generality of the phenomenon. Oscillation in fact includes concepts
such as quasi-periodicity, recurrence, periodic chaotic attraction [7]. On
the other hand it is precisely that generality that most biochemical systems

220



20 40 60 80 100 120

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

STEPS

C
O

N
C

E
N

T
R

A
T

IO
N

CN

P2

P1

P0

C

Figure 2: Above: plots for CN , P2, P1, P0, and C obtained using the
metabolic algorithm (elements ordered starting from the highest to the low-
est maximum peak value, as in the legend at the top-right corner). Below:
plots for CN , P2, P1, P0, and C (from Leloup and Goldbeter [11]).

exhibit: in some sense, oscillation is a weak but, at the same time, one of
the strongest and most distinctive properties shown by nonlinear systems.
It is with these questions in mind that we try to formalize oscillation.

Let us consider a state transition dynamics S = (S, q), in which q maps
states into sets of states: q : S −→ P(S) [13, 14]. In S, let us consider a
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local trajectory T made of states X0, X1, . . . , Xn such that Xi is obtained
by repeatedly applying mi times the transition function to Xi−1 for each
i = 1, . . . , m: (note that we conveniently extend q to work over sets, i.e.,
q(X) =

⋃

s∈X q(s))

T : X0
q(m1)

−→ X1
q(m2)

−→ · · ·
q(mi)

−→ Xi
q(mi+1)

−→ · · ·
q(mn−1)

−→ Xn−1
q(mn)

−→ Xn , (7)

with
Xi ⊆ q(mi)(Xi−1) =

(
q ◦ q ◦ · · · ◦ q
︸ ︷︷ ︸

mi times

)
(Xi−1), i = 1, 2, . . . (8)

Definition 4.1. A local trajectory T in S oscillates around x0 with respect
to a (state observation) function µ : S −→ R if T exists such that

• µ(Xi) ≥ x0 for i even (odd)

• µ(Xi) < x0 for i odd (even).

Clearly, this definition does not prevent from several oscillations to exist
in one single sequence. In particular it does not exclude that inner oscil-
lations are present in between adjacent states in T . For instance, it may
be likely that T oscillates also around x1, and that this oscillation appears
within states traced by the local trajectory between Xk and Xk−1. And so
on.

Whether this definition can form an initial basis to a future theoretical
development, enriching the wide amount of literature already existing on
Fourier and, more in general, spectral analysis, will be a matter of forth-
coming research. We are now working on this definition in an attempt to
find a more insightful interpretation of the oscillation per se.

5 Concluding Remarks

Our experience with the representation of several biochemical phenomena,
including the circadian model we have presented here, suggests that mem-
brane systems are promising candidates for providing accurate models of
such phenomena provided their versatility in dealing with discrete (that is,
symbolic) representations of the information and its transmission along pe-
culiar communication channels such as cell ports and signal transduction
networks.

This first attempt of symbolic modeling of the circadian cycle in Dro-
sophila yet has not considered the effect of light on the degradation of the
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phosphorilated TIM. We want to include this effect in a forthcoming session
of further tests of our algorithm, still relying on the well-documented figures
proposed in [11]. Even more interesting will be comparing our symbolic
algorithm to some well-known stochastic simulation methods that are used
when the molecules involved in a biochemical process are few, in a way that
the deterministic approach turns out to be no longer suitable. Surprising
analogies exist in fact between the symbolic and the stochastic approach
to the simulation of circadian rhythms when our algorithm is set to work
over populations rather than concentrations, i.e., over discrete rather than
continuous domains [6, 3].

In parallel, an analysis focusing on the ultimate meaning of the behaviors
we observe in a dynamical system is needed since, if successful, this analysis
will become a useful way to extract important structural information from
a system, even independently of its physical (viz. biological for us) nature:
such kind of analyses have already provided powerful conceptual frameworks
based on control theory [23] that have found fertile applications, for instance,
in the identification of “black-box” systems—as biological systems still are,
at least to some extent [10].

A possible roadmap to follow along this research perhaps starts from
properly defining basic dynamic concepts, oscillation in primis for its major
importance in any dynamic phenomenon. We will try to move along this
roadmap in the next few months.
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1 Introduction

A fundamental aspect in the investigation of computation systems, and es-
pecially of P systems, is the use of many translation methods in order to
pass from a certain kind of systems into another one. In this way it is possi-
ble to perform all computations in the translated system, rather than in the
original one. For example, many computational universality and equivalence
results on P systems [6, 5, 8] are based on such a technique.

The aim of this extended abstract is to define a notion of computational
encoding, which allows us to extend to complex membrane structures the
metabolic algorithm [2, 4, 3] that was developed for basic membrane sys-
tems and has proved to be very useful in the simulation of many biological
phenomena. In this preliminary work, we give fundamental definitions and
the main framework of this approach.

Our notion of computational encoding resembles, in some aspects, the
notion of bisimulation developed in concurrency theory [7]. However, com-
putational encoding does not intend to cope with the operational semantics
of systems or processes “at the same level”, but rather it deals with the
reduction of a computation from a “machine” to another one at a different
(simpler or more complex) descriptional level. In fact, this notion of encod-
ing is related to the interpretation of a computational system into another
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one. This aspect is apparent in Figure 1, if we compare the upper com-
putation with the lower one, where in general one step at the upper level
corresponds to many steps at the lower level. The ratio between the com-
putation lengths is a parameter related to the different descriptional levels
of the two corresponding transitional systems.

2 Transitional Systems

Let us start introducing formally the notion of Transitional system:

Definition 2.1 A transitional system is a 7-tuple Π = (A, C, R, σ,⇒, G, F )
where

(i) A is the alphabet;

(ii) C is a set of strings defined over A, representing configurations of the
system;

(iii) R is a set of rewriting rules, defined over C;

(iv) σ is the transitional or program function, where ∀µ ∈ C, σ(µ) is a
set of sets of rules, that is, every element Q ∈ σ(µ) contains the rules
that are simultaneously applicable to the configuration µ ∈ C;

(v) ⇒ is the transition, a ternary relation C × ℘(R) × C. Given two
configurations µ, µ′ ∈ C and a subset of rules Q ∈ σ(µ), we denote by
µ ⇒Q µ′ the transition from µ to µ′ by means of the application of the
set of rules Q;

(vi) G is a set of sequences of transitions and its elements are called com-
putations. Given an initial configuration µ1, a computation Γ ∈ G is
denoted by:

Γ = µ1 ⇒Q1
µ2 ⇒Q2

· · · ⇒Qn−1
µn

where for each i:

(a) µi ∈ C,

(b) σ(µi) = Qi,

(c) µi ⇒Qi
µi+1

(d) µn ∈ F .

(vii) F ⊆ C is the set of final configurations;
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Note that if the set of initial configurations is fully specified, then G
is completely defined by the other elements of the transitional system. As
it is apparent from the notation, the computation Γ = µ1 ⇒Q1

µ2 ⇒Q2

· · · ⇒Qn−1
µn is basically a sequence of transitions between configurations,

originated from the initial configuration µ1 by means of the application of
the rules of the system.

It is useful to denote with Γ(i) the ith configuration of the computation
Γ and with lΓ = |Γ| the length of the computation Γ.

In the following, µ ⇒∗Q µ′ is a compact representation meaning the
existence of a computation µ ⇒Q1

µ2 ⇒Q2
· · · ⇒Qn−1

µn for some n ∈ N

where, for every 1 ≤ i ≤ n, Qi ⊆ Q.

3 Computational Encodings

We introduce two distinct notions of computational encodings between dif-
ferent transitional systems.

Definition 3.1 A computational encoding E from a transitional sys-
tem Π = (A, C, R, σ,⇒, G, F ) to another transitional system Π′ =
(A′, C ′, R′, σ′,⇒′, G′, F ′) is a triple of functions E = (γconf , γrule, γcomp)
with:

• γconf : C → C ′ is an injective function used to encode configurations
of Π into configurations of Π′,

• γrule : R → ℘(R′) is an injective function encoding rules of Π into a
set of rules of Π′, where ℘(R′) is the power set of R′,

• γcomp : G → G′ is an injective function used to encode computations
of Π into computations of Π′.

in which, for every Γ ∈ G, the following conditions are satisfied:

(i) γconf (Γ(1)) = γcomp(Γ)(1)

(ii) γconf (Γ(lΓ)) = γcomp(Γ)(lΓ)

Given a computational encoding E that encodes a transitional system Π
into another one Π′, we write Π′ = E(Π).

It is interesting to point out that, due to the injectivity of γconf , a mirror
principle holds. In fact, starting from an initial configuration µ of Π, we can
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encode it in µ′ = γconf (µ) of E(Π) and in this encoded transitional system we
can execute the computation Γ′ until we reach its last configuration Γ′(lΓ′).
After this, we can obtain the final configuration Γ(lΓ) = γ−1

conf (Γ′(lΓ′)) of the
computation Γ in the transitional system Π. The mirror principle becomes
interesting when we can encode a transitional system into another one, that
is more efficient, according to some computational perspective.

Let us introduce a more strict notion of encoding, in which we require a
step-by-step correspondence between configurations of a transitional system
Π and their corresponding configurations in E(Π):

Definition 3.2 A computational encoding E = (γcomp, γconf , γrule) from
a transitional system Π = (A, C, R, σ,⇒, G, F ) to another one Π′ =
(A′, C ′, R′, σ′,⇒′, G′, F ′) is strict (or 1-1 step) if the step commutativity
holds for every Γ ∈ G:

(i) γcomp(Γ)(i) = γconf (Γ(i)), ∀ i, 1 ≤ i ≤ lΓ

(ii) Γ(i) ⇒Q Γ(i + 1) ⇔ γconf (Γ(i)) ⇒′

γrule(Q) γconf (Γ(i + 1))

Note that, when a computational encoding E is strict, γcomp is com-

pletely determined by the couple (γconf , γrule).

Γ = µ1 ⇒Q1
µ2 ⇒Q2

· · · ⇒Qn−1
µn

γcomp γconf

Γ
′
= µ′

1 ⇒
′
∗Q′

1
µ′

2 ⇒
′
∗Q′

2
· · · ⇒′

∗Q′
n−1

µ′
n

γ−1
confγconfγrule

Figure 1: Schematic representation of a computational encoding.

Figure 1 depicts a schematic representation of a computational encoding.
The three encoding functions (γconf , γrule, γcomp) are represented as arrows
which connect elements of the computation Γ to the corresponding ones in
computation Γ′. In the case of strict encoding the relationship between ele-
ments of Γ and the corresponding ones in Γ′ can be extended to all elements
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of computations. This means that in the previous picture we have to remove
the symbols * from rules and add arrows going from all up configurations
and rules to the corresponding elements on the lower path.

4 Encoding n-PBR Systems into 0-PBR Systems

The definitions of transitional systems and of computational encoding, ex-
pressed in previous sections, allow us to use the general schema of Figure 2 to
compare the computational dynamics of different systems. In fact, starting
from two distinct systems S1 and S2 of different nature, we can represent
them in terms of transitional systems (respectively Π1 and Π2) and then
compare their dynamics in the common and homogeneous environment of
the transitional systems.

Π1S1

Π2S2

Figure 2: General framework for systems encodings.

Now we apply a similar schema (refer to Figure 3) in order to determinate
the dynamics of an n-PBR system by means of a 0-PBR system. We have
defined the metabolic algorithm [2, 4, 3], only in the case of 0-PBR systems,
as a method to compute the dynamics of many interesting biological phe-
nomena. Now we can extend its applicabily to the case of n-PBR systems
(i.e. PBR systems with n > 0 membranes) by using a strict computational
encoding.

PBR Systems [4, 3] are an extension and generalization of PB systems
[1]. They introduce reaction maps needed to describe their time-varying
dynamics and generalize PB Systems rules in such a way to obtain forms
allowing us to perform an easy translation from multi-membrane (n-PBR)
to zero-membrane (0-PBR) systems.

A n-PBR system (i.e., a PBR system with n membranes) is

Π = (A, µ0, R, F, E) (1)
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where:

• A is the alphabet of symbols;

• µ0, is the initial configuration, a string in which alphabet symbols con-
tained in n nested parentheses, labelled 0, . . . , n−1, denote the objects
contained in corresponding membranes. For instance, the configura-
tion [1a[2bc]2[3d]3]1, where a, b, c, d ∈ A, says a belongs to membrane
1, bc to membrane 2, and d to membrane 3, moreover that membrane
1 contains membranes 2 and 3.

• R is a finite set of rules of the following three possible forms, with
α, β, δ, γ ∈ A∗:

(a) [
h
[
j
α[

i
β → [

h
[
j
δ[

i
γ with 1 ≤ j, i ≤ n−1 and 0 ≤ h ≤ n−1, telling

that α is transformed into δ in membrane j and β is transformed
into γ in membrane i, moreover that membrane i is contained
into membrane j and they are both placed inside membrane h;

(b) [0α[
i
β → [0δ[ iγ with 1 ≤ i ≤ n − 1, telling that α is trans-

formed into δ in membrane 0 (e.g., the skin membrane) and β is
transformed into γ in membrane i, moreover that membrane i is
contained in the skin membrane;

(c) [0β → [0αβ, telling that α is created inside the skin membrane
in presence of β.

Note that [
i
α[

j
β means that α is a substring of the string representing

a multiset of objects contained in membrane i, which in turn contains
membrane j comprising β.

• F is a finite set of functions called reaction maps, each associated to
a rule in a one-to-one manner;

• E is the environment, a set of rules of the type (c).

Note that when n = 0 there are no membranes in the system. In this
case a configuration is simply a string over the alphabet A (i.e., µ = γ),
rules of type (a) and (b) have the form α → β, while rules of type (c) have
the form β → αβ, with α, β, γ ∈ A∗.

We refer the reader to [4, 3] for more details on reaction maps, their
relationship with rules and for an accurate description on how these elements
are used by the metabolic algorithm.
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The encoding strategy from n-PBR into 0-PBR systems is made of two
parts: the former managing configurations, the latter dealing with rules.

The following set of rewriting rules defines an encoding γconf of n-PBR
configurations into 0-PBR configurations:

[
i
]
i

→ λ

[
i
X → Xi[ i

[
j
Xi → Xj,i[j

[
h
Xj,i → Xj,i[h

X0 → X0,0

(2)

in which X ∈ A, 0 ≤ i, j, h ≤ n − 1 with i 6= j 6= h. When these rules are
applied to configurations of the n-PBR system they provide configurations of
the 0-PBR system. The idea behind this encoding is to get rid of membranes,
by indexing objects with the identifiers of membranes containing them. To
keep track of the whole membrane structure it is sufficient to mark every
object with the label j of the membrane containing it in combination with
the label i of the immediately outer membrane. We encode an object X

within the skin membrane (that is conventionally labeled with 0) as X0,0.
Before proceeding any further, we see an encoding example for the fol-

lowing configuration of a 3 membrane system:

[0 A [1 BC]1 [2 A ]2 B ]0

that, according to rules (2), applied in a maximal parallel way, originate the
following sequence of strings:

[0 A [1 BC ]1[2 A ]2 B ]0 → A0 [0 B1 [1 C ]1 A2 [2]2 B ]0
→ A0,0 [0 B1C1 [1]1 A2B ]0 → A0,0 B0,1 [0 C1A2B ]0
→ A0,0B0,1C0,1[0 A2B ]0 → A0,0B0,1C0,1A0,2 [0 B ]0
→ A0,0B0,1C0,1A0,2B0 [0]0 → A0,0B0,1C0,1A0,2B0,0

(3)

where only the first and the last strings represent admissible configurations,
respectively for a 3-PBR system and for a 0-PBR system.

The second part of the encoding deals with metarules which establish
how to transform n-PBR rules into 0-PBR rules. As defined in (1), an
n-PBR System has three types of rules. So, in the 0-PBR system:

(i) rules of type (a) must be substituted by rules in the form αh,jβj,i →
δh,jγj,i;

(ii) rules of type (b) must be substituted by rules in the form α0,0β0,i →
δ0,0γ0,i;
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(iii) rules of type (c) must be substituted with rules in the form β0,0 →
α0,0β0,0.

To summarize, the encoding of an n-PBR into a 0-PBR System changes
the configuration and the rules by removing all parentheses (that represent
membranes). Localization is now encoded into symbols, this making the
alphabet different: every symbol in the 0-PBR system is indexed with the
two innermost membranes containing it (in the n-PBR system). Obviously,
the alphabet A1 of a 0-PBR system that has been derived by an n-PBR
system can have larger cardinality than A.

It is important to notice that in this case the computational encoding
E = (γconf , γrule, γcomp) is strict, for this reason γcomp is fully specified
once we give γconf and γrule. Therefore from the mirror principle we can
calculate the dynamics of an n-PBR system by means of a 0-PBR system,
and this construction can be used to extend the applicability of the metabolic
algorithm to the case of n-PBR systems. The following picture illustrates
the underlying schema of the method.

computational encoding

transitional decoding

transitional encoding

system encoding

S2 ∈ 0-PBR

Π1

Π2

?S1 ∈ n-PBR =

Figure 3: Simulation of a n-PBR system by means of a 0-PBR system.
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Abstract

Brane calculi are a family of biologically inspired process calculi
proposed in [3] for modeling the interactions of dynamically nested
membranes. In [3] two basic calculi are proposed. Mate/Bud/Drip
(MBD) is one of such basic calculi, and its primitives are inspired by
membrane fusion and fission.

In this paper we investigate the expressiveness of MBD w.r.t. its
ability to act as a computational device. In particular, we compare
the expressiveness of two different semantics for MBD: the standard
interleaving semantics – where a single interaction is executed at each
computational step – and the maximal parallelism semantics – accord-
ing to which a computational step is composed of a maximal set of
independent interactions.

For the interleaving semantics, we show a nondeterministic encod-
ing of Register Machines in MBD, that preserves the existence of a
terminating computation, but that could introduce additional diver-
gent (i.e., infinite) computations.

For the maximal parallelism semantics, we provide a deterministic
encoding of Register Machines, which preserves both the existence of a
terminating computation and the existence of a divergent computation.

The impossibility of providing a deterministic encoding under the
interleaving semantics is a consequence of the decidability of the exis-
tence of a divergent computation proved in [1].

235



1 Introduction

Brane calculi [3] are a family of process calculi proposed for modeling the
behaviour of biological membranes. In a process algebraic setting, brane
calculi represent an evolution of BioAmbients [10], a variant of Mobile Am-
bients [4] based on a set of biologically inspired primitives of interaction.
The main novelty of brane calculi consists in the fact that the active entities
reside on membranes, and not inside membranes.

However, the formal investigation of biological membranes has been ini-
tiated by G. Păun with membrane computing [8], in the field of automata
and formal language theory. Quoting from [5], the objectives of brane calculi
and membrane computing [9] are different: ”While membrane computing is
a branch of natural computing, which tries to abstract computing models, in
the Turing sense, from the structure and the functioning of the cell, making
use especially of automata, languages, and complexity theoretic tools, brane
calculi pay more attention to the fidelity to the biological reality, have as
primary target systems biology, and use especially the framework of process
algebra.” Another difference is concerned with the semantics of the two for-
malism: whereas brane calculi are usually equipped with an interleaving,
sequential semantics (each computational step consists of the execution of
a single instruction), the usual semantics in membrane computing1 is based
on maximal parallelism (a computational step is composed of a maximal set
of independent interactions).

Despite such differences, some recent papers try to establish some contact
point between the two areas. A very preliminary step in this direction is
represented by [1], where the computational power of two variants of basic
brane calculi is investigated. A more relevant step is [5], where a variant of
P systems (the formalism of membrane computing) is defined, inspired by
the interaction primitives of the brane calculi, and its computational power
is investigated. The present paper goes in the same direction, as it continues
the investigation of the computational power of brane calculi started in [1],
and investigates an alternative semantics for brane calculi, inspired by the
maximal parallelism semantics usually adopted for P systems.

The focus in this paper is on the Mate/Bud/Drip calculus (MBD), a vari-
ant of basic brane calculus whose primitives are inspired by membrane fusion
(mate) and fission (mito). Because membrane fission can split a membrane
at an arbitrary place, it turns out to be a rather uncontrollable process.
Hence, it is replaced by two simpler operations: budding, that is splitting

1With the notable exception of, e.g., [6].
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off one internal membrane, and dripping, that consists in splitting off zero
internal membranes. This paper originates from an open problem raised
in [1], where the expressiveness of two basic brane calculi of [3], namely,
MBD and PEP (a basic Brane Calculus with interaction primitives inspired
by endocytosis and exocytosis) was investigated.

In [1] an encoding of RAMs in PEP is defined. Such an encoding pro-
vides a very faithful representation of the behaviour of RAMs. In fact the
encoding of RAMs in PEP is deterministic. As RAMs are a deterministic
computing device, we have that the RAM can either terminate or diverge,
but cannot have both a divergent and a terminated computation. As the
encoding has the same property, and the encoding respects the terminat-
ing behaviour of the RAM (i.e., the encoding terminates iff the RAM ter-
minates), we obtain the undecidability of both the existential termination
(there exists a terminating computation) and the universal termination (all
computations terminate) for PEP. In [1] we also prove the decidability of
universal termination for MBD, and the decidability of existential termina-
tion for MBD was left as an open problem. In this paper we answer to the
above question by providing a nondeterministic encoding of RAMs in MBD,
which preservers the existence of a terminating computation. The encoding
is nondeterministic because it introduces additional computations which do
not follow the expected behaviour of the modeled RAM. However, all these
computations are infinite. This ensures that, given a RAM, its modeling
has a terminating computation if and only if the RAM terminates. A direct
consequence of this result is the undecidability of existential termination for
MBD.

The decidability of universal termination for MBD in [1] ensures that we
cannot do better, namely, it is impossible to provide a deterministic encod-
ing of RAMs in MBD. It is also impossible to provide a (nondeterministic)
encoding of RAMs in MBD that preserves the existence of a divergent com-
putation, or satisfying the following property: the RAM terminates iff all
the computations of the encoding terminate.

The computational power of MBD is increased if we move to the max-
imal parallelism semantics typical of Membrane Computing [9]. According
to the maximal parallelism semantics, at each computational step a max-
imal set of independent reductions is simultaneously executed. Hence, all
the membranes that can evolve have to do it. By exploiting such maximal
progress hypothesis, we provide a deterministic encoding of RAMs in MBD
with maximal parallelism that preserves the existence of a terminated com-
putation (hence also the existence of a divergent computation). Thus we
obtain the undecidability of both existential and universal termination for
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MBD with maximal parallelism. This result confirms the intuition emerg-
ing from [6], where the interleaving (sequential) and the maximal parallelism
semantics of many variants of P systems are compared: in most cases, the
computational power increases when moving from interleaving to maximal
parallelism.

The paper is organized as follows: in Section 2 we present the syntax of
MBD, and equip MBD with both a standard, interleaving semantics and a
maximal parallelism semantics. Section 3 contains the nondeterministic en-
coding of RAMs in MBD with interleaving semantics, and the deterministic
encoding of RAMs in MBD with maximal parallelism semantics. Section 4
reports some conclusive remarks.

2 MBD Calculus: Syntax and Semantics

In this section we recall the syntax and the standard, interleaving semantics
of Brane Calculi, and specialize it to MBD [3]. Then, we define an alterna-
tive semantics that enforces the execution, at each computational step, of a
maximal set of independent operations.

2.1 Syntax and Structural Congruence of Brane Calculi

A system consists of nested membranes, and a process is associated to each
membrane.

Definition 1 The set of systems is defined by the following grammar:

P, Q ::= ⋄ | P ◦ Q | !P | σ(|P |)

The set of membrane processes is defined by the following grammar:

σ, τ ::= 0 | σ|τ | !σ | a.σ

Variables a, b range over actions, that will be detailed later.

The term ⋄ represents the empty system; the parallel composition operator
on systems is ◦. The replication operator ! denotes the parallel composition
of an unbounded number of instances of a system. The term σ(|P |) denotes
the membrane that performs process σ and contains system P .

The term 0 denotes the empty process, whereas | is the parallel com-
position of processes; with !σ we denote the parallel composition of an un-
bounded number of instances of process σ. Term a.σ is a guarded process:
after performing the action a, the process behaves as σ.
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We adopt the following abbreviations: with a we denote a.0, with (|P |)
we denote 0(|P |), and with σ(| |) we denote σ(| ⋄ |).

The structural congruence relations on systems and processes is defined
as follows:2

Definition 2 The structural congruence ≡ is the least congruence relation
satisfying the following axioms:

P ◦ Q ≡ Q ◦ P σ | τ ≡ τ | σ

P ◦ (Q ◦ R) ≡ (P ◦ Q) ◦ R σ | (τ | ρ) ≡ (σ | τ) | ρ

P ◦ ⋄ ≡ P σ | 0 ≡ σ

!⋄ ≡ ⋄ !0 ≡ 0
!(P ◦ Q) ≡!P◦!Q !(σ | τ) ≡!σ | !τ
!!P ≡!P !!σ ≡!σ
P◦!P ≡!P σ | !σ ≡!σ

0(| ⋄ |) ≡ ⋄

2.2 Interleaving Semantics of Brane Calculi

We recall the standard, interleaving semantics. At each computational step,
a single reaction is chosen and executed. The next definition provides the
set of generic reaction rules that are valid for all brane calculi, while the
reaction axioms are specific for each brane calculus; the reaction axioms for
MBD will be provided in Definition 5.

Definition 3 The basic reaction rules are the following:

(par)
P → Q

P ◦ R → Q ◦ R
(brane)

P → Q

σ(|P |) → σ(|Q |)

(strucong)
P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′

Rules (par) and (brane) are the contextual rules that respectively permit
to a system to execute also if it is in parallel with another process or if
it is inside a membrane, respectively. Rule (strucong) ensures that two
structurally congruent systems have the same reactions.

2With abuse of notation we use ≡ to denote both structural congruence on systems
and structural congruence on processes.
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With →∗ we denote the reflexive and transitive closure of a relation →.
Given a reduction relation →, we say that the system P ′ is a derivative of
the system P if P →∗ P ′; the set of derivatives of a system P is denoted by
Deriv(P ).

We say that a system P has a divergent computation (or infinite compu-
tation) if there exist an infinite sequence of systems P0, P1, . . . , Pi, . . . such
that P = P0 and ∀i ≥ 0 : Pi → Pi+1. We say that a system P has a
terminating computation if there exists Q ∈ Deriv(P ) such that Q 6→. We
say that all computations of a system P terminate if P has no divergent
computations.

We use
∏

(resp. ©) to denote the parallel composition of a set of
processes (resp. systems), i.e.,

∏
i∈{1,...,n} σi = σ1 | . . . | σn and ©i∈{1,...,n}Pi =

P1 ◦ . . . ◦ Pn. Moreover,
∏

i∈∅ σi = 0 and ©i∈∅Pi = ⋄. Finally,
∏

n σ (resp.
©nP ) denotes the parallel composition of n copies of process σ (resp. system
P ).

2.3 Syntax and Interleaving Semantics of MBD

The actions of the MBD calculus, proposed in [3], are inspired by membrane
fusion and splitting. To make membrane splitting more controllable, in [3]
two more basic operations are used: budding, consisting in splitting off one
internal membrane, and dripping, consisting in splitting off zero internal
membranes. Membrane fusion, or merging, is called mating.

Definition 4 Let Name be a denumerable set of ambient names, ranged
over by n, m, . . .. The set of actions of MBD is defined by the following
grammar:

a ::= maten | mate⊥

n | budn | bud⊥

n(σ) | drip(σ)

Actions maten and mate⊥

n will synchonize to obtain membrane fusion. Action
budn permits to split one internal membrane, and synchronizes with the
co-action bud⊥

n . Action drip permits to split off zero internal membranes.
Actions bud⊥ and drip are equipped with a process σ, that will be associated
to the new membrane created by the membrane performing the action.

Definition 5 The reaction relation for MBD is the least relation containing
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the following axioms, and satisfying the rules in Definition 3:

(mate) maten.σ|σ0(|P |) ◦ mate⊥

n .τ |τ0(|Q |) → σ|σ0|τ |τ0(|P ◦ Q |)

(bud) bud⊥

n(ρ).τ |τ0(| budn.σ|σ0(|P |) ◦ Q |) → ρ(|σ|σ0(|P |) |) ◦ τ |τ0(|Q |)

(drip) drip(ρ).σ|σ0(|P |) → ρ(| |) ◦ σ|σ0(|P |)

2.4 Maximal Parallelism Semantics of MBD

In this section we introduce a semantics based on maximal progress, and
inspired by the standard semantics of Membrane Computing [9]. The idea
is that at each computational step, a maximal set of independent reductions
is simultaneously executed. Hence, all the membranes that can evolve have
to do it. For example, the system

matea(|P |) ◦ drip(0)(|Q|) ◦ mate⊥

a (|R|)

performs the maximal progress move

matea(|P |) ◦ drip(0)(|Q|) ◦ mate⊥

a (|R|) ⇒ 0(|P |) ◦ 0(|Q|) ◦ 0(| |) ◦ 0(|R|)

On the other hand, the following move does not involve all the mem-
branes that can evolve, hence it is not allowed:

matea(|P |) ◦ drip(0)(|Q|) ◦ mate⊥

a (|R|) 6⇒ 0(|P |) ◦ drip(0)(|Q|) ◦ 0(|R|)

At each computational step, a membrane can be involved in at most one
reduction rule. Hence, also the following move, where three membranes are
simultaneously fused, is not allowed:

matea|mateb(|P |) ◦ mate⊥

a (|Q|) ◦ mate⊥

b (|R|) 6⇒ 0(|P ◦ Q ◦ R|)

In such case, one of the following computational steps can be performed:

matea|mateb(|P |) ◦ mate⊥

a (|Q|) ◦ mate⊥

b (|R|) ⇒
mateb(|P ◦ Q|) ◦ mate⊥

b (|R|)

matea|mateb(|P |) ◦ mate⊥

a (|Q|) ◦ mate⊥

b (|R|) ⇒
matea(|P ◦ R|) ◦ mate⊥

a (|Q|)

A maximal parallelism computational step is obtained as a maximal
sequence of independent reductions. To formalize this notion, we take a
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modified reduction semantics, obtained by “freezing” all the processes as-
sociated to a membrane, after that such a membrane has been involved in
a reduction. After the execution of a maximal parallelism computational
step, the frozen processes are “heated” and can be involved in the next
computational step.

To this aim, we extend the grammar of systems with a new term, denot-
ing a membrane whose process is frozen:

P, Q ::= . . . | 〈σ〉(|P |)

The reaction relation is modified as follows:

Definition 6 The reaction relation 7→ for MBD is the least relation contain-
ing the following axioms, and satisfying the rules in Definition 3 (obtained
by replacing → with 7→):

(mate) maten.σ|σ0(|P |) ◦ mate⊥

n .τ |τ0(|Q |) 7→ 〈σ|σ0|τ |τ0〉(|P ◦ Q |)

(bud) bud⊥

n(ρ).τ |τ0(| budn.σ|σ0(|P |) ◦ Q |) 7→
〈ρ〉(| 〈σ|σ0〉(|P |) |) ◦ 〈τ |τ0〉(|Q |)

(drip) drip(ρ).σ|σ0(|P |) 7→ 〈ρ〉(| |) ◦ 〈σ|σ0〉(|P |)

The heating function heated( ) transforms the frozen processes of a sys-
tem in active processes.

Definition 7 The heating function, called heated(P ), is defined inductively
on the structure of (the extended set of) systems:

heated(⋄) = ⋄
heated(P ◦ Q) = heated(P ) ◦ heated(Q)
heated(!P ) =!heated(P )
heated(σ(|P |)) = σ(|P |)
heated(〈σ〉(|P |)) = σ(|P |)

Now we are ready to define the maximal parallelism computational step
⇒, consisting of a maximal (not extendable) sequence of reductions 7→.

Definition 8 Let P, Q be MBD systems (not containing frozen processes).
P ⇒ Q iff there exists a system Q′ such that P 7→+ Q′ , Q′ 67→ and Q =
heated(Q′).
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3 Computing with MBD

In this section we investigate the computational power of MBD. We show
how to model Register Machines (RAMs) [12], a well known Turing powerful
formalism. We start by recalling what RAMs are.

Then, we provide a nondeterministic encoding of RAMs in MBD (with
interleaving semantics), which preservers the existence of a terminating com-
putation. The encoding is nondeterministic because it introduces additional
computations which do not follow the expected behaviour of the modeled
RAM. However, all these computations are infinite. This ensures that, given
a RAM, its modeling has a terminating computation if and only if the RAM
terminates. A direct consequence of this result is the undecidability of exis-
tential termination for MBD.

Finally, we provide a deterministic encoding of RAMs in MBD with max-
imal parallelism that preserves the existence of a terminated computation
(hence also the existence of a divergent computation). Thus we obtain the
undecidability of both existential and universal termination for MBD with
maximal parallelism.

3.1 Register Machines

RAMs are a computational model based on finite programs acting on a
finite set of registers. More precisely, a RAM R is composed of the registers
r1, . . . , rn, that can hold arbitrary large natural numbers, and by a sequence
of indexed instructions (1 : I1), . . . , (m : Im). In [7] it is shown that the
following two instructions are sufficient to model every recursive function:

• (i : Succ(rj)): adds 1 to the contents of register rj and goes to the
next instruction;

• (i : DecJump(rj , s)): if the contents of the register rj is not zero, then
decreases it by 1 and goes to the next instruction, otherwise jumps to
the instruction s.

The computation starts from the first instruction and it continues by
executing the other instructions in sequence, unless a jump instruction is
encountered. The execution stops when an instruction number higher than
the length of the program is reached.

A state of a RAM is modelled by (i, c1, . . . , cn), where i is the program
counter indicating the next instruction to be executed, and c1, . . . , cn are
the current contents of the registers r1, . . . , rn, respectively.
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A state (i, c1, . . . , cn) is terminated if the program counter i is strictly
greater than the number of instructions m. We say that a RAM R terminates
if its computation reaches a terminated state.

3.2 A Nondeterministic Encoding of RAMs in MBD with
Interleaving Semantics

In this section we show how to obtain a nondeterministic encoding of RAMs.
The encoding satisfies the following property. If the RAM terminates, then
the encoding has at least one terminating computation; otherwise, no com-
putation of the encoding terminates. Hence, even if the RAM terminates,
it may happen that a run of the encoding diverges. This is due to the fact
that it is not possible to perform a test for zero on the (representation of
the) contents of registers. When a DecJump instruction is performed, one
of the two branches (decrement or jump) is chosen nondeterministically. If
the right branch is taken, then the encoding behaves correctly. On the other
hand, if the wrong branch is taken, then a system is reached such that any
computation starting from such a system will diverge.

The modelling of RAMs is based on an encoding function, which trans-
forms instructions and registers independently.

The basic idea for modelling the natural numbers contained in the reg-
isters is the following: the natural number n contained in register rj is
represented by n copies of a system Rj collected inside a register membrane.
The increment is performed by fusing the register membrane with a mem-
brane containing one copy of Rj , thus obtaining n + 1 copies of Rj inside
the register membrane. The decrement is performed by mating the register
membrane with a membrane whose process permits to perform a budding of
one of the systems Rj contained inside the register membrane, thus leaving
n − 1 copies of Rj inside the register membrane.

Consider a RAM R with instructions (1 : I1), . . ., (m : Im) and registers
r1, . . ., rn; the encoding of an initial state (1, c1, . . . , cn) is defined as follows:

[[(1, c1, . . . , cn)]] = [[PC = 1]]◦! [[(1 : I1)]] ◦ . . . ◦ ! [[(m : Im)]] ◦
[[r1 = c1]] ◦ . . . ◦ [[rn = cn]] ◦ LOOP (| |)

where LOOP =!mate⊥

loop.drip(mateloop) is the process on the loop mem-
brane, ensuring that the system will diverge if the wrong branch of the
encoding of a DecJump instruction is taken. If a membrane mateloop(| . . . |)
is produced, then such a membrane may fuse with the loop membrane, and
another similar membrane is dripped, that may fuse with the loop mem-
brane, and so on, thus preventing the system to terminate.
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The encoding of an initial state of the RAM is composed by the follow-
ing parts: the program counter, (an unbounded number of occurrences of)
the encodings of each instruction, the encodings of the initial contents of
registers, and the loop membrane.

The encoding of the contents of the program counter is defined as follows:

[[PC = i]] = matepi
(| |)

The presence of such a program counter membrane denotes the fact that the
next instruction to be executed is Ii. The encoding of the program counter
membrane [[PC = i]] will fuse with the encoding of the i-th instruction to
activate the execution of such instruction.

The encoding of the contents of register rj is

[[rj = cj ]] = mate⊥

oprj
(| ©ci

Rj |)

where Rj = (buddecrj
| budlooprj

)(| |).
If an increment operation on rj is executed, then a membrane, containing

one copy of Rj , is fused with [[rj = cj ]], thus obtaining a representation of
[[rj = cj + 1]].

If a decrement operation on rj is executed, then a membrane – decorated
with a budding instruction on name decrj – is fused with [[rj = cj ]]. At this
point, the only operation that can be performed by the register membrane
is such a budding. If cj > 0, then at least one copy of Rj is present in
the register membrane; by performing action buddecrj

, one copy of Rj is “ex-
pelled” from the register membrane. Such an expelled copy is surrounded by
a membrane with an empty program, hence becoming an innocuous garbage
that can neither perform reductions nor interact with the other membranes.
If cj = 0, then the register membrane contains no membranes and no further
operation can be performed by the register membrane.

If the zero branch is selected, then a membrane – decorated with a bud-
ding instruction – is fused with [[rj = cj ]], and a new system [[rj = 0]] is
produced. If cj = 0, then the old register membrane contains no membranes
inside; as the only instruction that the old register membrane can perform
is a budding, it becomes innocuous garbage. If cj > 0, then the old reg-
ister membrane contains at least one copy of Rj ; such Rj can be expelled,
and surrounded by a membrane that can activate the loop membrane, thus
starting a divergent computation.

The encoding for the instruction (i : Ii) is as follows:

[[(i : Succ(rj))]] = mate⊥

pi
.mateoprj

.drip(matepi+1
).mate⊥

oprj
(|Rj |)

[[(i : DecJump(rj , s))]] = DECRi,j,s(| |) | ZEROi,j,s(| |)
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where

DECRi,j,s = mate⊥

pi
.mateoprj

.drip(mateloop).bud⊥

decrj
(0).

mate⊥

loop.drip(matepi+1
).mate⊥

oprj

ZEROi,j,s = mate⊥

pi
.mateoprj

.drip(mate⊥

oprj
).drip(mateps

).

bud⊥

looprj
(mateloop)

The encoding of each instruction consists of a membrane, and the en-
coding of a RAM contains an unbounded number of copies of the encoding
of each instruction.

When a program counter system matepi
appears at top-level, an (oc-

currence of) instruction (i : Ii) is activated by fusing it with the program
counter.

If the i-th instruction is an increment of register rj , and the actual con-
tents of rj is k, then the instruction membrane is fused with the register
membrane by performing mateoprj

. As the instruction membrane for in-
crement, [[(i : Succ(rj))]], contains one copy of system Rj , now the regis-
ter+instruction membrane (the result of the fusion of register membrane
and instruction membrane) contains k + 1 copies of Rj . At this point, the
program counter membrane corresponding to instruction i + 1 is dripped,
and the register+instruction membrane becomes the register membrane cor-
responding to [[rj = k + 1]], and is ready to accept the execution of new
operations on the register.

Suppose that the i-th instruction is a decrement of register rj , or jump
to instruction s if the contents of rj is zero. Independently of the actual
contents of register rj , the program counter membrane is fused with either
the decrement part or the zero part of the instruction, thus selecting non-
deterministically one of the two branches of the DecJump instruction.

Suppose that the decrement part is selected. The instruction membrane
is fused with the register membrane by performing mateoprj

, and a loop
activator membrane mateloop(| |) is dripped. Now the register+instruction
membrane is ready to perform a budding of a copy of Rj . Two cases can
happen:

• If the contents of rj is not zero, e.g., rj = k + 1, the right branch has
been chosen. Moreover, the register+instruction membrane contains
at least one copy of Rj . Hence, the budding operation is performed,
and the expelled copy of Rj is surrounded by a membrane with an
empty program, thus producing innocuous garbage. Now the regis-
ter+instruction membrane contains k copies of Rj . The loop activa-
tor membrane is removed (by fusing it with the register+instruction
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membrane by operation mate⊥

loop) and the program counter membrane
corresponding to instruction i + 1 is dripped. At this point, the reg-
ister+instruction membrane becomes the register membrane [[rj = k]],
and is ready to accept the execution of new operations on the register.

• If rj = 0, then the wrong branch has been chosen. Moreover, the
register+instruction membrane contains no membranes. As the only
instruction that can be performed by the register+instruction mem-
brane is a budding, no other reduction or interaction can be performed
by such a membrane. No other computation is possible, but the fu-
sion of the loop activator membrane with the loop membrane. At this
point, the computation can only diverge.

Suppose that the zero part is selected. The instruction membrane is
fused with the register membrane by performing mateoprj

. A new register
membrane [[rj = 0]] and a program counter mateps

are produced, thus the
computation continues from instruction s. Now the old register+instruction
membrane can only perform a budding budlooprj

(mateloop):

• If rj = 0, then the right branch has been chosen. Moreover, the
old register+instruction membrane contains no membranes. As the
only operation the old register+instruction membrane can perform is
a budding, it has become innocuous garbage.

• If the contents of rj is not zero, e.g., rj = k + 1, the wrong branch
has been chosen. Moreover, the old register+instruction membrane
contains at least one copy of Rj . Hence, the budding operation is
performed, and the expelled copy of Rj is surrounded by a membrane
with program mateloop, that can fuse with the loop membrane, thus
preventing the computation to terminate.

We can now conclude with the Theorem which states that our modelling
of RAMs preserves existential termination.

Theorem 9 Let R be a RAM with program (1 : I1), . . . , (m : Im) and initial
state (1, c1, . . . , cn). Then we have that the RAM R terminates if and only
if the system [[(1, c1, . . . , cn)]] has a terminating computation.

3.3 A Deterministic Encoding of RAMs in MBD with Max-
imal Parallelism Semantics

In this section we show how to obtain an encoding that behaves determin-
istically under the maximal parallelism hypothesis.
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The modeling of the RAM is quite similar to the one of the previous
section. The key idea is to use the maximal progress hypothesis to ensure
that the right branch of a DecJump instruction is taken. Both the decre-
ment and the zero branches of the instruction are activated in parallel, but
the execution of the relevant part of the zero branch is delayed by innocu-
ous drip(0) operations, so that the zero branch will be executed only if the
decrement branch fails.

The modelling of the contents of registers and of the increment instruc-
tion is the same as for the previous encoding, but in the present encoding all
the components are surrounded by an external membrane. Such an external
membrane permits to bud the garbage membranes that are not innocuous
but could interfere with the correct components.

For completeness, here we report the whole encoding, and we highlight
the differences.

Consider a RAM R with instructions (1 : I1), . . ., (m : Im) and registers
r1, . . ., rn; the encoding of an initial state (1, c1, . . . , cn) is defined as follows:

[[[(1, c1, . . . , cn)]]] = EXT (| [[[PC = 1]]]◦
! [[[(1 : I1)]]] ◦ . . . ◦ ! [[[(m : Im)]]] ◦
[[[r1 = c1]]] ◦ . . . ◦ [[[rn = cn]]] |)

where EXT =! bud⊥

ext(0) is the process surrounding the external membrane,
permitting to expell the garbage membranes.

The encoding of the program counter is the same as in the previous
section, whereas the encoding of the contents of registers is slightly simpler
(as it is no longer necessary to start a loop in the case the wrong branch is
taken):

[[[PC = i]]] = matepi
(| |)

[[[rj = cj ]]] = mate⊥

oprj
(| ©ci

Rj |)

where
Rj = buddecrj

(| |)

The main difference w.r.t. the previous section is represented by the
encoding of the DecJump instruction, whereas the encoding of the Succ

instruction is unchanged:
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[[[(i : Succ(rj))]]] = mate⊥

pi
.mateoprj

.drip(matepi+1
).mate⊥

oprj
(|Rj |)

[[[(i : DecJump(rj , s))]]] = mate⊥

pi
.mateoprj

.drip(ZEROi,j,s).

drip(matedorj).
bud⊥

decrj
(drip(0).matezero.budext).

mate⊥

dorj .drip(0).drip(0).drip(matepi+1
).

mate⊥

oprj
(| |)

where

ZEROi,j,s = drip(0).drip(0).drip(0).mate⊥

dorj .drip(mate⊥

oprj
).

drip(drip(0).mateps
).budext |

mate⊥

zero

As in the previous section, instruction (i : Ii) is activated by fusing it
with the program counter membrane matepi

.
Suppose that the i-th instruction is a decrement of register rj , or jump

to instruction s if the contents of rj is zero.
The instruction membrane is fused with the register membrane by per-

forming mateoprj
, and a zero branch membrane with process ZEROi,j,s is

dripped.
Also a mutual exclusion membrane matedorj(| |) is dripped, and the zero

branch membrane perform the first innocuous drip(0).
Now the register+instruction membrane is ready to perform a budding

of a copy of Rj . Two cases can happen:

• If the contents of rj is not zero, e.g., if rj = k + 1, then the regis-
ter+instruction membrane contains at least one copy of Rj . Hence,
the budding operation is performed, and the expelled copy of Rj is
surrounded by a the membrane with process drip(0).matezero.mategarb.
The zero branch membrane performs the second drip(0).

Now the register+instruction membrane contains k copies of Rj .

The register+instruction membrane removes the membrane for mutual
exclusion by performing mate⊥

dorj , the zero branch membrane performs
the third drip(0) and the membrane surrounding the expelled Rj per-
forms the drip(0).

At the next step, the register+instruction membrane performs the
first drip(0), and the zero branch membrane fuses with the membrane
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surrounding the expelled Rj by performing mate⊥

zero. Note that the
zero branch membrane can no longer perform mate⊥

dorj , because the
mutual exclusion membrane has been already been removed.

At the next step, the register+instruction membrane performs the
second drip(0), and the membrane, obtained by fusing the zero branch
membrane with the membrane surrounding the expelled Rj , is expelled
from the external membrane, and surrounded by a membrane with
empty process.

At the next step, the only active membrane is the register+instruction
membrane, that produces the program counter membrane matepi+1

(| |);
now the register+instruction membrane has become the register mem-
brane [[[rj = k]]], and is ready to accept the execution of new operations
on the register.

• If rj = 0, then no membrane is contained in the register+instruction
membrane. Hence, the register+instruction membrane is blocked on
the budding instruction. As no membrane can be fused with it, the
register+instruction membrane has become innocuous garbage. The
only active membrane is the zero branch membrane, which performs
the two drip(0), then it consumes the mutual exclusion membrane by
performing mate⊥

dorj . A new register membrane [[[rj = 0]]] is produced
by performing drip(mate⊥

oprj
). A quasi program counter membrane

drip(0).mateps
(| |) is produced.

At the next step, the quasi program counter membrane performs the
drip(0) and becomes the program counter mateps

(| |), and the zero
branch membrane performs the budding. Hence, the zero branch mem-
brane has been expelled outside the surrounding external membrane,
and surrounded by a membrane with empty program, thus becoming
innocuous garbage.

We can now conclude with the Theorem which states that our modelling of
RAMs faithfully represents the behaviour of the RAM.

Theorem 10 Let R be a RAM with program (1 : I1), . . . , (m : Im) and
initial state (1, c1, . . . , cn). Then we have that the RAM R terminates if and
only if all the computations of the system [[[(i, c1, . . . , cn)]]] terminate.
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4 Conclusion

We investigated the expressiveness of two different semantics (interleaving
and maximal parallelism) for the MBD brane calculus w.r.t. the ability to
encode computable functions.

Even if the underlying formalisms are different, the present work is in-
timately connected with the result in [5], namely, the Turing equivalence
of P systems with mate and drip operations. A deep comparison of the
two formalisms deserves a further investigation; however, at a first sight, it
seems that the interaction primitives in the P systems defined in [5] are more
powerful that the primitives of the MBD calculus. Moreover, in [5] only the
halting computations are considered as successful, but it is not clear if a
deterministic encoding of RAMs can be provided in P systems with mate
and drip.

As observed in [5], it is not clear if moving to an interleaving semantics
leads to a decrease of the computational power.

In [5], only a finite number of membranes is needed to obtain Turing
equivalence, whereas in the present paper an unbounded number of mem-
branes is required. The (im)possibility to encode RAMs in MBD with a
fixed number of membranes deserves further investigation. Probably the
technique adopted in [2] to reduce the process calculus Mobile Ambients on
Petri nets [11] could provide some inspiration for an impossibility result.

Finally, [5] obtains Turing equivalence with mate and drip primitives;
we plan to investigate what is the impact of the removal of budding on the
computational expressiveness of the MBD brane calculus.
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to implement P-systems on an asynhronous PE grid by employing a simu-lation environment for asynhronous parallel omputational system, namedBio-Moleular Engine(BME).BME in shortBME ([2℄) is a graphial simulation environment for distributed omputa-tional systems arhiteture. Every simulated system has, as elementary unit,a proessing element (PE, or �ell�), haraterized by a ertain omputationalapability de�ned by the virtual mahine the user assoiates to it. Everyell is provided with one or more net-interfae to manage messages inom-ing/outgoing to the omputing environment, and all ells are linked togetherin a toroidal mesh.Cells dynamially aquire a ode to exeute from the environment, andthey themselves an ask to the environment the availability of a ell to bedediated to the exeution of a ertain piee of ode. Cells internally exeuteoperations spei�ed by the user who, in the BME simulator, an hoose theformalism used to write the ode (e.g. a simple speialized programminglanguage, or plain Java). However, a small group of primitives has to beused for environment dependent operations (e.g. assignment of ode to ells,ommuniation, and so on). In partiular, for our purposes three primitiveshave been employed:
• Run: used by a ell to dynamially assoiate a ode to another ell inthe environment. The new speialized ell exeutes the ode withoutinheriting onstraints from the ell whih has instantiated it;
• Send: a ell sends a BME-data-message ontaining a small amount ofinformation;
• Wait: a ell waits for an inoming BME-data-message.MotivationsBoth BME omputing arhiteture and membrane systems have biologialinspiration. In partiular, BME onsiders features like: staminal (redundant)ells, speialization, tissue-like topology, massive parallelism. But there arealso signi�ant di�erenes, for instane: P-systems have nested strutures,while BME has PEs in a lattie struture, the former usually have a lokedsynhronous evolution of omputation, while the latter has PEs ooperatingwithout a lok. 254



Given this kind of omparison, we thought that the two models ouldbe interestingly ombined, with BME simulating the P-systems; we lookforward to advantages like the exploitation of urrent highly �exible and dis-tributed BME simulating environment, but also future (nanosale)hardwareimplementation of BME arhiteture, and thus also of P-systems.2 The Simulated Membrane System ModelWe de�ne membrane systems (P-systems) omitting some de�nitions, whihan be found, for instane, in [4℄.A P-system is de�ned by a tuple:
Π = (O, µ, w1, . . . , wm, R1, . . . , Rm, i0),where:1. O is an alphabet, whose elements are alled objets ;2. µ is a nested membrane struture;3. wi, 1 ≤ i ≤ m, are multisets on O, desribing objets initially ontainedin regions 1, 2, . . . , m of µ;4. Ri, 1 ≤ i ≤ m, are �nite sets of evolution rules on strings of objetsfrom O; Ri is the set of rules ative in region i of µ; an evolutionrule has form u → v, where u is a string on O and v is a string on

Otar = (O∗×TAR)∪(O∗×TAR×{δ}), with TAR = {here, out, in}∪
{inj | 1 ≤ j ≤ m};5. if a rule ends with the symbol δ, then after its appliation the mem-brane to whih the rule belongs dissolves, and the objets ontained inthat membrane move to its parent membrane;6. i0 ∈ {1, 2, . . . , m} is the label of one of the membranes (output mem-brane);Evolution rules are applied in eah membrane in amaximally parallel way,and eah membrane applies its rules and then ommuniates the results insynhronous parallelism with other membranes. In ase that more than onealternative rule mathings appear, then a non-deterministi hoie is made.Finally, eah evolution rule states, with symbols from TAR, where eah ofits results have to be sent. If destination is in, without subsript, then the255



result is sent to one of inner membranes, non-deterministially hosen, ifavailable.A omputation in the membrane system ends when no membrane anapply any rule.3 Simulation of P-Systems on the BME Environ-mentBoth P-systems and BME simulated arhitetures are distributed systems,but while BME ells interat asynhronously P-systems are synhronous i.e.there is a sort of master lok that fores the transitions of data amongmembranes to our together at any tik, de�ning a funtion from naturalnumbers (time axis) and the global states of a P-system.The basi idea of our simulation is to assoiate a membrane to a sin-gle ell, internally keeping a data struture traing relationships with othermembranes (inner membranes and parent membrane). The topology of themembrane system is thus not represented by relative positions of simulatingPEs, hosen on the lattie by ore algorithms of BME omputational model.We use BME-primitives for message exhange to simulate the synhronousbehaviour of P-systems. A P-system has a tree struture and when it ismapped on a BME virtual arhiteture, it is dynamially built starting froma single ell (the root of the tree), named skin membrane, that exeutesthe BME primitive �Run� for eah of its inner membranes; the same poliyis employed by inner membranes and so on until the leaves of the tree areativated (i.e. membranes with no inner membranes).The P-systems simulator we developed onsists of a Java pakage, whihexploits two kinds of messages: data messages to pass data between twomembranes and event messages (both implemented by BME-data-messages)to ommuniate events about the evolution of system's struture (i.e.: whena inner membrane dissolves it ommuniates the results of this event to itsparents and to its inner membranes).Given the asynhronous nature of the BME sub-system, every ell, i.e.every simulated membrane, evolves autonomously. The evolution of a mem-brane is a sequene of omputational steps, where eah step an be desribedby a loop of four subsequent stages:1. internal evolution rules appliation (to objets aquired in the previousiteration); 256



2. the sending of data to other PEs-membranes, by exploiting BME om-muniation sub-system, and the waiting for inoming data messages;3. the sending of event messages to signal strutural (i.e. inner/parentmembranes) hanges, and the waiting for inoming event messages;4. update of loal messages bu�er, ontaining messages arrived out ofsequene.In fat, sine the evolution of internal state of the membranes is untiedwith the rest of the environment, it is not possible, at reeiver side, to stateto whih simulated P-system's step an inoming message is related;An approah to this problem is to introdue pakets numbering poliies inorder to assoiate them to a omputational step of the emitting membrane.When a membrane M, at omputational step n, reeives a message (data orevent) emitted by another membrane S at step n+k (k is the ommuniation�window�), M stores it into a bu�er. When M will be at step n+k, it will beable to onsume the reeived message. The problem is to verify if an upperbound exists for k, so to easily manage inoming tra�.Another important issue is to maintain the strutural onsisteny of thesystem: in a asynhronous system, the membranes an expire (dissolve)independently by the state of other membranes.To solve both �window upper-bound� and �strutural onsisteny� prob-lems we have de�ned a message proessing protool (MPP) at the level of thesingle membrane that overs the seond and the third point of the previouslydesribed algorithm for simulated membrane evolution. MPP is essentiallyorganized in suh a way that, for instane, a PE-membrane, whih has aparent membrane and at least a inner membrane, will stritly alternate theexhange of data messages and event messages.In this way, it an be proved that, for instane, even if we an't be sureabout delays and reordering of messages traveling along the lattie toward thePE assoiated to my parent membrane, nonetheless we will reeive messagesassoiated to simulated evolutions far at most one step from what we arenow simulating in our PE-membrane.This allowed us to simulate a synhronous P-system by means of a set ofasynhronous PEs in BME, just by numbering messages and allowing PEsto have a bu�er memory for the small amount of messages whih an arriveone step apart from what we are simulating.
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4 ExamplesThe P-system we want to simulate on BME is desribed by a set of simpleJava modules, one for eah membrane, and eah of them will be transportedto a single PE whih will exeute it. Inside eah module the starting multisetand the set of rules of the assoiated membrane are de�ned by simple strings.A multiset xn1

1
xn2

2
. . . x

nk

k , where x1, x2, . . . , xk are objets and n1, n2, . . .

. . . , nk ∈ N , is represented by:[(x1:n1),(x2:n2),...,(xk:nk)℄For instane, the multiset a2b3c is represented by:[(a:2),(b:3),(:1)℄Evolution rules have a LHS, whih is a multiset, and a RHS whih listsresulting multisets and their destination, e.g.: bhere(a
2c)outdin. This examplebeomes:[(b:1)℄.here[(a:2),(:1)℄.out[(d:1)℄.inIf the destination is a spei� membrane, it an be spei�ed. For instane,

dintwo
beomes:[(d:1)℄.in\_twoLHS and RHS are separated by �=>�. Operator δ, possibly appearing assu�x of evolution rules is represented by �!�. Therefore, a omplete evolutionrule is:[(a:2),(b:3)℄ => [(b:1)℄.here[(a:2),(:1)℄.out[(d:1)℄.in!Eah membrane has a name, whih also is the name of the orrespondingJava module. The skin membrane has always the name Main().Eah module will:

• build a RuleList (using also parse());
• build the starting multiset of the membrane (with parse() of a orre-sponding Java lass);
• reate and instantiate on BME the (possible) inner membranes (�Run�primitive of BME); 258



• �nally, start itself.An instane membrane follows: it has name �one�, it is inside skin mem-brane, and it has a inner membrane named �two�. It has the evolution rule
d → e2

outfinδ and a starting multiset d2:one() {bmeModuleSig("null");rl = new RuleList();rl.add(Rule.parse("[(d:1)℄ => [(e:2)℄.out[(f:1)℄.in!")); = MembraneContent.parse("[(d:2)℄");m = new Membrane(new MembraneName("one"),Membrane.SKIN_MEMBRANE_NAME, , rl);m.addInnerMembraneName(new MembraneName("two"));bmeRun("two");bmeMembrane = new BmeMembrane(own, m);while (!bmeMembrane.stop()) bmeMembrane.evolve();}5 DisussionOur approah is not foused on providing a powerful simulator of P-systems,but it aims instead at disovering synergies and/or ontrasts between thesedi�erent non-onventional omputing models. Results and further referenesabout software simulation of P-systems an be found, for instane, in [3℄.By using our already well developed BME simulator, rih in graphialvisualization tools and in features like tools for doing heavy simulationson distributed high-performane lusters, we easily obtained a good userinterfae for displaying simulated P-systems. Moreover, sine BME is beingde�ned together with researhers from the nanotehnology �eld, with the aimof making that omputational model implementable on (future) nano-saledevies, we like to think that in this way also P-systems ould be broughtto speialized hardware.An important detail about the system we presented here, is that ourBME-based simulator substitutes non-deterministi hoies with random259



hoies, thus making it more suited to simulation of on�uent P-systems(that is, systems where, for a given input, all the omputations produe thesame output).Two interesting issues are worth of further development. One is that ofhow well time-independent P-systems ([1℄) ould be simulated on the asyn-hronous BME arhiteture. Another one is that of looking for higher per-formane by using bigger message bu�ers in PEs, while exploiting pipelined�ow ontrol algorithms to build orret message streams at destination, in-stead of the urrent message protool, essentially orresponding to a pipelineof size 1.Referenes[1℄ M. Cavaliere, D. Sburlan: Time-independent P systems. In: G. Mauri,Gh. P un, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa (Eds.): Mem-brane Computing. International Workshop WMC 2004, Milan, Italy,2004, Revised Seleted and Invited Papers, Leture Notes in ComputerSiene 3365, Springer-Verlag, Berlin (2005), 239�258.[2℄ A. Gallini, C. Ferretti, G. Mauri: Bio Moleular Engine: A bio-inspiredenvironment for models of growing and evolvable omputation. Genetiand Evolutionary Computation Conferene (GECCO)'05.[3℄ M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, A. Risos-Nùnez: A Sim-ulator for Con�uent P-systems. Seond Brainstorming Week on Mem-brane Computing (2004), 169�184.[4℄ Gh. P un: Membrane Computing: An Introdution. Springer-Verlag,Berlin (2002).
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P Systems with Memory∗Paolo CAZZANIGA, Alberto LEPORATI,Gianarlo MAURI, Claudio ZANDRONUniversità degli Studi di Milano Bioa,Dipartimento di Informatia, Sistemistia e Comuniazionevia Bioa degli Arimboldi 8, 20126 Milano, ItalyE-mail: {azzaniga,leporati,mauri,zandron}�diso.unimib.itAbstratWe propose P systems in whih solution of previously exeutedomputations an be stored in a sub-system omposed by a number ofadded membranes whih at as memory elements. When a new inputis inserted into the system, the omputation on that input is started inparallel with the searh for the orresponding solution in all memorymembranes. If the solution is found in memory, then a opy of it isexpelled from that memory membrane; the searh in all other memorymembranes is stopped, and the same is done with the omputing sub-system. If no solution for that input is found, then the omputationprodue the solution whih is stored in a memory ell.1 IntrodutionThe P systems were introdued by Gh. P un in [3℄ as a lass of distributedparallel omputing devies of a biohemial type, inspired by the funtioningof the ell.The basi model onsists of a membrane struture omposed by severalell-membranes, hierarhially embedded in a main membrane alled the skinmembrane. The membranes delimit regions and an ontain objets. Theobjets evolve aording to given evolution rules assoiated with the regions.A rule an modify the objets and send them outside the membrane or toan inner membrane. Moreover, the membranes an be dissolved. When
∗This work has been supported by the Italian Ministry of University (MURST), underprojet FIRB-01 �Biomoleular Algorithms to solve NP-Complete problems�.261



a membrane is dissolved, all the objets in this membrane remain free inthe membrane plaed immediately outside, while the evolution rules of thedissolved membrane are lost. The skin membrane is never dissolved.The evolution rules are applied in a maximally parallel manner: at eahstep, all the objets whih an evolve should evolve. A omputation devie isobtained: we start from an initial on�guration and we let the system evolve.A omputation halts when no further rule an be applied. The objets in aspei�ed output membrane are the result of the omputation.Further information onerning P systems an be found in [7℄ and at theInternet web address: http://psystems.diso.unimib.itIn this paper we propose P systems in whih solutions of already exe-uted omputations an be stored in some stati memory ells, to speed-upomputations. In fat, one possible way to speed-up omputations would bethe reation of new membranes by means of division (see, e.g., [6℄). This ap-proah requires a number of membranes whih an grow exponentially. Here,the de�ned systems have two main subomponents: the �rst sub-omponentis a standard omputing system; the seond sub-omponent is onstituted bya �xed number of membranes whih at as memory elements. Eah time asolution is produed by the omputing sub-system, we store that solution ina memory membrane. When a new input is inserted in the system to starta new omputation, we start in parallel the searh for the solution in allmemory membranes and, at the same time, the omputation on that inputin the omputing sub-system.If the solution is found in one memory ell before the omputation ends,then a opy of the solution is expelled from that memory membrane; thesearh in all other memory membranes is stopped, and the same is donewith the omputing sub-system. We will show that the searh for a solutionstored in memory an be done in linear time with respet to the input length.As a onsequene, the system ould be e�etively used in all ases when theomputation time order is greater than linear but the output for the sameinput is requested many times with a high probability within a short time,suh as image and voal proessing appliations.In ase the solution is not found in any memory membrane, then theomputing sub-system produes the new solution, whih is stored in a freememory membrane. In order to keep at least one memory membrane avail-able all the time, oldest solutions are deleted from memory when neessary.We will implement suh systems by means of usual rewriting P systemswhih make use of the following features:
• Membranes of variable thikness: membranes an be made thiker262



or thinner (also dissolved, as said before), in order to hange its per-meability with respet to the passage of objet through them;
• Membrane polarization: eletrial harges are assoiated to mem-branes: they an be marked with �positive� (+), �negative� (−) or�neutral� (0). The rules are applied to strings aording to eletrialharges of the membrane where the rule is applied;
• Repliated rewriting rules: the rules allow to reate k opies ofthe string starting from a single opy. A symbol in the original opyis deleted from the string to reate k di�erent strings; in eah of theseopies, the symbol deleted is replaed by a spei� sub-string and eahobtained string is then sent to a spei� target membrane (as usual, itan remain in the same membrane, an be sent to the region immedi-ately outside or an be sent to an immediately inner membrane).For further details about P systems and about the features of the previ-ously desribed features, we refer to [1, 2, 4, 8, 9, 11, 12℄The rest of the paper is organized as it follows. In setion 2, we giveformal de�nitions for rewriting P systems with ative membranes. In setion3, we give the desription of P systems with memory. In setion 4, we desribethe funtioning of suh system. Finally, setion 5 ontains onlusions andperspetive for future work.2 Rewriting P Systems with Ative MembranesWe will not reall here the basi de�nitions of P systems. We refer for detailsto [7℄. For elements of Formal Language Theory, we refer to [10℄.In the following, we will make use of Repliated Rewriting P Systems withpolarized membranes of variable thikness. In suh systems, objets an bedesribed by �nite strings over a given �nite alphabet. The evolution of anobjet will orrespond to a transformation of a string, by means of ontextfree rewriting rules. The evolution of objets depends on eletrial hargesassoiated with the membranes. The thikness of membranes an be modi-�ed, to dissolve them or to obtain thiker membranes that are impermeableto the passage of objets. Finally, a string an be repliated to obtain moreopies starting from a single one.Formally, suh a system of degree n, n ≥ 1, is de�ned as it follows:

Π = (V, T, H, µ, M1, . . . , Mn, R1, . . . , Rn, i0), where:263



• V is an alphabet (the total alphabet of the system);
• T ⊆ V is the terminal alphabet;
• H is a �nite set of labels for membranes;
• µ is a membrane struture, onsisting of n membranes, labeled (notneessarily in a one-to-one manner) with elements of H; all membranesin µ are supposed to be initially neutral;
• Mi, 1 ≤ i ≤ n are �nite languages over V .
• i0 is the label of the output membrane. If i0 is omitted, then the outputis olleted in the region outside the skin membrane.
• Ri, 1 ≤ i ≤ n are �nite sets of evolution rules.The rules are ontext free evolution rules of the following form:(a) [ha → v]αh or [ha → vγ]αh , for h ∈ H, a ∈ V, v ∈ V ∗, α ∈
{+,−, 0}, γ ∈ {δ, τ} (string evolution rules),(b) a[h]α1

h → [hv]α2

h or a[h]α1

h → [hvγ]α2

h , where a ∈ V, v ∈ V ∗, h ∈
H, α1, α2 ∈ {+,−, 0}, γ ∈ {δ, τ} (the symbol a in the string is rewrit-ten in v and the obtained string is introdued in membrane h),() [ha]α1

h → [h]α2

h v or [ha]α1

h → [h]α2

h vγ, where h ∈ H, α1, α2 ∈
{+,−, 0}, a ∈ V, v ∈ V ∗γ ∈ {δ, τ} (the symbol a in the string isrewritten in v and the obtained string is sent out from membrane h tothe region immediately outside),(d) [ha]α1

h → [hv1γ1(tar1)||v2γ2(tar2)||...||vkγn(tark)]
α2

h , where h ∈ H,

α1, α2 ∈ {+,−, 0}, a ∈ V, vi ∈ V ∗, γi is empty or γi ∈ {δ, τ}, 1 ≤
i ≤ k, tari ∈ {here, out, j | j is the label of a membrane immediatelyinside membrane h}, (1 ≤ i ≤ k) (the string a is repliated in k opiesand then a symbol a in eah of them is replaed by the orrespondingsubstring vi; eah string is then ommuniated to a target membranespei�ed by the target label).These rules are applied aordingly to the following priniples:1. If a rule ontains the speial symbol δ and the membrane where thisrule is applied has thikness 1, then that membrane is dissolved andit is no longer rereated; the objets in the membrane beome objetsof the membrane plaed immediately outside, while the rules of thedissolved membrane are removed. If the membrane has thikness 2,264



this symbol redues the thikness to 1. The skin membrane is neverdissolved.2. If a rule ontains the speial symbol τ , the thikness of the membranewhere this rule is applied is inreased; the thikness of a membraneof thikness 2 is not further inreased. If a membrane has thikness2, then no objet an pass through it. All rules involving a passagethrough a membrane of thikness 2 annot be applied until the thik-ness is redued to 1 by means of another rule whih introdue thesymbol δ in that membrane (note that this is also the ase for repli-ated rewriting rules: if a repliated string annot reah its target, thenthe whole rule annot be applied).3. If both the symbols δ and τ are introdued in the same region at thesame time (by applying two or more di�erent rules on two or more dif-ferent objets), then the orresponding membrane preserves its thik-ness.4. The ommuniation of objets has priority on the ations of δ and τ ;if at the same step an objet has to pass through a membrane and arule hanges the thikness of that membrane, then we �rst transmitthe objet and after that we hange the thikness.5. All objets evolve in parallel: at eah step of omputation, an objetan be modi�ed by only one rule, non-deterministially hosen amongall appliable rules, but any objet whih an evolve by a rule of anyform, must evolve.6. All objets and membranes not spei�ed in a rule and whih do notevolve are passed unhanged to the next step.The membrane struture at a given time, together with all strings assoi-ated with the regions de�ned by the membrane struture, is the on�gurationof the system at that time. The initial on�guration is (µ, M1, . . . , Mn). Wean pass from a on�guration to another one by using the rules in R, a-ording to the priniples previously desribed (we all this a transition). Aomputation is a sequene of transitions between on�gurations. A om-putation halts when there is no rule whih an be applied to objets andmembranes in the urrent on�guration. The output of the omputationonsists of all strings in membrane i0 when the omputation halts.265
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SkinFigure 1: The general struture of the storage membrane system.3 The Struture of the Storage DevieAs previously said, the main idea is to de�ne a system whih allows to storeinformation of already exeuted omputation, in order to save omputa-tional time. Hene, the �nal system (we will all it the Storage Devie) isobtained by adding to an original omputational system (i.e. a standard PSystem designed to solve a omputational problem), a memory sub-system,an output membrane, and a bu�er membrane (to store information neededduring the omputation). All these omponents are then surrounded by askin membrane.In this setion, we present the main omponents of the storage devie,and then we formally de�ne it. The detailed funtioning of the system willbe desribed in the next setion.The general struture of the storage devie is represented in �gure 1.As one an see, there are four main sub-systems:The omputational sub-system onsists of a standard P system thatexeutes omputations on the input strings that are injeted from outside.This system does not have an output membrane, but it sends out the outputstrings to its environment that is the skin membrane of the storage devie.266



The memory sub-system onsists of a ertain number n of omplexells (a ell is a region with a omplex struture). Eah ell is used to storealready omputed solutions (and its orresponding input), and to produethem when the same input is injeted again in the system at a later time.The bu�er membrane is used to store information that the system isatually omputing. In partiular, the bu�er is used when the input string isnot stored in the memory sub-system and, as a onsequene, the solution hasto be alulated by the omputational sub-system. As said, at the end of theomputation the storage devie has to store the new omputed solution andthe input string used to ompute it within the same memory ell. Inside thebu�er there are two sub-membranes used to start up the operations neededto retrieve the string previously stored and to empty the bu�er.The output membrane ollets the result of the omputation, being itretrieved from the memory sub-system or alulated by the omputationalsub-system.The omputation in the system proeeds as it follows. The input string(injeted through the skin membrane) is repliated to obtain three opies:a opy is sent to the omputation sub-system, where it will begin a om-putation in order to alulate a new solution, while a seond opy is sentinto the bu�er membrane. In parallel, the third opy is sent to the memorysub-system, where it is repliated and forwarded to all the memory ells, tohek (in parallel in all memory ell) if its solution is already stored into thesystem.If the solution is found in the memory sub-system, then it is sent tothe output membrane and the system proeeds to empty the bu�er and tostop the work in the omputational sub-system. Otherwise, the omputa-tional sub-system produe the new solution, and sends it both to the outputmembrane and to the memory sub-system. The solution has to be stored ina memory membrane together with its relative input, that is found in thebu�er membrane where the input was stored when the omputation started.Thus, the system non-deterministially hooses an empty ell in the memorysubsystem and sends into this membrane the two strings. The system is nowready to exeute a new omputation.Formally, the system is de�ned as it follows:
DdM = (µ, V, WCalc, WMem, WBuf , RCalc, RMem, RBuf , Output)where: 267



1. µ = [Skin [Output ]Output [Calc ]Calc [Buf ]Buf

[Mem [Cell1 ]Cell1 . . . [Celln ]Celln ]Mem ]SkinThe internal struture of every ell belonging to Mem is:
[Celli [Count ]Count [Countβ ]Countβ [Sol [Empty ]Empty [Double ]Double

]Sol [Input [Compare ]Compare [Syncro [Empty ]Empty [Double ]Double

]Syncro ]Input ]Cellifor 1 ≤ i ≤ n.2. V = {a1, . . . , ak, α, . . . , ω, A, $, $
′

, $
′′

, $P Π, X, X
′

}∪
{Y, D, 〈, 〈

′

, 〈
′′

, 〉, th, pol, per, Stop, F, λ, =, 6=, 6=
′

}is the total alphabet of the system.3. WCalc is the family of strings belonging to the Calc region.4. WBuf is the family of strings belonging to the Buffer region, in thestarting on�guration this is empty.5. WMem is the family of strings belonging to the Mem region, in thestarting on�guration, the only set belonging to WMem is wCompare =
{6=}.6. R = {RSkin, RMem, RCelli , RSol, RDouble, REmpty, RInput, RSyncro,

RCompare} is the family of rules of the system.
RSkin = {r1 : [Skin X ]Skin → [Skin (X, inMem) || (X, inBuf ) ||
(Π

′

, inCalc) ]Skin

r2 : [Skin $
′

]Skin → [Skin (λ, inOut) || ($
′

, inBuf ) || (Stop, here) ]Skin

r3 : [Skin $P ]Skin → [Skin($, inBuf ) || (λ, inOut) || ($, inMem) ||
(Stop, here)]Skin

r4 : 〈 [Mem ]Mem → [Mem 〈 ]Mem}
r1 repliates and forwards the input string to the Mem, Bu�er andCal membranes at the beginning of eah omputation.
r2, r3 are used to forward the solution string to the Output, Bu�er andMem membranes at the end of eah omputation.
r4 sends the input string to the Mem membrane, to store it in thesystem.
RMem = {r1 : [Mem $ ]Mem → [Mem $− ]Mem

r2 : [Mem X ]Mem → [Mem (X, inCell1) || (X, inCell2) || . . . ||
(X, inCelln)]Mem 268



r3 : [Mem $
′

]Mem → [Mem ]Mem $
′

r4 : [Mem 〈 ]Mem → [Mem 〈+ ]Mem}
r1, r4 are used to send non-deterministially the input string and theorresponding solution into an empty ell to be stored in the system.
r2 is used to forward the input string that omes from the environmentto all the memory ell in order to start the omparing proedure.
r3 when a solution is found in memory, this rule is used to send it tothe skin membrane, where it will then be sent to the output membrane.
RCelli = {r1 : [Celli 〈 ]−Celli

→ [Celli [Input〈
′′

]Input ]0Celli

r2 : [Celli pol ]Celli → [Celli ]
+

Celli
th

r3 : X → [Input X ]Input

r4 : [Celli $
′

]Celli → [Celli ]Celli $
′

r5 : [Celli F ]Celli → [Celli (F, inSol) || (F, inInput) ]Celli

r6 : [Celli $ ]+Celli
→ [Celli$

′′

]−Celli

r7 : [Celli $
′′

]Celli → [Celli($, inSol) || (=, incount)]Celli}
r1, r6, r7 are used to store informations into the sub membranes of theell.
r2, r5 are used to empty the ell from solutions whih beome too old.
r3 sends the input string to ompare into the Input sub-membrane.
r4 is used to sent out the solution.
RSol = {r1 : [Sol $ ]Sol → [Sol $− ]Sol

r2 : = [Double ]0Double → [Double th ]+Double

r3 : [Sol th ]Sol → [Sol ]Sol th

r4 : F [Empty ]0Empty → [Empty th ]+Empty

r5 : [Sol $
′

]Sol → [Sol ]Sol $
′

r6 : [Sol pol ]Sol → [Sol ]Sol pol}
r1, r2, r5 are used to dupliate the solution and to send out one opy.
r4, r6 are used to empty the ell.
RDouble = {r1 : [Double th ]Double → [Double ]Double th

r2 : [Double $ ]Double → [Double ($
′

, here) || ($
′′

, here) ]Double

r3 : [Double $
′

]Double → [Double ]Double $
r4 : [Double $

′′

]+Double → [Double ]0Double $
′

r5 : [Double X
′

]Double → [Double X ]Double

r6 : [DoubleX ]+Double → [Double ]0Double X269



r7 : [Double 〈 ]Double → [Double (〈, out) || (〈
′

, out) ]Double}
r1, r2, r3, r4 are used to dupliate the solution string.
r5, r6, r7 are used to dupliate the input string stored within a ell.
REmpty = {r1 : [Empty$ ]+Empty → [Empty]

0
Empty pol

r2 : [Empty〈 ]+Empty → [Empty]
0
Empty th}

r1, r2 are used to delete respetively solution and input strings.
RInput = {r1 : [Input X

′

[Comp.]
+

Comp. ]Input → [Input [Comp. X
′
− ]+Comp. ]Input

r2 : [Input X
′

[Compare ]0Compare ]Input → [Input [Compare th ]0Compare ]Input

r3 : Xα [Compare ]Compare → [CompareXα ]Compare ∀ α ∈ V

r4 : 〈α [Compare ]Compare → [Compare〈α ]Compare ∀ α ∈ V

r5 : XY [Compare ]Compare → [CompareXY ]Compare

r6 : 〈〉 [Compare ]Compare → [Compare〈〉 ]Compare

r7 : [Input 6= ]Input → [Input ]Input th τ

r8 : [Input X ]Input → [Input ]Input th

r9 : 6=
′

[Compare ]Compare → [Compare th ]Compare

r10 : [Input D ]Input → [Input ]Input th δ

r11 : [Input th ]Input → [Input ]Input th

r12 : F [Syncro]
+

Syncro → [Syncro F ]0Syncro

r13 : [Input pol ]Input → [Input ]Input pol

r14 : 〈
′′

[Syncro]
0
Syncro → [Syncro 〈 ]+Syncro}

r1 is used to send the input string into Synro membrane only if theell atually stores data.
r2 is used to delete the input string if the ell is empty.
r3 − r11 (plus some other rules not spei�ed here used for tehnialreasons) are used to ompare the input string that omes from the en-vironment with the string stored into the ell.
r12, r13 are used to empty the ell.
r14 is used to store the input string into the ell.
RSyncro = {r1 : [Syncro 〈 ]Syncro → [Syncro 〈− ]Syncro

r2 : X
′

[Double]Double → [DoubleX
′

]+Double

r3 : [Syncro th ]Syncro → [Syncro ]Syncro th

r4 : [Syncro X ]Syncro → [Syncro ]Syncro X

r5 : [Syncro 〈
′

]Syncro → [Syncro ]Syncro 〈
r6 : F [Svuota]

0
Svuota → [Svuota th ]+Svuota}270



r1, r2 are used to ativate the dupliating proedure of the input string.
r4, r5 are used to begin the omparison proedure.
r6 is used to empty the ell.
RCompare = {r1 : [Compare X Y ]Compare → [Compare X z ]Compare

r2 : [Compare X αn]Compare → [Compare X αn−1]Compare

r3 : [Compare 〈 〉 ]Compare → [Compare 〈 z ]Compare

r4 : [Compare 〈 αn]Compare → [Compare 〈 αn−1]Compare

∀ α ∈ V and n ≥ 2
r5 : [Compare X a ]Compare → [Compare ]CompareXλ τ

r6 : [Compare 〈 a ]Compare → [Compare ]Compare〈λ δ

r7 : [Compare 〈 ]Compare → [Compare per ]Compare

r8 : [Compare per ]Compare → [Compare ]Compareth δ }The omparison of the string is performed in a left to right manner:the leftmost symbols of the two string are ompared. If they are dif-ferent, then a negative answer is returned. Otherwise, both symbolsare deleted from their respetive strings and the omparison proeedwith the (new) leftmost symbols. If all symbols are deleted from bothstrings, then a positive answer is returned.
r1− r4 are used to derease the value of the �rst harater of the inputstrings.
r5, r6 are used to delete the �rst harater of the input strings.
r7, r8 are used to end the omparison algorithm.7. Output is the output membrane.4 Funtioning of the Storage DevieThe omputation of the system starts when an input string is injeted fromthe environment to the skin region. As previously said, the input string isrepliated in three opies: the �rst opy is sent to the omputation sub-system, to start a omputation to alulate a new solution; the seond opyis sent into the bu�er membrane, to be used eventually later to store thestring and its relative solution in a memory ell. The third opy is sent tothe memory sub-system, where it is repliated in n opies to be forwarded toall memory ells, to hek (in parallel in all memory ell) if the orrespondingsolution is already stored into the system.271
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Figure 2: The struture of a memory ellWhen the solution string is already stored in memory, it is retrieved fromthe memory ell and then sent to the output membrane. The system proeedsto empty the bu�er membrane and the omputational sub-system work isstopped, as it is no more neessary. On the ontrary, if the solution is notstored in the system, then the omputational sub-system produe the newsolution, that is then sent both to the output membrane and to the memorysub-system. The solution has to be stored in a memory membrane togetherwith its relative input string; this last string is thus retrieved from the bu�ermembrane, where it was stored when the omputation started. The systemhooses, in a non-deterministi way, an empty ell in the memory subsystem,and sends into this membrane both the input and the orresponding solutionstrings.In the following, we will desribe the internal struture of a memoryell and (by means of pseudo-ode) the tasks exeuted inside every one ofthis. The struture of a ell inluded inside the memory of the system isrepresented in �gure 2.All of the ells have got di�erent labels but have the same internal stru-ture and the same starting on�guration. This is the reason why is enough todesribe only one of these. All of the ells are made up of three parts: two ofthese are used to store the input string and the solution string, the third part272



manage the ounter of the ell. In the starting on�guration of the systemall of the ells have a positive eletrial harge, but the sub membranes ofthe ells have null eletrial harge. The polarization is used to distinguishthe empty ells from the others (the ells that ontain some informations).This distintion is useful when the system has to store a new solution, withthe di�erent polarization of the ell, the system is able to selet an emptyell. It is lear that an empty ell has a positive harge while a taken ellhas a null harge.When the system stores an information inside a ell, it hanges the ele-trial harge of this (from positive to null) and modi�es the polarizationof the sub membrane (from null to positive) where the input string is put,this value will be used by the system to detet the ells that ontains in-formations when is needed to ompare the input string that omes from theenvironment with the string stored in the ell.Inside the membrane where the input string is stored, there is a mem-brane used to ompare the strings. The omparison is arried out by syn-hronizing the entrane and the exit from this membrane of the strings thealgorithm is omparing. The strings ome into the membrane at the sametime, then, inside it the rules that redue the harater value until deletingit are applied. It is lear that, if two haraters are equal they will be deletedat the same time, but if they are di�erent, the deleting rules will be appliedin di�erent moments. During the deleting operations, the strings are alsosent out of the omparison membrane and, while going out, the applied rulesperform a δ and τ operation respetively. In this way, if the strings leavethe membrane at the same moment, the operations are exeuted at the sameomputation step and their e�et is avoided. On the other hand, applyingone rule before the other one, it is impossible to arry on the algorithm.This is due to the thikness hange, beause the membrane is dissolved orits permeability is inreased and the strings are not able to pass through themembrane.A part from the struture that realizes the algorithm, there are twomembranes that are able to dupliate and to erase data, this membranes areused only when the system expliitly needs to exeute this operations. Theseond region of the ell is used to store the solution strings, also inside thismembrane there are two sub membranes: one is used to dupliate solutionstrings when the omparison algorithm suessfully ends and the seond todelete it when the system needs to empty the ell.The last part of the ell is made of two membrane used to manage theounter of the ell. The ounter is used to establish when an information isobsolete. We suppose that too old data has got a low probability of being273



demanded a seond time. Moreover, holding obsolete data inreases the riskthat the memory is �lled up ompletely. The ounter starts to ount the lifetime of a solution, when this is stored inside a ell, at every omputationalstep, the ounter value is dereased.We have to set the starting value of the ounter over a established thresh-old, so that the solution inside a ell is not being deleted too muh faster;the aim is to store data as long as possible until de�nitively deleting it.Now, we will show the three proedure in order to insert, delete andretrieve the informations inside a ell, moreover, we will desribe the om-parison algorithm of the strings.Proedure insert (input,solution)beginif memory is full (no memory ell with positive polarization areavailable) thendelete(F);Choose non deterministially a ell among those with positive harge;Send into this ell the solution string, hanging the harge of the ell tonegative polarization;Send the input string in the (unique) membrane with negativepolarization, hanging the harge of the ell to neutral;Send the solution string in sub-membrane Sol;Send then input string in sub-membrane Input and then insub-membrane Synro;Change membrane Synro harge from 0 to +;end.The insert proedure starts when the storage devie needs to store a newsolution. If no free ells are available (no ells with positive polarization arepresent), then the system proeed to free some ells by means of the deleteproedure (see desription below). When one or more free ells are available,the solution string and its related input string are non-deterministially sentinside one of those empty ells; �rst, the solution string is sent through thehosen membrane, hanging its harge from positive to negative. Then, theinput string (that is still inside the general memory region) is sent in thesame membrane, that an be identi�ed as it is the only one with negativeharge. During this passage, the polarization of the membrane is hanged toneutral, to denote this ell as non-empty.Then, the solution string is sent to the internal sub-membrane Sol, whilethe input string is sent to the internal sub-membrane Input and, from here,274



in the inner region delimited by membrane Synro. During the last passage,the eletrial harge of the membrane Synro is hanged from neutral topositive (this will be neessary when the solution will be searhed for in afollowing omputation).After the end of the proedure, the ell begins to ount the solution lifetime.Proedure delete (F)beginSend F in sub-membranes Sol and Input;Send F in sub-membrane Empty;Change membrane Empty harge from 0 to +;Send solution in Empty;Send input in Empty;Delete solution;Delete input;end.The delete proedure is ativated when the memory is full or when a solu-tion stored into a ell is too old to be held. In the �rst ase, when all the ellsare full and the system needs to store a new solution of the atual omputa-tion, then it has to hoose a ell and ativate from the outside the deletingproedure. The ell that the system has to empty is non-deterministiallyhosen, sending inside of it a message marked with the speial symbol F.In the seond ase, when the ounter of a ell reahes its �nal value, the Fmessage is reated within the ell.The delete proedure begins when the message marked with F is sentor is reated inside a memory ell. The �rst operation forwards the mes-sage inside the membranes Sol and Input (this is ahieved using a repliatedrewriting rule). Now within membranes Sol and Input, onurrently, thestring message is sent to the membrane labelled with Empty, that is a submembrane belonging to both membranes (Sol and Input). When the stringpasses through the membrane, it hanges its polarization from null to posi-tive. Now, inside the membranes Sol and Input it is possible to apply rulesto send both strings into the two membranes Empty. Inside the two mem-branes Empty, it is now possible to apply the appropriated rules whih deletethe input and solution strings.When the proedure is done, the storage devie sends out to the envi-ronment all the strings that are no longer useful to the system.Proedure retrieve (inputE) 275



beginif ell ontains data thenSend inputE in SynroDupliate input;Send out input and inputE;if Comparison(input,inputE) = TRUE thenbeginDupliate solution;Send out solution;endend.The retrieve proedure is used to searh inside the memory ell the so-lution of the atual omputation.In the beginning of every omputation, the input string that omes fromthe environment (in the pseudo ode of the proedure, this string is alledinputE ) is sent into every ell of the system memory. When this stringreahes every ell, the retrieve proedure starts. This proedure is exeutedin parallel in every ell.The �rst operation is to hek if the ell ontains data. If this is true,then the input string oming from the environment is sent inside the submembrane labelled with Synro; otherwise the proedure ends. If the mem-ory ell ontains information, then the proedure goes on dupliating thestored input string. Now, in the same omputational step, the input stringatually stored into the ell and the other one that omes from the en-vironment, are sent out from the membrane Synro; here the omparisonalgorithm is started. If the omparison proedure suessfully ends, then thesolution string is dupliated and sent out, otherwise the proedure �nishes.The omparison algorithm is the following:Proedure omparison(inputM,inputE)beginwhile (length(InputM) > 0 AND length(InputE) > 0)beginSend inputM,inputE in Compare;while �rst har value(InputM) 6= a1 AND�rst har value(InputE) 6= a1Derease �rst har value;if �rst har value(InputM) = a1 AND �rst har value(InputE) = a1Delete �rst har; 276



Send input,inputE out;else return FALSE;endif (length(InputM) = 0 AND length(InputE) = 0) thenreturn TRUEelse return FALSEend.The omparison algorithm is the main task exeuted by the storage de-vie: it is used to ompare the input string that omes from the environment(InputE ) with the string ontained within a ell (InputM ). As the retrieveproedure, the omparison algorithm is exeuted in parallel in all memoryells.The algorithm ompares every single harater of the two strings and, inase all these haraters are equal, returns a positive value, otherwise it fails.The proedure to hek whether the two strings are equal is realized with thesynhronized entrane and exit of the strings through a speial membrane.The proedure begins by sending the strings inside the ompare membraneat the same omputational step, only if their length is greater then zero.Now, within the ompare membrane, some rules are ativated that operateon the �rst harater of the strings. These rules derease the harater value(we assume the alphabet is sorted in inreasing order from a1 to an) until itreahes the symbol a1 (that is the �rst harater belonging to V).It is now possible to use the rule that deletes the symbol a1 and sendsthe strings to the outside region; then the proedure will start to analyzethe seond harater of the strings. The proedure works on the two stringsat the same time, as it needs a method to understand if the atual leftmostharaters of the two strings are equal. This is done exploiting the rulesthat send out the strings from the ompare membrane: when the systemexeutes the rules in order to delete the �rst harater of the strings, δ and
τ operations are exeuted respetively by the rule that sends out the stringInputM and the string InputE.It is lear that if the two rules are onurrently applied, then the e�etof the δ and τ operations is null and nothing happens to the membrane.On the ontrary, if the two haraters that the system is omparing aredi�erent, then the two rules used to send out the strings are applied atdi�erent omputational steps (due to the di�erent number of rules exeutedto derease the value of the �rst harater of the two strings). Applying oneof these rules before the other one means to use a δ or τ operation before the277



other one. It is lear that the resultant e�et is to dissolve or to inrease thethikness of the ompare membrane. In both ases, it is impossible to arryon the omparison algorithm and the system determines that the strings arenot equal.For instane, if the system is omparing the strings s1 = a3a2a2a1 and
s2 = a3a2a2a1, �rst sends onurrently s1 and s2 into the ompare mem-brane, then within it are applied rules like a3 → (a2, here) on both strings.Now s1 = a2a2a2a1 and s2 = a2a2a2a1, the proedure goes on applyingrules as: a2 → (a1, here) and then s1 = a1a2a2a1 and s2 = a1a2a2a1. Theanalysis of the �rst harater ends with the onurrent exeution of the rule
a1 → (λ, out)δ on the �rst string and a1 → (λ, out)τ on the other string. Thee�et of the δ and τ operation is then avoided and the system understandsthat the two haraters are equal and an go on omparing the remainingharaters of the strings. Now s1 = a2a2a1 and s2 = a2a2a1, the algorithmontinues analyzing the atual �rst harater. When all haraters have beendeleted, the algorithm returns a true value.Let us denote by Tm(n) the omputational time of the P system withmemory and by TP (n) the omputational time of the original omputationalsystem (that is equal to the omputational sub-system) and by Tc(n) thetime required to ompare an input in a memory ell. From the previousdesription, it is easy to see that the system with memory works with thefollowing omputational time:

• If the solution is not stored in memory, then the time required by thesystems is the time required by the original omputational system plusa (onstant) time to store the new solution. Thus, Tm(n) = O(Tp(n)).
• If solution is already stored in memory, then the time required by thesystem with memory is the faster time between the time to alulatethe new solution and the time to retrieve that solution from memory;thus, Tm(n) = min{TP (n), Tc(n)}. It is easy to see that Tc(n) = O(n),as the time required to ompare the input and the string stored inmemory is linear. Hene, we an onlude that, when a solution isstored in memory, Tm(n) = O(n).Thus, the proposed system does require a onstant time to store newsolutions, when the input is not (anymore) known, while it allows to utdown omputational time to a linear one, when the input is stored in mem-ory. Thus, suh systems ould be e�etively used when many omputationsare requested where the same input is submitted many times with a highprobability. 278



5 ConlusionsWe presented P systems in whih solutions of already exeuted omputationsan be stored in memory ells, whih are added to a standard omputingsystem. Eah time a solution is produed by the omputing sub-system, thesolution is stored in a memory membrane. When a new input is inserted inthe system to start a new omputation, we start in parallel the searh for thesolution in all memory membranes and, at the same time, the omputationon that input in the omputing sub-system.If the solution is found in one memory ell before the omputation ends,then a opy of the solution is expelled from that memory membrane; thesearh in all other memory membranes is stopped, and the same is done withthe omputing sub-system. In ase the solution is not found in any memorymembrane, then the omputing sub-system produes the new solution, whihis stored in a free memory membrane. In order to keep at least one memorymembrane available all the time, oldest solutions are deleted from memorywhen neessary. Suh system an be used to speed-up omputations, whenthe output for the same input is requested many times with a high probabilitywithin a short time, suh as image and voal proessing appliations.We point out that this is a preliminary approah, whih ould be devel-oped following di�erent lines; as an example, we ould onsider the possibil-ity to store not only solutions of already exeuted omputations, but also tostore programs.An issue related to the system onerns the dimension of the memory,i.e. the number of memory ells to use. In the solution we propose here, thememory ells are stati. The number of ells has a diret in�uene on thee�ieny of the omputations. A small number of ells redue the probabilityto �nd a solution in memory, and require further omputational step tofreeing memory ell and store new solution. One possible enhanement of thesystem ould be to onsider dynami memory ells, whih an be added andremoved during the omputation. This ould be aomplished by means ofmembrane division feature (see [5℄) and membrane dissolving feature (alreadyonsidered in this system).AknowledgementsWe wish to thank the anonymous referees for their helpful suggestions, thatallowed us to improve a previous version of the present paper.279
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Abstract

Array-rewriting P Systems with array objects and array-rewriting
rules have been considered in Ceterchi et al [1] extending the notion
of P Systems with String objects. Motivated by the study in [5], in
this note, we consider L-type rules in the regions of these P systems.
The resulting P system, called L-array P System, is examined for its
generative power.

1 Introduction

Bringing together the two areas of membrane computing and Picture
grammars, Ceterchi et al [1] introduced and studied the power of array-
rewriting P systems extending the notion of P Systems with string objects
to P systems with array objects with the arrays in the regions being
processed by array-rewriting rules. On the other hand array grammars
with controlled rewriting have been considered in [5]. The model in [5]
generates rectangular arrays by rewriting in parallel the symbols in the
edges of an array by L type string rules. Motivated by this study, in this
note, we consider L-type rules in the regions of the array-rewriting P system
of [1]. We call the resulting system as L-array P System. A beginning is
made here in studying the picture array generative power of these P systems.
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2 Preliminaries

Let Σ be a finite alphabet. We consider pictures over Σ as rectangular arrays
of elements of Σ. The set of all pictures over Σ is denoted by Σ∗∗. The size
of a picture p is a pair (m, n) where m is the number of rows of p and n,
the number of columns. An empty picture is the only picture of size (0, 0).
A picture language L is a subset of Σ∗∗.

We refer to [5] for the notion of a table L array grammar generating
pictures of rectangular arrays. We briefly mention only needed details of
these grammars.

The classes of array generating devices that are considered in [5] are
i) Table 0L(1L) array grammars (T0L(1L)AG)
ii) Extended Table 0L(1L) array grammars (ET0L(1L)AG)
iii) Extended Controlled Table 0L(1L) array grammars (ECT0L(1L)AG)
Each of these array grammars consists of tables of rules which are 0L or 1L.
A 0L rule is of the form a → α, a ∈ Σ, α ∈ Σ∗, as in a string 0L system.
When the table is a right table, the rules ai → αi (i = 1, · · · , n) (n ≥ 1) of
the table are such that the lengths of all such αi are equal and the rules can
be used to rewrite in parallel all the symbols in the rightmost column of a
picture array. A 1L rule is of the form

b b
c a → c α

d d

where b, c, d are the symbols giving the context in which a can be rewritten
as α, with all such α having the same length in the rules of a right table. A
right table of 1L rules is used similar to a right table of 0L rules. Likewise,
a table can be a left table, up table or down table and used in rewriting
all the symbols in the leftmost column, uppermost row or lowermost row
respectively, of a picture array. Unlike string L systems in which the rewrit-
ing is totally parallel, here only all the symbols in the or leftmost column or
in the uppermost or lowermost row are rewritten depending on the table of
rules used.

As in string L systems, if we require the arrays generated to be over a
terminal alphabet, then we have the extended feature. If the application of
the tables is controlled by a control set, which can be regular, CF, CS, then
we have the controlled feature in the array grammar.

The picture language generated by an array grammar of the type
mentioned above consists of rectangular arrays over the (terminal) alphabet
Σ, derived from a start symbol in the extended case, and an axiom array
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in the non-extended case, (with the sequence of application of the tables
of rules according to the words of a control set, in the case of controlled
feature).

3 Array Generation and P Systems

In this section we consider array-rewriting P systems as defined in [1] but
with a difference that the objects in the regions are rectangular arrays and
the “rules” are tables of 0L or 1L rules as described in the previous sec-
tion, with each table having an attached target here, out, in with the usual
meaning. We call the resulting P system an L−array P system. We con-
sider halting computations as in array-rewriting P systems [1], resulting in
the rectangular picture arrays collected in the output (an elementary) mem-
brane.

Definition 1. An L-array P system of degree m ≥ 1 is a construct

Π = (V, Σ, #, µ, A1, · · · , Am, R1, · · · , Rm, i0)

where V is the total alphabet, Σ ⊆ V is the terminal alphabet, # is the blank
symbol, µ is a membrane structure with m membranes labelled in a one-to-
one manner with 1, 2, · · · , m; Ai(i = 1, · · · , m) is a finite set of picture arrays
over V associated with the m regions of µ; Ri = {xtj/1 ≤ j ≤ n, n ≥ 1 };
xtj is a right, left, up or down table according as x = r, l, u or d; the
tables have attached targets here, out, in (here, is in general, omitted); the
rules of a table are either 0L or 1L type; i0 is the label of an elementary
membrane of µ, called the output membrane. A table of rules in a region
is chosen non-deterministically. The application of the rules of a right table
to the rightmost column of an array is done by choosing the rules non-
deterministically and rewriting all the symbols of the rightmost column in
parallel. If the target indication of the table is out, then array is sent
to the immediately outer membrane and if it is in, to the immediately
inner membrane. Likewise the application of a left, up, down table is done.
The arrays generated are captured in an elementary membrane with halting
computation.

We illustrate the definitions with some examples.

Example 1. Consider the non-extended L-array P system
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Π1 = ({x, .}, {x, .}, #, [1 [2 [3 ]3 ]2 ]1, {xx}, φ, φ, {ut1}, {rt2, rt3}, φ, 3)

ut1 =

{

.
# x x → # x x

,
x

x x # → x x #
,

.
# . x → # . x

,
.

. x x → . x x
,

.
# . . → # . .

,
.

. . x → . . x
,

.
. . . → . . .

}

(in)

rt2 = {x → xx}(out), rt3 = {x → x}(in)

Starting from the unique array xx present initially in region 1, the rules of

the up table ut1 are applied to the uppermost row in parallel to yield
. x
x x

and the array is sent to region 2; note that the table ut1 is in region 1 ; the
tables rt2 and rt3 are in region 2; there is no table of rules in region 3; if
the rule of the right table rt3 is applied in parallel to the rightmost column
the array is unchanged but enters region 3 where it remains for ever and
the computation stops; if the rules of the right table rt2 are applied to the
rightmost column, one column of x′s is grown to the right and the array is
sent back to region 1; the computation continues. A picture array generated
is shown in Figure 1. Interpreting . as ‘blank’, the picture array describes
a digitized right triangle of symbols x.

. . . . x

. . . x x

. . x x x

. x x x x
x x x x x

x
x x

x x x
x x x x

x x x x x

Figure 1 (a) Picture array of Example 1. (b) Right triangle of symbols x.

Example 2. Consider the non extended L-array P system Π2 which has
components as in Π1 except that the initial array in region 1 is xxxx and
the tables of rules are
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ut1 =



















.

.

.
# x x → # x x

,

.

.

.
x x x → x x x

,

x
x
x

x x # → x x #

,

.

.

.
# . . → # . .

,

.

.

.
. . . → . . .

,

.

.

.
. . x → . . x

,

.

.

.
. x x → . x x



















(in)

rt2 =











# #
x → x x x x
x x

x x
x → x . . .
x x

x x
x → x . . .
# #

,

x x
x → x . . .
. .

,
x x
. → . . . .
. .

,

. .

. → . . . .

. .
,

. .

. → . . . .
# #











(out)

rt3 = {x → x, . → .}(in)

A picture array generated by this P system is shown in Figure 2.

. . . . . . x

. . . . . . x

. . . . . . x

. . . x x x x

. . . x . . .

. . . x . . .
x x x x . . .

Figure 2 : Staircases of symbols x of fixed proportion.

Example 3. Consider the non-extended L-array P system Π3 which has
again components as in Π1 except that the tables of rules are
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ut1 =

{

x
x → x

}

(in)

rt2 = {x → xx}(out)
rt3 = {x → x}(in)

This system generates square arrays of symbols x of all sizes (Figure 3).

x x x x
x x x x
x x x x
x x x x

Figure 3: A square array of symbols x.

We now compare the generative power of the L-array P systems with
the non-extended Table Array grammars [5]and (Two-dimensional) Regular
Matrix Grammars (RMG) [6,3].

Theorem 3.1 (i) Any picture array language generated by a non-extended
Table Array grammar can be generated by a non-extended L-array P system
of degree 1.

(ii) Any language generated by a RMG [6,3] is generated by an extended
L-array P system of degree 1.

The results are immediate from the definitions of the respective gram-
mars in view of the fact that i) in a non-extended Table Array Grammar
every application of any table (starting from the axiom array) yields an
array in the language generated and ii) in a RMG [6], in the first phase of
derivation strings of intermediate symbols are generated by right-linear rules
and hence suitable right tables of L-type rules can be included in the region;
in the second phase these strings of intermediates are rewritten in parallel
“vertically” to yield the terminal array and hence suitable down tables can
also be included in the same region.

Theorem 3.2 (i) The classes of picture array languages generated by L-
array P systems and Regular array grammars [4,7] intersect when restricted
to rectangular picture array generation (see Example 3).

(ii) There is a rectangular picture array language generated by a L-
array P system with 0L rules that cannot be generated by any RAG [4,7]
(see Examples 1 and 2).

Theorem 3.3 The class of L-array P systems with tables of 0L rules is
properly contained in the class of L-array P systems with tables of 1L rules.
(The proper inclusion follows from examples 1 and 2.)
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4 Conclusion

The rectangular picture array generating P systems, called L-array P Sys-
tems, considered here is a continuation of the study undertaken in [1] but
uses a different type of rewriting in arrays and restricts only to rectangular
pictures. Interesting examples of picture array languages generated by the
L-array P Systems are shown in this note but the array languages of these
examples can be generated by table array grammars with regular control.
In fact connections between using regular control and P systems is brought
out in [2]. It remains to explore connections of CF and CS controlled Ta-
ble array grammars with P systems besides problems like hierarchy results
based on the number of membranes and so on.
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Abstract

We introduce and study a new automaton able to consume and
produce multisets. We are interested in their algebraic and coalgebraic
properties. After some useful properties of multisets, we present the
notions of bisimulation, observability and behaviour for Mealy multiset
automata. We give a characterization of the bisimulation between two
Mealy multiset automata, and a result relating their general behav-
iour to their sequential behaviour. We describe an endofunctor of the
category of Set such that a Mealy multiset automaton is a coalgebra
of this functor. This functor preserves coproducts, coequalizers, and
weak pullbacks. Moreover, the new defined bisimulation is an instance
of a more general coalgebraic definition.

1 Introduction

Membrane systems described in [11] represent bio-inspired abstract models.
We try to connect membrane computing with the classical theory of Mealy
automata. The approach is mainly algebraic, identifying the main opera-
tions able to describe membrane systems, and some algebraic rules governing
their functioning.

Membrane systems are also called P systems, and they represent a new
abstract model of parallel and distributed computing inspired by cell [11].
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A cell is divided in various compartments, each compartment with a specific
duty, and all of them working simultaneously to accomplish the task of
the whole system. The membranes of a P system determine regions where
objects and evolution rules can be placed. The objects evolve according to
the rules associated with each region, and the regions cooperate in order
to maintain the proper behaviour of the whole system. It is desirable to
find more connections with various fields of computer science, including the
classical automata theory.

In this paper we present some algebraic properties of multisets, we
present Mealy multiset automata [3], and then we define direct and cascade
products of Mealy multiset automata corresponding to their parallel and
serial connections. We give a characterization of the bisimulation between
two Mealy multiset automata, and a result relating their general behaviour
to their sequential behaviour. Mealy multiset automata satisfy the criteria
of general state based systems, namely their behaviour depends on internal
states which can be invisible for the user, the system interacts with its envi-
ronment and it is not necessarily terminating, and it has a set of operations
through which this interaction takes place. For these (reactive) systems,
the notions of behaviour, observability, bisimulation become interesting and
important. We describe two distinct concepts of behaviour: the sequential
behaviour dealing with a specific order of consuming multisets, and a more
general behaviour dealing with the outcome of a Mealy multiset automata.
The concept of observer could be useful, particularly when we deal with
complex structures. The behaviour of a system can be defined as the set of
all possible sequences of configurations during a computation. Rather than
being concerned with the computations resulting in new states, coalgebraic
approaches models for dynamical systems focus on the observable behaviour
of system states; the notion of bisimulation is used to formalize observational
indistinguishability.

This later remark (and also other advantages that we emphasize in this
paper) gives reason for a secondary approach, via category theory. We
organize the category of Mealy multiset automata, and we prove that we can
view every Mealy multiset automata as a coalgebra of a suitable endofunctor
of the category of sets.

2 On Algebra of Multisets

The evolution rules performed by membranes are multiset operators; the
multiset operators are associative and commutative, and have also an iden-
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tity. In this section we look at multisets, providing some of their algebraic
properties.

A multiset over an alphabet A = {a1, a2, ..., an} is a mapping α :
A → N. It can be represented by {(a1, α(a1)), (a2, α(a2)), ..., (an,α(an))}.
As it is mentioned in [11], a multiset can be also represented as a string

a
α(a1)
1 a

α(a2)
2 ...an

α(an) together with all its permutations. A certain extra
computation power of P systems comes from the fact that applying a mul-
tiset rule u → v means that we actually apply at most | u |! | v |! classical
rules on strings. The use of multiplicative notation for both multisets and
strings may produce confusion when we interplay multiset and strings rules.
It is therefore useful to have distinct notations for multiset operations and
string operations.

There are various approaches to deal with multiplicities of the elements
of a set. Multisets could be viewed as a particular case of the so-called
formal power polynomials [10] (i.e. a formal power polynomial over a finite
alphabet). However almost all the studies in formal power series do not
take care of multisets, and we think that a lot of specific properties are lost.
Inspired from formal power polynomials, we denote by N 〈A〉 = {α : A →
N | α isamapping} the set of all multisets on A . The structure of N 〈A〉 is
mainly an additive one, since we add multiplicities of appearance (in fact,
it is induced by the addition in N). This argument is sustained also by
the chemical reactions that are the base of the biological modelling. They
provide a notation for defining the way a biological system evolves.

If α, β ∈ N 〈A〉, then their sum is the multiset (α + β) : A → N defined
by (α + β)(ai) = α(ai) + β(ai), i = 1, n. Moreover, if we consider the letters
from A as multisets, i.e. ai is given by µai

, where µai
: A→ N, µai

(ai) = 1
and µai

(aj) = 0 for all j 6= i, then we can express every multiset α ∈ N 〈A〉 as

a linear combination of ai, i.e. α =
n

∑

i=1

α(ai) ·ai (see also [3]). We can define

an external operation mα =

n
∑

i=1

(mα(ai)) · ai, for all m∈ N and α ∈ N 〈A〉.

Proposition 1 N 〈A〉 has a structure of N-semimodule (semimodule over
the semiring of positive integers).

If we want to deal with strings, and apply both kinds of rules, we can
work with multisets over A∗, or formal power polynomials, N 〈A∗〉 = {α :
A∗ → N | Supp(α) <∞ }, where Supp(α) = {w ∈ A∗ | α(w) 6= 0} (as usual
for multisets, by supp(α) we denote the set {w ∈ A∗ | α(w) > 0}).
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The addition of two multisets over strings is defined like in the multisets’
case, and ,w.r.t. “+”, we have a structure of commutative monoid. In this
manner every multiset over A∗ may be viewed as a finite linear combination

with natural coefficients, α =
∑

w∈A∗

∗
α(w) · w

It is also defined a product (the Cauchy product) induced from con-

catenation of strings, α • β =
∑

w∈A∗

∗ ∑

uv=w α(u)β(v) · w (we denote in this

manner the Cauchy product in order to avoid any confusions). Since con-
catenation is not commutative, the product is also a non-commutative one.

(N 〈A∗〉 , •) is a monoid. Note that the star from
∑

w∈A∗

∗
means that this sum

is finite.

Proposition 2 (N 〈A∗〉 , +, •) is a semiring.

For other properties of formal power series and related subjects we refer
to [10].
We use also the difference between two multisets over A or A∗, defined by

(α− β)(w) = α(w)− β(w),

for all α, β such that α ⊇ β (i.e. α(w) ≥ β(w) for all w).
It is possible to work also with strings of multisets, i.e. with elements

from the free monoid (N 〈A〉)∗. It is worth to mention that this non-
commutative monoid has a different structure than N 〈A∗〉. Therefore it
is useful to clarify what are the relationships between N 〈A〉, (N 〈A〉)∗ and
N 〈A∗〉.

We consider the canonical inclusion i : N 〈A〉 → (N 〈A〉)∗ and the identity
map id : N(A) → N(A). By the universal property of the free monoid
(N 〈A〉)∗, we know that there exists a unique homomorphism of monoids
IA : (N 〈A〉)∗ → N 〈A〉 such that IA ◦ i = id. We also know that IA is defined
by IA(a1...an) = a1 + ... + an, where ai are all from IA . Since id is onto,
it follows that IA is onto, and so, applying the isomorphism theorem for
monoids, we obtain that (N 〈A〉)∗/kerIA ⋍ N 〈A〉.

Moreover, we have the following diagrams showing all the connections:
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A ⊂
j

- N〈A〉 ⊂ - (N〈A〉)∗

A∗
?

∩

⊂ -

j
∗

-

(N〈A∗〉, +)

i

?

∩

� ⊃

�

i 1

N〈A〉

IA

?

and

N〈A〉 ⊂ - (N〈A〉)∗

(N〈A∗〉, •)
�

i 2

⊂

i
-

In these diagrams, “→֒” represent the canonical inclusions, and j∗ : A∗ →
N 〈A〉 represents the unique homomorphism induced by j : A→ N 〈A〉.

We mention here the well-known property of universality of the free
monoid over a set, in order to explain better the other homomorphisms of
our diagram:

Theorem 1 If Σ is an arbitrary set, Σ∗ is the free monoid on Σ and i :
Σ → Σ∗ is the canonical inclusion, then any mapping f : Σ → M , where
(M, ⋆) is a monoid, can be uniquely extended to a monoid homomorphism
f∗ : Σ∗ → (M, ⋆).

Moreover, f∗ is defined by f∗(α1α2...αn) = f(α1) ⋆ f(α2) ⋆ ... ⋆ f(αn).

We look back to our diagrams, and we consider Σ = N 〈A〉 and f = i :
N 〈A〉 →֒ N 〈A∗〉. We have two cases:

(M, ⋆) = (N 〈A∗〉 , +). According to the previous theorem, there exists a
unique homomorphism i1 : (N 〈A〉)∗ → N 〈A∗〉 extending i. Moreover
i1(α1α2...αn) = α1 + α2 + ... + αn, where αi are from N 〈A∗〉 . Since
i is one-to-one, and its image is N 〈A〉, we can conclude that ker i1 =
ker IA and Im i1 = N 〈A〉. This means that we do not have any
hierarchical relationship between (N 〈A∗〉 , +) and (N 〈A〉)∗
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(M, ⋆) = (N 〈A∗〉 , •), where “•” is the Cauchy product of formal power
polynomials. According to the previous theorem, there exists a
unique homomorphism i2 : (N 〈A〉)∗ → N 〈A∗〉 extending i. Moreover
i2(α1α2...αn) = α1 • α2 • ... • αn, where αi are from N 〈A∗〉 .

We pay a little more attention to the second case because there are a lot
of possibilities to confuse the reader. ker i2 6= ∅ since (a + b)(2a + 2b) 6=
(2a + 2b)(a + b) in (N 〈A〉)∗, but (a + b) • (2a + 2b) = (2a + 2b) • (a + b) in
N 〈A∗〉. Once again, we can not claim any hierarchical relationship between
N 〈A∗〉 and (N 〈A〉)∗. By a hierarchical relationship we understand here any
connection of epimorphic or monomorphic type allowing us to express that
one structure can be viewed as a substructure of the other.

Looking back to all these considerations, we can say that, when deal-
ing with sequential behaviour of P-systems, (N 〈A〉)∗ is more suitable than
N 〈A∗〉. The main reason is given by the fact that the Cauchy product of
N 〈A∗〉 is not able to keep the multiplicities of the objects; for instance,
2a • 5b • 2(a + b) = 30a • b • (a + b) in N 〈A∗〉 and, whenever we have
30a • b • (a + b), we can not recover the initial sequence.

3 Mealy Multiset Automata

3.1 Algebraic Description

We introduce here the notion of Mealy multiset automata (MmA). Roughly
speaking, a MmA consists of a storage location (a box for short) in which we
place a multiset over an input alphabet, and a device to translate that mul-
tiset into a multiset over an output alphabet. MmA works in the following
way: we have a detection head able to detect whether a given sub-multiset
appears in the multiset available in the box. If the sub-multiset is detected,
then it is removed from the box, and MmA inserts a multiset over an output
alphabet. MmA stops when no further move is possible. We say that the
sub-multiset read by the head was translated to a multiset over the output
alphabet.

Definition 1 Formally, a Mealy multiset automaton is a construct

A = (Q, V, O, f, g, q0)

where
Q is a finite set, the set of states;
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q0 ∈ Q is a special state, both initial and final;
V is a finite set of objects, the input alphabet;
O is a finite set of objects, the output alphabet, such that O ∩ V = ∅;
f : Q× N(V )→ P(Q) is the state-transition (partial) mapping;
g : Q× N(V )→ P(N(O)) is the output (partial) mapping.

If | f(q, a) |≤ 1 we say that A is Q-deterministic, and if | g(q, a) |≤ 1
we say that A is O-deterministic. MmA is endowed with a box where
it receives a multiset. It begins to process this multiset over V , passing
through different configurations. It starts with a multiset from N(V ), and
ends with a multiset from N(V ∪O).

Definition 2 A configuration of A is a triple (q, α, β̄) where q ∈
Q, α∈ N(V ), β̄∈ N(O). We say that a configuration (q, α, β̄) passes to
(s, α − a, β̄ + b̄) (or, that we have a transition between those configura-
tions) if there is a ⊆ α such that s ∈ f(q, a), b̄ ∈ g(q, a). We denote this by
(q, α, β̄) ⊢ (s, α−a, β̄ + b̄). We also denote by ⊢∗ the reflexive and transitive
closure of ⊢.

Remark 1 We could alternatively define a configuration to be a pair (q, α)
where α ∈ N(V ∪ O), and the transition relation is (q, α) ⊢ (s, α − a + b̄),
with the same conditions as above.

Definition 3 A multiset α∈ N(V ) is said to be a totally consumed multiset
( tc-multiset) for A if, starting from the configuration (q0, α, ε) MmA can
pass through various configurations till it arrives in a configuration (q0, ε, β̄)
(i.e., (q0, α, ε) ⊢∗ (q0, ε, β̄)).

A multiset α∈ N(V ) is said to be a consumed multiset ( c-multiset) for
A if, starting from a configuration (q, α, ε), MmA can pass through vari-
ous configurations till it arrives in a configuration (s, ε, β̄) (i.e., (q, α, ε) ⊢∗

(s, ε, β̄)).
In both cases, we say also that α was entirely translated to β̄. In all the

other situations we say that α∈ N(V ) is partially consumed (pc-multiset),
or it is partially translated.

We denote by TC(A) the set of all tc-multisets of A, by C(A) the set
of all c-multisets of A, and by PC(A) the set of all pc-multisets of A. It is
clear that TC(A) ⊆ C(A).

Theorem 2 TC(A) is a N-sub-semimodule of N(V ). Moreover, if we define
A(α) = β̄ for all α ∈ TC(A) with (q0, α, ε) ⊢∗ (q0, ε, β̄), we may view A as
an N-homomorphism from TC(A) to N(O).
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Remark 2 In general, C(A) it is not a N-sub-semimodule of N(V ). Let
us consider α, α′∈C(A). We have (q, α, ε) ⊢∗ (q′, ε, β̄) and (s, α′, ε) ⊢∗

(s′, ε, β̄′); therefore (q, α + α′, ε) ⊢∗ (q′, α′, β̄), and it is possible that the
automaton can not go further (for instance, we may have f(q′, a′) = ∅ for
all a′ ⊆ α′).

It is possible for two multisets α, α′∈ N(V ) to have their sum in TC(A),
even they are not in TC(A) (see the example bellow). Let us give an exam-
ple:

Example 1 Consider A = ({s0, s1, s2}, {a, b, c}, {d, e, f}, f, g, s0) with

• f(s0, 2a) = {s1, s2}, f(s1, b) = s0, f(s2, c) = s0 for the transition
function,

• g(s0, 2a) = e if f(s0, 2a) = s1, g(s0, 2a) = d if f(s0, 2a) = s2,
g(s1, b) = e, g(s2, c) = f for the output mapping.

It is easy to see that TC(A) = {m(2a + b) + n(2a + c) | m, n ∈ N}. The
set of tc-translations is A(TC(A)) = {2me+n(d+ f) | m, n ∈ N}. We have
also that a+ b, a are not in TC(A), not even in C(A), but their sum belongs
to TC(A). Similarly, 6a + b, 2a + 3c 6∈ TC(A), 6a + b, 2a + 3c ∈ PC(A),
and their sum is in TC(A).

Remark 3 We do not provide a representation for MmA in the form of a
graph as in [5], simply because graphs are strongly related with sequencing
and do not permit to express facts like “if we can consume two multisets a
and b, and their sum is available in the box, it does not matter the order
of consuming them”. This is an important difference between MmA and
weighted automata [10] (or K-Σ automata [7]).

From now on, we restrict ourselves to the deterministic case, i.e. our
MmA’s are both Q-deterministic and O-deterministic. Moreover, we do not
include an initial state in our definition, simply because there is no reason
to focus attention to one particular state. In the classical theory of au-
tomata, initial states play a certain role, for instance in the definition of the
sequential composition of two automata, where all the terminating states of
the first automaton are connected to the initial state of the second automa-
ton. Without specifying the initial set of a MmA, all the considerations are
valid, except the tc-multiset notion; we consider now only c-multisets and
pc-multisets associated with an arbitrary state q.
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Definition 4 Given two MmA’s A = (Q, V, O, f, g) and A′ =
(Q′, V, O, f ′, g′), a function h : Q → Q′ is called a morphism from A to
A′ if the following conditions are satisfied:

• h(f(q, a)) = f ′(h(q), a),

• g(q, a) = g′(h(q), a),

for all q ∈ Q, and for all a ∈ N(V ).

If h : Q → Q′ is a morphism between A and A′, we denote this by
h : A → A′.

Let h : A → A′ be a morphism, and (q, α, β̄) a configuration of A. Let us
suppose that we have the transition (q, α, β̄) ⊢ (s, α− a, β̄ + b̄). This means
that s = f(q, a), b̄ = g(q, a). We get that h(s) = h(f(q, a)) = f ′(h(q), a),
and b̄ = g(q, a) = g′(h(q), a), and so we have (h(q), α, β̄) ⊢ (h(s), α−a, β̄+b̄).
Therefore we have the following result:

Theorem 3 Let h : A → A′ be a morphism of MmA’s. If the multiset
α∈ N(V ) is a c/pc-multiset for A, then α has the same nature for A′.

This result underlines that if h is a morphism between two MmA’s, then
it is not possible to have α both as a pc-multiset for A, and as a c-multiset
for A′, i.e. we get a kind of invariance property under morphisms for C(A)
and PC(A).

3.2 Series and Parallel Connections

The cascade product

This is a way to make a series connection in the case of Mealy Automata, and
provide also some results in decompositions of such machines in irreducible
ones. Even we are not prepared yet to give such theorems (this involves a
lot of algebra for multisets), we define the cascade product of two MmA’s.

Let A = (Q, V, O, f, g) and A′ = (Q′, V ′, O′, f ′, g′) two MmA’s. In order
to link them by a series connection, we need a multiset mapping to link the
output of one of them to the input of the other. This can be done using a
N-homomorphism from N(O′) to N(V ); this homomorphism can be obtained
as usually using a mapping from O′ to V . We denote this homomorphism
by Λ : N(O′) → N(V ), and we obtain a mapping Ω : Q′ × N(V ′) → N(V ),
defined by Ω(q′, a′) = Λ(g′(q′, a′)).
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• This mapping gives us the cascade product induced by Ω:

AΩA′ = (Q×Q′, V ′, O, fΩ, gΩ)

where fΩ : (Q × Q′) × N(V ′) → Q × Q′, gΩ : (Q × Q′) × N(V ′) → O
are given by fΩ((q, q′), a′) = (f(q, Ω(q′, a′)), f ′(q′, a′)), and gΩ((q, q′), a′) =
g(q, Ω(q′, a′)) for all a′ ∈ N(V ′), (q, q′) ∈ Q×Q′.

• The transition relation becomes ((q, q′), α′, β̄) ⊢ ((s, s′), α′ − a′, β̄ + b̄)
if there is a′ ⊆ α′ such that (s, s′) ∈ fΩ((q, q′), a′), b̄ ∈ gΩ((q, q′), a′),
where a′, α′ ∈ N(V ′), (q, q′) ∈ Q×Q′, β̄ ∈ N(O).

We can alternatively define the transition relation by

((q, q′), α′ + β̄) ⊢ ((s, s′), α′ − a′ + β̄ + b̄)

if there is a′ ⊆ α′ such that s ∈ f(q, Λ(g′(q′, a′))), s′ ∈ f ′(q′, a′), and b̄ ∈
g(q, Λ(g′(q′, a′))), where a′, α′ ∈ N(V ′), (q, q′) ∈ Q×Q′, β̄ ∈ N(O).

The graphical representation of the cascade product is given by the following
figure:

As we already mention in [3], in order to simulate an elementary mem-
brane, we also need a kind of direct product of MmA’s. We consider only a
restricted variant, because the input alphabets (and also the output alpha-
bets) are the same for all MmA’s involved.

Restricted direct product

Let Ai = (Qi, V, O, fi, gi) be a finite family of Mealy multiset automata, and
Bi their corresponding boxes, i = 1, n. We can connect them in parallel in
order to obtain the restricted direct product of Ai defined by A =

∧n
i=1Ai =

(×n
i=1Qi, V, O, f, g), where:

• f((q1, q2, ..., qn), a) = (f1(q1, a), f2(q2, a), ..., fn(qn, a));

• g((q1, q2, ..., qn), a) = (g1(q1, a), g2(q2, a), ..., gn(qn, a));
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• The box B of A is the disjoint union
⊔n

i=1 Bi;

• A configuration of A is a triple (q, α, β̄), where q = (q1, q2, ..., qn), α =
(α1, α2, ..., αn), and β̄ = (β̄1, β̄2, ..., β̄n);

• The (asynchronous) transition relation of A: (q, α, β̄) ⊢ (s, α−a, β̄+ b̄)
if and only if there is at least an i ∈ 1, n such that si ∈ fi(qi, ai), and
b̄i ∈ gi(qi, ai), where a = (a1, a2, ..., an), and b̄ = (b̄1, b̄2, ..., b̄n).

3.3 Bisimulation and Observability

The bisimulation relation between states of a transition system was origi-
nally introduced by Park and Milner, in order to formalize the behavioural
equivalence of concurrent processes. In our case,

Definition 5 A bisimulation between two MmA’s A = (Q, V, O, f, g, q0)
and A′ = (Q′, V, O, f ′, g′, q′0) is a relation R ⊆ Q × Q′ such that for all
a∈ N(V ), if qRq′ then g(q, a) = g′(q′, a) and f(q, a)Rf ′(q′, a). A bisimula-
tion between Q and itself is called a bisimulation on Q.

It can be verified without difficulty that union and (relational) compo-
sition of bisimulations are bisimulations again. We write q ∼ q′ whenever
there exists a bisimulation R with qRq′. This relation is the union of all
bisimulations and, therewith, the greatest bisimulation. The greatest bisim-
ulation on the same automaton, again denoted by∼, is called the bisimilarity
relation, and it is an equivalence relation.

Two states related by a bisimulation relation are observationally indis-
tinguishable in the sense that

1. they provide the same output, and

2. performing the same experiment on both states, we get states that are
indistinguishable again.

We can relate the notion of MmA morphism to that of bisimulation (see
also [4] for more details).

Theorem 4 A function h : Q → Q′ is a morphism from A to A′ if and
only if its graph relation G(h) = {(q, h(q)) | q ∈ Q} is a bisimulation.

Regarding the observability, we can remark that one of the main fea-
tures of our Mealy multiset automata is that we have an intrinsic observer
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given by the output mapping. As we can see in our previous example, there
are transitions that cannot be observed from outside, i.e. transitions for
which the output mapping is the empty multiset ε.

A state q is observable from an other state s if there exist a multiset
α such that (s, α, ε) ⊢ (q1, α − a1, b1) ⊢ (q2, α − a1 − a2, b1 + b2) ⊢ ... ⊢
(qn, α− a1 − ...− an, b1 + ... + bn), qn = q and bn 6= ε.

One of the main differences between MmA and the classical automata
is given by the possibility of the detection head of MmA to choose, in a
given state, various sub-multisets from the input multiset. This means that
for the same input multiset, we can have various possibilities to go further
from a given state. This remark emphasize the important role played by the
output mapping as an observer.

3.4 Behaviour

Behaviour is often appropriately viewed as consisting of both dynamics and
observations, namely state-transition and output mappings. The main ad-
vantage of a MmA is given by its output function playing an important
role in observability (we do not construct other machinery to describe the
behaviour of our MmA).

Definition 6 Let A = (Q, V, O, f, g) be a Mealy multiset automaton. The
general behaviour of a state q ∈ Q is a function beh(q) that assigns to every
input multiset α∈ N(V ) the output multiset obtained after consuming α.

We have to remark that, when we talk about behaviour of a state, we
have to consider a specific order of consuming multisets in terms of strings of
multisets. A certain feature for MmA is that the behaviour is always finite
since we can not go further after consuming the given multiset. On the other
hand, since the outputs go back into the box, and it can become larger, it
is possible that we can not track the sequence of intermediate states. If we
are interested only on the outcome of our machine, we should not take care
of the intermediate states, but if the input multiset is partially consumed
(i.e. is a pc-multiset), it should be of interest to know the state where the
MmA arrives, in order to (possibly) provide the box with a supplementary
multiset, or in order to make the initial one a consumed multiset. These
considerations lead us to the following

Definition 7 Let A = (Q, V, O, f, g) be a Mealy multiset automaton. The
sequential behaviour of a state q ∈ Q is a function seqbeh(q) that assigns
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to every multiset α∈ N(V ) all the sequences of the output multisets obtained
during consuming α.

Example 2 Suppose that we have the following sequence of transitions
(q, α, ε) ⊢ (q1, α − a1, b1) ⊢ (q2, α − a1 − a2, b1 + b2) ⊢ ... ⊢ (qn, α − a1 −
...− an, b1 + ... + bn) and suppose that this MmA stops. Then beh(q)(α) =
b1 + ... + bn, and seqbeh(q)(α) contains b1...bn. Moreover, b1 + ... + bn

belongs to N(O), while b1...bn belongs to (N(O))∗, the free monoid on N(O).

We consider the canonical inclusion i : N(O)→ (N(O))∗, and the identity
map id : N(O)→ N(O). As we have already mentioned there exists a unique
homomorphism of monoids IO : (N(O))∗ → N(O) such that IO ◦ i = id.
This homomorphism IO is defined by IO(b1...bn) = b1 + ... + bn. Since id
is onto, it follows that IO is onto, and so, by applying the isomorphism
theorem for monoids, we have that (N(O))∗/kerIO ⋍ N(O). Moreover,
IO ◦ (seqbeh)(q) = beh(q).

Example 3 Consider A = ({s0, s1, s2, s3}, {a, b}, {c, d}, f, g) with the tran-
sition function f given by f(s0, 2a) = s1, f(s0, a) = s2, f(s1, 2b) =
s2, f(s0, 2b) = s3, f(s0, 3b) = s2, f(s1, 2a + b) = s3, f(s1, a) = s3, f(s2, a) =
s3, f(s2, b) = s1, and the output function g given by g(s0, 2a) = 2c, g(s0, a) =
c, g(s1, 2b) = d, g(s0, 2b) = 2c + d, g(s0, 3b) = ε, g(s1, 2a + b) = c, g(s1, a) =
ε, g(s2, a) = ε, g(s2, b) = c, where ε corresponds to transitions that cannot be
“viewed” by an external observer.

Then seqbeh(s0)(3a + 2b) contains (2c)dε for the following sequence of
transitions (s0, 3a + 2b, ε) ⊢ (s1, a + 2b, 2c) ⊢ (s2, a, 2c + d) ⊢ (s3, ε, 2c + d).
The same input multiset can also be consumed in the following ways:

(s0, 3a + 2b, ε) ⊢ (s1, a + 2b, 2c) ⊢ (s0, 2b, 2c) ⊢ (s3, ε, 2c + d), or
(s0, 3a + 2b, ε) ⊢ (s2, 2a + 2b, d) ⊢ (s1, 2a + b, c + d) ⊢ (s3, ε, 2c + d).

Hence seqbeh(s0)(3a + 2b) = {(2c)d, dcc}. Therefore, independent of the
consuming sequences, the general behaviour of s0 is beh(s0)(3a + 2b) =
2c + d.

It is interesting to remark that our bisimulation preserves seqbeh. If
q, q′ are two bisimilar states, i.e. q ∼ q′, they have the same sequential
behaviour seqbeh(q) = seqbeh(q′). This implies that they also have the
same behaviour beh(q) = beh(q′). Since the reciprocal it is not true, we
can define a weaker equivalence relation, namely

q ≈ q′ ⇔ beh(q) = beh(q′)

Therefore we can easily obtain:
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Proposition 3 q ≈ q′ if and only if (seqbeh(q), seqbeh(q′)) ∈ kerIO for
all α ∈ N(V ).

Since this equivalence relation over states is given by the general be-
haviour beh, we can say that this relation is independent of the order of
consuming resources from the box, and we call it an output conservative
equivalence. The importance of this equivalence is given mainly by the idea
of consuming and producing resources by overpassing the sequential frame-
work represented by seqbeh. This problem appears to be of interest when
we consider the concurrent processes competing for resources.

4 Category Theory and Mealy Multiset Automata

The aim of this section is to explain and explore some of the current ideas
from category theory that enable various mathematical descriptions of hi-
erarchical structures and membrane systems in particular. The abstraction
level of category theory allows us to work with objects and morphisms with-
out considering their internal structure. This seems to be a very appropri-
ate setting for membrane computing. The categorical approach is based on
the definition of a category whose objects model system components, and
whose morphisms represent how systems are composed, simulated, refined,
etc. Complex systems can be expressed by diagrams in category theory.
This approach is appropriate for modelling systems having shared resources
(see also eMMA of [3, 4]).

4.1 Categories and Functors

Definition 8 A category C consists of:
- a class of objects;
- a class of morphisms ( arrows);
- for each morphism f , one object as domain, and another as

codomain of f ;
- for each object A, an identity morphism idA;
- for each pair of morphisms f : A → B and g : B → C (i.e.

cod(f)=dom(g)),
a composite morphism g ◦ f : A→ C.
This composition have to satisfy the following rules:

- Associativity: For each set of morphisms f : A → B, g : B → C, h :
C → D,
h ◦ (g ◦ f) = (h ◦ g) ◦ f .
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- Identity: For each morphism f : A→ B, f ◦ idA = f , idB ◦ f = f

The functorial character of a categorial construction is important for at
least two reasons:

- working within categories, we make explicit the morphisms which cor-
respond to appropriate notions of simulation or refinement between systems;

- functors act on objects and behave consistently on their simulations,
preserving them (moreover, when functors are adjoint, they preserve limits
or colimits, yielding good compositional properties, since complex systems
can be expressed as (co)limits of their simpler components).

Definition 9 Given two categories C and D, a functor between them F :
C → D is a pair F = (Fob, Fmor) where

Fob : Ob(C)→ Ob(D) the object mapping;
Fmor : MorC(A, B)→MorD(Fob(A), Fob(B)) the morphism mapping,
such that if f : A→ B then Fmor(f) : Fob(A)→ Fob(B),

satisfying the following axioms:
Compositionality: Fmor(gf) = Fmor(g)Fmor(f)
Identity: Fmor(idA) = idFmor(A).

Some interesting examples that come from computer science should in-
clude the category MAUT of Mealy automata, and the category BEH of
behaviours. We emphasize the functorial connection between the category
of Mealy automata and the category of their behaviours.

Example 4 Let A = (Q, V, O, f, g, s0) be a Mealy automaton with a dis-
tinguished state s0, where Q, V, O are the sets of states, input symbols and
output symbols, respectively; f is the next state function, and g is the output
function. We denote, as usual, with the same letters f and g the extension
of f from Q× V to Q× V ∗, and the extension of g from Q×O to Q×O∗.
For every state we can define behA : V ∗ → O∗, behA(w) = g(s0, w). We
consider now the following categories:

MAUT : the category of Mealy automata. It has Mealy automata as ob-
jects, and a morphism α : A → A′ is a triple (α1, α2, α3), α1 :
Q → Q′, α1(s0) = s′0, α2 : V → V ′ and α3 : O → O′ such that
α1(f(s, a)) = f ′(α1(s), α2(a)) and α3(g(s, a)) = g′(α1(s), α2(a)).

BEH: the category of behaviours. It has triples (V, O, beh : V → O) as ob-
jects, and a morphism β : (V, O, beh)→ (V ′, O′, beh′) is a pair (β1, β2),
β1 : V → V ′, β2 : O → O′such that β2 ◦ beh = beh′ ◦ β1.
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We can define the functor Beh :MAUT → BEH in the following man-
ner:

- on objects: Beh(A) = (V, O, behA),
- on morphisms: if α : A → A′ is a morphism in AUT , then

Beh(α)=(α2, α3).

We can also organize Mealy multiset automata as a category.

Proposition 4 For fixed alphabets V and O, the collection of Mealy mul-
tiset automata together with their morphisms form a category denoted by
MAV O.

More information on category theory are freely available in [2]. As we
have already explained, the lack of a comprehensive approach for the algebra
of multisets, together with the necessity of some mechanisms to connect and
compose several MmA’s, lead us to initiate a study of the categoryMAV O.
We have two possible approaches to obtain the existence of some usual
constructions (i.e. limits and colimits like (co)products, pushout, pullback,
(co)equalizers,) in the category of Mealy multiset automata. Once we can
use the classical way, i.e. we can construct step by step everything we
need, leading us to consume a lot of ”paper” and without visible benefits or,
more elegant, using the categorial coalgebraic point of view for transition-
like systems. Moreover, this latter approach permits us to work easier with
concepts like bisimulation, bisimilarity and behaviour.

4.2 Short Introduction to Coalgebra

We introduce briefly some of the basic notions of coalgebra, homomorphism,
and bisimulation relation; see [12] for more details.

Let C be a category, and F : C → C be a functor. An F -coalgebra
or F -system is a pair (S, αS) consisting of an object S and a morphism
αS : S → F (S). The object S is called the carrier of the system, also to be
called the set of states ; the morphism αS is called the F -transition structure
of the system. When no explicit reference to the functor is needed, we
simply speak of system and transition structure. Moreover, when no explicit
reference to the transition structure is needed, we often use S instead of
(S, αS).

Definition 10 Let (S, αS) and (T, αT ) be two F -systems, where F is again
an arbitrary functor. A morphism f : S → T is a homomorphism of F -
systems, or F -homomorphism, if F (f) ◦ αS = αT ◦ f , i.e. the following
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diagram is commutative:

S
αS−−−−→ F (S)

f





y





y

F (f)

T
αT−−−−→ F (T )

Intuitively, homomorphisms are functions that preserve and reflect F -
transition structures. We sometimes write f : (S, αS) → (T, αT ) to express
that f is a F -homomorphism. The identity function of an F -system (S, αS)
is a homomorphism, and the composition of two homomorphisms is again
a homomorphism. Thus the collection of all F -systems together with F -
system homomorphisms is a category, denoted by CF .

Definition 11 Let F be an arbitrary functor F : C → C and let
(S, αS), (T, αT ) be F -coalgebras. An object (R, αR) from CF , together with
two morphisms p : R → S, q : R → T (called projections), is called to be a
bisimulation between (S, αS) and (T, αT ) if p and q are also homomorphisms
of F -coalgebras, i.e. F (p) ◦ αR = αS ◦ p and F (q) ◦ αR = αT ◦ q. See also
the following diagram:

S
p

←−−−− R
q

−−−−→ T

αS





y





y

αR





y

αT

F (S) ←−−−−
F (p)

F (R) −−−−→
F (q))

F (T )

A special case is obtained for C is Set, the category of sets. For a com-
prehensive approach we refer to [12]. We mention only some facts: A subset
R ⊆ S×T of the Cartesian product of S and T is called an F -bisimulation be-
tween S and T if there exists an F -transition structure αR : R→ F (R) such
that the projections from R to S and T are F -homomorphisms. We say that
(R, αR) is a bisimulation between (S, αS) and (T, αT ). If (S, αS) = (T, αT ),
then (R, αR) is called a bisimulation on (S, αS). A bisimulation equivalence
is a bisimulation that is also an equivalence relation. Two states s and t are
called bisimilar if there exists a bisimulation R with (s, t) ∈ R. According to
[12], a fundamental relationship between homomorphisms and bisimulations
is given by

Theorem 5 Let (S, αS) and (T, αT ) be two systems. f : S → T is a ho-
momorphism if and only if its graph G(f) is a bisimulation between (S, αS)
and (T, αT ).
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5 Mealy Multiset Automata as Coalgebras

Coalgebra can be understood as a theory that deals with behavioural aspects
of dynamic systems in a rather wide sense. Behaviour is often appropriately
viewed as consisting of both dynamics and observations, which have to do
with change of states and partial access to states, respectively. Bisimulation
was introduced into the world of coalgebra by Aczel and Mendler [1], who
gave a categorical definition of bisimulation that applies to arbitrary coalge-
bras. Let us consider two alphabets V and O and the functor F : Set→ Set
defined by

• F (Q) = (Q× N 〈O〉)N〈V 〉

• If h : Q → Q′ is a mapping (i.e. morphism in Set) then F (h) : (Q ×
N 〈O〉)N〈V 〉 → (Q′×N 〈O〉)N〈V 〉 is defined by F (h)(k) =

〈

h, idN〈O〉

〉

◦ k

Definition 12 A coalgebra for F is a set Q together with a morphism αQ :
Q→ F (Q) = (Q× N 〈O〉)N〈V 〉.

It is obvious that, starting from a coalgebra (Q, αQ), we can ob-
tain a MmA A = (Q, V, O, f, g), where f(q, a)is the first component of
αQ(q)(a) and g(q, a) is the second component of αQ(q)(a). Of course,
if A = (Q, V, O, f, g) is a MmA, we can obtain a coalgebra for F , with
αQ : Q→ F (Q) = (Q×N 〈O〉)N〈V 〉, defined by αQ(q)(a) = (f(q, a), g(q, a)).

Let h : (Q, αQ) → (Q′, αQ′) a F -morphism, i.e. F (h) ◦ αQ = αQ′ ◦ h,
and A = (Q, V, O, f, g),A′ = (Q′, V, O, f ′, g′) their attached MmA’s.
This implies that for all q ∈ Q and for all a ∈ N 〈V 〉 we
have (F (h) ◦ αQ)(q)(a) = (αQ′ ◦ h)(q)(a) ⇔ F (h)(αQ(q))(a) =
αQ′(h(q))(a) ⇔

〈

h, idN〈O〉

〉

(αQ(q)(a)) = (f ′(h(s), a), g′(h(s), a))
⇔

〈

h, idN〈O〉

〉

(f(q, a), g(q, a)) = (f ′(h(q), a), g′(h(q), a)) ⇔
(h(f(q, a)), g(q, a)) = (f ′(h(s), a), g′(h(s), a)). We obtain the follow-
ing

Proposition 5 h : (Q, αQ) → (Q′, αQ′) is a F -morphism if and only if
h : Q→ Q′ is a morphism between their associated automata.

It can be proved that the classical MmA bisimulation is an instance of
the general coalgebraic definition.

Theorem 6 If R ⊆ Q×Q′ is an F -bisimulation between coalgebras (Q, αQ)
and (Q′, αQ′) then R is a bisimulation between their corresponding MmA,
A = (Q, V, O, f, g, ) and A′ = (Q′, V, O, f ′, g′, ).
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If we want to prove statements like: “the union of a collection of bisimu-
lations is again a bisimulation”; “the quotient of a system with respect to a
bisimulation equivalence is again a system”; and: “the kernel of a homomor-
phism is a bisimulation equivalence” we need three basic constructions in
the category of F -systems: the formation of coproducts (sums), coequalizers,
and (weak) pullbacks. The first two constructions exist conform theorem 4.2
from [12]:

Theorem 7 Let F : Set → Set be any functor. In the category SetF of
F -coalgebras, all coproducts and coequalizers exist, and are constructed as
in Set.

As a corollary, we obtain directly that all coproducts and coequalizers
exist in the category of Mealy multiset automata.

Therefore we have to construct the pullbacks. Following and using some
results from [12], we have the following theorem:

Theorem 8 Let F : Set → Set be any functor, SetF the category of F -
coalgebras, and U : SetF → Set the forgetful functor.

1. If F preserves pullbacks, then pullbacks exist in SetF .

2. If F preserves weak pullbacks, and let f : (S, αS) → (T, αT ) and
g : (Q, αQ) → (T, αT ) be homomorphisms of F -coalgebras. Then the
pullback (P, π1, π2)of f and g in Set is a bisimulation on S and T .

3. The functor U : SetF → Set creates colimits. This means that any
type of colimit in SetF exists, and it is obtained by first constructing
the colimit in Set and next supplying it (in a unique way) with an
F -transition structure.

In order to obtain our desired construction, the only thing that we have
to do is to prove that our functor F introduced in the beginning of this
section preserves weak pullbacks.

Let f : S → T and g : Q → T be morphisms in Set, (P, π1, π2) a weak
pullback of f and g in Set (P = {(s, q) ∈ S × Q | f(s) = g(q)}), and our
functor F : Set→ Set which is defined by F (−) = (−×N 〈O〉)N〈V 〉; we have
to prove that (F (P ), F (π1), F (π2)) is a weak pullback of F (f) and F (g).
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Let us consider the following diagram

F (P )
F (π1 )
−−−−→ F (S)

F (π2)





y





y

F (f)

F (Q)
F (g)
−−−−→ F (T )

Since f ◦π1 = g◦π2, and F is a functor, we have F (f)◦F (π1) = F (g)◦F (π2),
and so the above diagram is commutative.

It remains to prove the property of universality, i.e. for all (P ′, p1, p2)
such that F (f) ◦ p1 = F (g) ◦ p2, there is a morphism h : P ′ → F (P ) such
that F (π1) ◦ h = p1, F (π2) ◦ h = p2. This means the commutativity of the
following diagram:

F (P )
F (π1)

- F (S)

P ′

p1

-

�

∃
h

F (Q)

F (π2)

?
F (g)

-

�

p2

F (T )

F (f)

?

Consider r ∈ P ′. It follows that p1(r) ∈ F (S), p2(r) ∈ F (Q). De-
note by pi

j(r)(a) the i-th component of pj(r)(a). From F (f) ◦ p1 =

F (g) ◦ p2 we obtain F (f)(p1(r)) = F (g)(p2(r)), and so
〈

f, idN〈O〉

〉

◦ p1(r) =
〈

g, idN〈O〉

〉

◦ p2(r). This means that for all a ∈ N 〈V 〉, we have (
〈

f, idN〈O〉

〉

◦
p1(r))(a) = (

〈

g, idN〈O〉

〉

◦ p2(r))(a), and so (f(p1
1(r)(a)), p2

1(r)(a)) =
(g(p1

2(r)(a)), p2
2(r)(a)). This later equality lead us to f(p1

1(r)(a)) =
g(p1

2(r)(a)) and p2
1(r)(a) = p2

2(r)(a). Since P contains all the pairs that
have the same image under f and g, we have (p1

1(r)(a), p1
2(r)(a)) ∈ P . This

enables us to say that (p1(r), p2(r)) ∈ F (P ).
The so-called “mediating morphism” that we need for the universality

property is h : P ′ → F (P ) defined by h(r) = (p1(r), p2(r)). We check
now that it satisfies the commutativity of the diagram. (F (π1) ◦ h)(r) =
F (π1)(h(r)) =

〈

π1, idN〈O〉

〉

◦ h(r) =
〈

π1, idN〈O〉

〉

◦ (p1(r), p2(r)) = p1(r) for
all r from P ′.

Similarly, it can be proved that F (π2) ◦ h = p2.
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Theorem 9 The functor (−×N 〈O〉)N〈V 〉 : Set→ Set preserves weak pull-
backs.

Combining this last theorem with the results of Section 5 in [12], we get
the following result:

Theorem 10 Let (S, αS), (T, αT ), (Q, αQ) be three coalgebras associated to
the functor (−×N 〈O〉)N〈V 〉 : Set→ Set. The following assertions are true:

1. The diagonal ∆S of a system S is a bisimulation.

2. Let (R, αR) be a bisimulation between systems S and T . The inverse
R−1 of R is a bisimulation between T and S.

3. The composition R◦R′ of two bisimulations R ⊆ S×T and R′ ⊆ T×Q
is a bisimulation between S and Q.

4. The union
⋃

k Rk of a family {Rk}k of bisimulations between systems S
and T is again a bisimulation. In particular, the greatest bisimulation
between S and T exists, and it is the union of all bisimulations.

5. The kernel K(f) of a homomorphism f : S → T is a bisimulation
equivalence.

6. Let f : S → T be a homomorphism. If R ⊆ S×S is a bisimulation on
S, then f(R) is a bisimulation on T .If R′ ⊆ T × T is a bisimulation
on T , then f−1(R′) is a bisimulation on S.

6 Conclusion and Related Work

The proposal of this paper is to present a class of automata able to work
with resources represented by multisets. Roughly speaking, a Mealy multiset
automata is a machine able to consume and produce multisets. Mealy mul-
tiset automata could be related to the multiset automata presented in [5]as
a particular accepting MmA having a “two letters” output alphabet. While
[5] deals with multiset grammars and Chomsky hierarchy, we are mainly
interested in algebraic, categorial and coalgebraic properties, emphasizing
on their bisimulations, observation, and behaviour. The results presented in
this paper guarantee useful properties of our natural computing automata,
including that the (relational) product of bisimulations is a bisimulation,
the largest bisimulation is an equivalence relation, and kernels of homomor-
phisms are always bisimulations. The link between MmA and P systems
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is initiated in [3], where the description of an elementary Mealy membrane
automata is based on Mealy multiset automata (see also [4]).

We give here only the first results regarding an algebraic and categor-
ical approach of Mealy multiset automata, and we begin to develop the
instruments for a further approach of molecular computing based on this
notions. The algebraic constructions are useful for defining and operating
with notions like bisimulation, observability and behaviour.

We have used elementary categorical language to model Mealy multiset
automata and their behaviour. The idea of this approach is that a categor-
ical formal language which is rich enough to describe and analyze various
aspects of complex systems should be applicable to membrane systems. The
first paper in category theory was by Eilenberg and Mac Lane in 1945 [8].
It aimed to describe (i) interaction and comparison within a given context
(topological spaces, groups, other algebraic structures, etc.) and (ii) in-
teractions between different contexts, for instance within the area of pure
mathematics known as algebraic topology, problems in the theory of spaces
are attacked by assigning various types of algebraic requirements to spaces,
thus translating the topological problem to a more tractable algebraic one.
Some links of category theory with the modelling of biological systems are
briefly explored in [9]. Some categorical aspects of the theory of hierarchical
systems are presented in [6].
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Abstract

We introduce some restricted models of symport/antiport P sys-
tems that are used as acceptors (respectively, generators) of sets of tu-
ples of nonnegative integers and show that they characterize precisely
the semilinear sets. Specifically, we prove that a set R ⊆ Nk is ac-
cepted (respectively, generated) by a restricted system if and only if R

is a semilinear set. We also show that “slight” extensions of the models
will allow them to accept (respectively, generate) nonsemilinear sets.
In fact, for these extensions, the emptiness problem is undecidable.

1 Introduction

A general problem of clear interest in the area of membrane computing
or P systems is to find classes of nonuniversal P systems that correspond

∗Corresponding author.
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to (i.e., characterize) known families of languages or subsets of Nk (where
N is the set of nonnegative integers, and k is a positive integer), and to
investigate their closure and decidability properties. For example, P system
characterizations of ET0L, bounded languages accepted by multihead finite
automata, and context-sensitive languages are known (see, e.g., [6, 8, 5,
1]). Here, we give characterizations of semilinear sets in terms of restricted
models of symport/antiport systems.

A popular model of a P system is the symport/antiport system first intro-
duced in [9]. It is a system whose rules closely resemble the way membranes
transport objects between themselves in a purely communicating manner.
Symport/antiport systems (SA systems) have rules of the form (u, out),
(v, in), and (u, out; v, in) where u, v are multisets that are represented as
strings (the order in which the symbols are written is not important, since
we are only interested in the multiplicities of each symbol). A rule of the
form (u, out) in membrane i sends the elements of u from membrane i out
to the membrane (directly) containing i. A rule of the form (v, in) in mem-
brane i transports the elements of v into membrane i from the membrane
enclosing i. Hence this rule can only be used when the elements of v exist in
the outer membrane. A rule of the form (u, out; v, in) simultaneously sends
u out of the membrane i while transporting v into membrane i. Hence this
rule cannot be applied unless membrane i contains the elements in u and the
membrane surrounding i contains the elements in v. The rules are applied
in a nondeterministic maximally parallel manner. In general, the number
of times a particular rule is applied at anyone step can be unbounded. We
require that the application of the rules is maximal: all objects, from all
membranes, which can be the subject of local evolution rules have to evolve
simultaneously. Note that there may be several maximal multisets of rules
applicable in a step, but we nondeterministically select only one such mul-
tiset to apply.

Formally an SA system is defined as

M = (V, H, µ, w1, . . . , w|H|, E, R1, . . . , R|H|, io)

where V is the set of objects (symbols) the system uses. H is the set of
membrane labels. The membrane structure of the system is defined in µ.
The initial multiset of objects within membrane i is represented by wi, and
the rules are given in the set Ri . E is the set of objects which can be found
within the environment, and io is the designated output membrane. (When
the system is used as a recognizer or acceptor, there is no need to specify io.)
A large number of papers have been written concerning symport/antiport
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systems. For example, it has been shown that “minimal” such systems (with
respect to the number of membranes, the number of objects, the maximum
“size” of the rules) are universal in the sense that they can simulate the
computation of Turing machines or, equivalently, counter machines. See
the P system website at http://psystems.disco.unimib.it for papers in sym-
port/antiport systems and in the general area of membrane computing, and
in particular the monograph [10]. In this paper, we introduce restricted
models of symport/antiport systems that are used as acceptors or genera-
tors of sets of tuples of nonnegative integers and show that they characterize
exactly the semilinear sets.

First, we look at systems that are acceptors. One model is called simple
SA. The system consists of k+1 membranes, arranged in a 2-level structure:
membranes m1, m2, .., mk (the input membranes) are at the same level and
enclosed in membrane mk+1 (the skin membrane). The set of objects is
V = F ∪ {o}, where F is a finite set of objects not containing the distin-
guished symbol o. The restriction is that in the rules of the forms (v, in)
and (u, out; v, in), v does not contain o’s. Thus, the number of o’s in each
membrane can only be decreased. The environment initially contains a fixed
(finite) multiset over F . The system accepts a k-tuple (n1, ..., nk) of non-
negative integers if, when the k input membranes are given on1 , ..., onk and
no o’s in membrane mk+1 (with some fixed strings w1, ..., wk+1 ∈ F ∗ in
membranes m1, ..., mk+1, respectively), the system halts (i.e., no rule in any
of the membranes is applicable). We show that a set R ⊆ Nk is accepted
by a simple SA if and only if it is a semilinear set. (This result general-
izes to the case when there is an infinite supply of o’s in the environment,
and the v’s can contain o’s in the rules in the skin membrane mk+1.) As
a consequence, the class of sets of tuples accepted by these SAs are closed
under union, intersection, and complementation. Moreover, the emptiness,
disjointness, containment, and equivalence problems for simple SAs are de-
cidable. When the model is generalized to a multi-level structure, the set of
tuples accepted need no longer be semilinear. In particular, suppose we have
a k-membrane SA, where membrane mi is enclosed in membrane mi+1 for
1 ≤ i ≤ k−1. Membrane m1 is the only input membrane and membrane mk

is the skin membrane. Again, in the rules (v, in) and (u, out; v, in), v does
not contain o’s. We call this model a k-membrane cascade SA. Note that
the system accepts a subset of N . We show that 3-membrane cascade SAs
can accept nonsemilinear subsets of N . We also prove that their emptiness
problem is undecidable by showing that they can simulate the computations
of two-counter machines.

The k-membrane cascade SA can be generalized. A k-membrane ex-
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tended cascade SA has a set of objects V = F ∪ Σr, where now the input
alphabet is Σr = {a1, ..., ar} (r ≥ 1). Again the rules are restricted in
that in the rules of the forms (v, in) and (u, out; v, in), v does not contain
any symbol in Σr. The environment initially contains only a fixed multiset
over F . Also, there are fixed strings w1, ..., wk ∈ F ∗ such that the system
starts with w1a

n1

1 ...anr

r in membrane m1 (the input membrane) and wi in
membrane mi for 2 ≤ i ≤ k. If the system halts, then we say that the
r-tuple (n1, ..., nr) is accepted. We show that a set R ⊆ N r is accepted by
a 1-membrane extended cascade SA if and only if it is semilinear. However,
2-membrane extended cascade SAs can accept nonsemilinear sets, and their
emptiness problem is undecidable, even for r = 2 (i.e., there are two symbols
in the input alphabet). Note that for the case r = 1 (i.e., Σ contains only a
single symbol), the set of unary numbers is semilinear (since this is a special
case of the result above for 2-level simple SA).

We then consider symport/antiport models that are used as genera-
tors. One such model is a 2-level symport/antiport system with membranes
m1, ..., mk, mk+1, where membranes m1, ..., mk are at the same level, and
they are enclosed in the skin membrane mk+1. There is an infinite supply of
o’s in the environment (but the initial multiplicities of symbols in F in the
environment are fixed). We require that for membranes m1, ..., mk, in the
rules of the forms (u, out) and (u, out, v, in), u does not contain o’s. Note
that there is no restriction on the rules in the skin membrane. We say that
(n1, ..., nk) is generated if, when started with no o’s in the system and fixed
wi ∈ F ∗ in membrane mi (1 ≤ i ≤ k + 1), the system halts with on1 , ..., onk

in membranes m1, ..., mk. We call this system a simple SA generator. We
show that a set R ⊆ Nk is generated by a simple SA generator if and only if
R is a semilinear set. Again, generalizing the model to have at least 3 levels
would allow it to generate a nonsemilinear set. In fact, for any recursively
enumerable (RE) set R, the set {2n | n ∈ R} can be accepted by a 3-level
system, while R can be accepted by a 4-level system.

We also look at a 1-membrane symport/antiport system with a set of
objects V = F ∪ Σr, where Σr = {a1, ..., ar}, and whose rules are restricted
so that in the rules of the forms (u, out) and (u, out; v, in), u does not contain
any symbol in Σr. Thus symbols in Σr can only be transported from the
environment into the membrane (note that, by the restriction, once these
symbols enter the membrane, they remain in the membrane). The system
starts with a fixed string w ∈ F ∗. The environment initially contains a fixed
multiset over F and an infinite supply of each ai (1 ≤ i ≤ r). We show that
the sets of r-tuples generated by these systems are exactly the semilinear
sets over N r. However, when there are 2 membranes, where again, the
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second (i.e., innermost) membrane cannot transport symbols in Σr into the
first (skin) membrane, the set of tuples generated by such a system need
not be semilinear. In fact, for any RE set R, the set {(2n, 0) | n ∈ R} can
be generated by a 2-membrane system with input alphabet Σ2, while the
set {(n, 0, 0) | n ∈ R} can be generated by a 2-membrane system with input
alphabet Σ3.

2 Restricted SA Acceptors and Semilinear Sets

We first introduce a restricted model of a symport/antiport system [9] which
is used as an acceptor of tuples of nonnegative integers. A simple SA P is
defined as follows:

1. The alphabet of objects is V = F ∪ {o}, where F is a finite set and o

is a distinguished object.

2. There are k + 1 membranes (k ≥ 1) arranged in a 2-level structure:
membranes m1, m2, .., mk (the input membranes) are at the same level
and enclosed in membrane mk+1 (the skin membrane).

3. At the start of the computation the k input membranes are given
on1 , ..., onk , respectively, for some nonnegative integers n1, ..., nk (the
skin membrane initially does not contain any o).

4. Also, at the start of the computation, there are fixed strings, i.e.,
multisets w1, ..., wk+1 ∈ F ∗ in membranes m1, ..., mk+1, respectively.
Thus, the wi’s do not contain any o.

5. The environment initially only contains a fixed (finite) multiset over
F . Of course, symbols that are exported to the environment from
the skin membrane during the computation can be retrieved from the
environment.

6. Each membrane has a set Ri of rules (some may be empty) The rules
are of the form:

(a) (u, out)

(b) (v, in)

(c) (u, out; v, in)
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where u, v ∈ V +. Rule of type (a) transports multiset u from the
membrane containing the rule into the surrounding membrane (if the
membrane contains u). Rule of type (b) imports multiset v from the
surrounding membrane into the membrane containing the rule (if the
surrounding membrane contains v). Rule of type (c) simultaneously
transports u to the surrounding membrane and imports v from the sur-
rounding membrane (if the membrane contains u and the surrounding
membrane contains v).

The restriction is:

In the rules of types (b) and (c), v does not contain o’s. This just
means that the number of o’s in any membrane can only be decreased
and cannot be increased.

7. As usual in a P system, the rules are applied in a nondeterministic
maximally parallel manner.

Notice that the fixed multisets over F given initially in the membranes as
well as in the environment are part of the specification of the simple SA P
(which we do not always explicitly state). We say that a tuple (n1, ..., nk) is
accepted by P if, when the k input membranes are given on1 , ..., onk respec-
tively, the system halts (i.e., none of the rules is applicable). The set of all
such tuples is denoted by R(P).

Simple SAs are intimately related to counter machines. Let M be a
nondeterministic multicounter machine all of whose counters are reversal-
bounded. A counter is reversal-bounded if the number of alternations be-
tween nondecreasing mode and nonincreasing mode during any computation
is at most a fixed number. The first k counters are input counters. We say
that M accepts (n1, ..., nk) if, when started in its start state with counter i

set to ni (1 ≤ i ≤ k) and the other counters to zero, M halts in an accepting
state with all counters zero. The set of all such tuples accepted by M is
denoted by R(M). We call M a reversal-bounded (multi) counter machine.

A special case is a counter machine with only k counters (the input coun-
ters) each of whose counters can only be decremented. Moreover, at every
step, the machine decrements exactly one counter. We call this machine a
decreasing counter machine.

We can augment a reversal-bounded multicounter machine with an un-
restricted counter, i.e., a free counter. This counter can make an unbounded
number of reversals. We call such a machine reversal-bounded counter ma-
chine with a free-counter.
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Convention: In our definition of counter machines above, acceptance is
by “accepting state”. Clearly, given a counter machine M, we can easily
construct an equivalent machine M′ which accepts if and only if it eventually
halts in some state (accepting or not). M′ simulates M faithfully. If M
enters an accepting state, then M′ halts. If M halts in a rejecting state,
say s, then M′ goes into an infinite loop by executing the following (where
c is some counter of the machine):

s : If counter c is nonzero then decrement c and go to state s else go to
state s

The reason we need the second mode of acceptance is that in our con-
structions characterizing the different SA systems by counter machines, the
equivalences are of the form: The SA halts (i.e., accepts) if and only if the
machine halts. All the machines discussed in the paper can easily be con-
verted to ones whose mode of acceptance is by halting. 2

Next we recall the definition of a semilinear set [3]. Let N be the set
of nonnegative integers and k be a positive integer. A subset R of Nk is a
linear set if there exist vectors v0, v1, . . . , vt in Nk such that

R = {v | v = v0 + m1v1 + · · · + mtvt, mi ∈ N}.

The vectors v0 (referred to as the constant vector) and v1, v2, . . . , vt (referred
to as the periods) are called the generators of the linear set R. The set
R ⊆ Nk is semilinear if it is a finite union of linear sets. The empty set is
a trivial (semi)linear set, where the set of generators is empty. Every finite
subset of Nk is semilinear – it is a finite union of linear sets whose generators
are constant vectors. It is also clear that the semilinear sets are closed under
(finite) union. It is also known that they are closed under complementation
and intersection.

Theorem 1 Let R ⊆ Nk. Then the following statements are equivalent:

1. R is a semilinear set.

2. R is accepted by a reversal-bounded counter machine with a free counter.

3. R is accepted by a reversal-bounded counter machine.

4. R is accepted by a decreasing counter machine.
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Proof. It is obvious that (4) implies (3) and (3) implies (2). From the def-
inition of a semilinear set, it is easy to construct, given a semilinear set R,
a decreasing counter machine M accepting R. Since M is nondeterminis-
tic, it sufficient to describe the construction of M when R is a linear set.
So suppose, R = {v | v = v0 + m1v1 + · · · + mtvt, mi ∈ N} ⊆ Nk, with
vi = (vi1, ..., vik) for 0 ≤ i ≤ t. M, when given (n1, ..., nk) in its counters,
applies the constant vector v0 to decrement the counters simultaneously by
v01, ..., v0k, respectively. Then M nondeterministically guesses the number
of times mi to apply vi to the counters (again, decreasing the counters si-
multaneously by the amounts mivi1, ..., mivik, respectively for 1 ≤ i ≤ t.
If all the counters become zero at the same time, M accepts. Thus, (1)
implies (4). That (2) implies (1) is a trivial consequence of a result in [4],
which showed that if a bounded language L ⊆ a∗1...a

∗
k (where a1, ..., ak are

distinct symbols and n1, ..., nk are nonnegative integers) is accepted by a
nondeterministic finite automaton augmented with reversal-bounded coun-
ters and one unrestricted counter, then the set {(n1, ..., nk) | an1

1 ...a
nk

k ∈ L}
is semilinear. 2

Lemma 2 Let P be a simple SA. Then R(P) can be accepted by a reversal-
bounded counter machine with a free counter M.

Proof. We construct a counter machine M with k + 1 counters to simulate
P. The intuitive idea behind the simulation is the following. The first k

counters are reversal-bounded (the input counters) and the last is the free
counter. Initially, the input counters are set to n1, ..., nk, respectively. The
free counter will keep track of the current number of o’s in the skin membrane
(at the start, there is none). The initial configuration (w1, ..., wk, wk+1) and
the rules (R1, ..., Rk+1) are stored in the finite-state control of M. The
finite-state control keeps track of the numbers of non-o symbols and their
distributions within the membranes and the environment (this can be done
since their total multiplicities remain the same (as ones initially given as
fixed constants in the definition of P) at any time, independent of the ni’s).
M simulates each nondeterministic maximally parallel step of P by sev-
eral moves. Clearly, because of the restrictions on the rules, the counters
keeping track of the multiplicities of o’s in the input membranes are only
decremented. Special care has to be taken when simulating a rule of type
either (u, out) or (u, out; v, in) when u contains multiple copies of o’s. In
order to tell whether such a rule is applicable or not, for each membrane
we associate a finite buffer of size d (where d is the maximum number of
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o’s that can be thrown out by a single rule in the membrane) to the finite
control of M to keep track of the first d o’s in the membrane while using
the counter of M associated with the membrane to hold the number of the
remaining o’s. By doing so, checking whether the above rule is applicable
can be done by examining the contents of the finite buffer associated with
the membrane in which the rule resides.

Now in a maximally parallel step, some (possibly all) of the input mem-
branes can transport o’s to the skin membrane and the skin membrane itself
can also transport some o’s to the environment. However, the total number
of o’s transferred from the input membranes to the skin membrane and the
total number of o’s transferred from the skin membrane to the environment
may have no relationship, so the free counter may be decremented and in-
cremented an unbounded number of times during the computation. This is
the reason why we need a free counter. It follows from the description that
M can simulate the computation of P. 2

We now prove the converse of Lemma 2.

Lemma 3 Let M be a reversal-bounded counter machine with a free counter.
Then R(M) can be accepted by a simple SA P.

Proof. By the proof of Theorem 1, we may assume that M is a decreasing
counter machine with k counters accepting R(M) ⊆ Nk. Thus M, when
started in its initial state with n1, ..., nk in the counters halts in an accepting
state if (n1, ..., nk) is in R(M). Moreover, at each step of the computation,
before it halts, M decrements exactly one counter (there are no increments).

We will construct a simple SA P simulating M. As defined, P will have
a 2-level structure with k input membranes m1, ..., mk (at the same level) en-
closed by the skin membrane mk+1. The k input membranes will keep track
of the values of the counters. The construction of P follows the construction
in [11] where a two-level SA system is shown to simulate a multicounter ma-
chine. In the construction, each of the inner membranes represents a counter
and the multiplicity of the distinguished symbol o within each membrane
represents the value of that counter. The rules associated with each sub-
tract instruction in the construction adhere to the restrictions required by
a simple SA system. Since M has no increment instructions, the associated
P, by the construction in [11], is a simple SA. We omit the details. 2

From Theorem 1 and Lemmas 2 and 3, we have:

Theorem 4 Let R ⊆ Nk. Then the following statements are equivalent:
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1. R is a semilinear set.

2. R is accepted by a reversal-bounded counter machine with a free counter.

3. R is accepted by a reversal-bounded counter machine.

4. R is accepted by a decreasing counter machine.

5. R is accepted by a simple SA.

Note that in a simple SA, the number of o’s in the membranes cannot
be increased, since in the rules of the form (v, in) and (u, out; v, in), we do
not allow v to contain o’s. We can generalize the model. The environment
can have an infinite supply of o’s, and in the rules of the forms (v, in) and
(u, out; v, in) in the skin membrane, v is in F+o∗. Thus v can contain o’s
but must contain at least one symbol in F . (We do not allow v to only
contain o’s since, otherwise, the system will not halt because there is an
infinite supply of o’s in the environment.) Thus the number of o’s in the
skin membrane can increase during the computation by importing o’s from
the environment. Call this model simple SA+. Clearly the construction in
Lemma 2 still works when P is a simple SA+. The only modification is
that in the simulation of a maximally parallel step of P by M, we also need
to consider the o’s that may be brought into the skin membrane from the
environment by the (v, in) and (u, out; v, in) rules. Thus, we have:

Corollary 5 Let R ⊆ Nk. Then the following statements are equivalent:
items (1), (2), (3), (4), (5) of Theorem 4, and (6): R is accepted by a simple
SA+.

The following corollary follows from known results concerning semilinear
sets.

Corollary 6 Let k be any positive integer. Then:

1. The class of subsets of Nk accepted by simple SAs is closed under
union, intersection, and complementation.

2. The membership, disjointness, containment, and equivalence problems
for simple SAs accepting subsets of Nk are decidable.
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3 Cascade Counter Machines and Cascade SAs

In this section, we will show that Theorem 4 does not generalize to the case
when the simple SA has a 3-level structure. In particular, consider a simple
SA with only three membranes m1, m2, m3, where membrane m1 is enclosed
in m2, and m2 is enclosed in m3 (the skin membrane). Initially, membrane
m1 contains the input on. The same restriction (i.e., in the rules of the
forms (v, in) and (u, out; v, in), v does contain o’s) applies. We will show
that such a system can accept a nonsemilinear set. In fact, the emptiness
problem for such systems is undecidable. To facilitate the proofs, we first
introduce the notion of cascade counter machines.

3.1 Cascade Counter Machines

A k-counter cascade machine M is a finite-state machine with k counters,
c1, ..., ck. The instructions of M are of the following forms:

s → (s′, ci := ci − 1; ci+1 := ci+1 + 1) (decrement ci then increment ci+1)
s → (s′ if ci is zero else s′′) (test if ci = 0)
s → (s′, ck := ck − 1) (counter ck can be independently decremented)

Notice that in the above, it is implicit that M cannot increment c1 (there is
no such instruction). We say that a nonnegative integer n is accepted if M,
when started in its initial state with counter values (n, 0, ..., 0) eventually
enters an accepting state.

We first show that the emptiness problem for deterministic 3-counter
cascade machines is undecidable by showing how a 3-counter cascade ma-
chine with initial counter values (n, 0, 0) can simulate the computation of
a deterministic (unrestricted) 2-counter machine with intial counter values
(0, 0). The former accepts accepts some n if and only if the latter halts.
The result then follows from the undecidability of the halting problem for
2-counter machines [7].

So suppose that M is a deterministic (unrestricted) 2-counter machine.
We show that M can be simulated by a deterministic 3-counter cascade ma-
chine M′ with counters c1, c2, c3. The two counters x1 and x2 of M are sim-
ulated by c2 and c3 of M′, respectively. Clearly, testing if counter xi is zero
for i = 1, 2 can be directly simulated in M′. Incrementing/decrementing
counters x1 and x2 of M can also be simulated in M′:

1. When M increments x1, M′ performs the following: Decrement c1,
increment c2.
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2. When M increments x2, M′ performs the following: Decrement c1,
increment c2, decrement c2, increment c3.

3. When M decrements x1, M
′ performs the following: Decrement c2,

increment c3, decrement c3.

4. When M decrements x2, M
′ also decrements c3.

During the simulation, if c1 is zero when an instruction being simulated calls
for decrementing c1, M

′ rejects. Note that all state transitions in M are
simulated faithfully by M′. It follows that we can construct M′ so that it
accepts the input n (initially given in c1) if and only if n is “big” enough to
allow the simulation of M to completion. If M does not halt or n is not big
enough to carry out the simulation (at some point), M′ goes into an infi-
nite loop or rejects. It follows that the emptiness problem for deterministic
3-counter cascade machines is undecidable.

Example. We now give an example of a deterministic 3-counter cascade
machine M accepting a nonsemilinear set. Starting with c1 = n, c2 = 0, c3 =
0,

1. If c1 is zero, M rejects.

2. M configures the counters to contain: c1 = n − 1, c2 = 0, c3 = 1.

3. If c1 is zero, M accepts.

4. Set k = 1.

5. Starting with values: c1 = n−(1+3+...+(2k−1)), c2 = 0, c3 = (2k−1),

(*) M iteratively decrements c3 by 1 while decrementing c1 by 1 and
incrementing c2 by 1 until c3 = 0. Then M decrements c1 by 2 and
increments c2 by 2 (this is done in two steps). After that, M iteratively
decrements c2 by 1 while incrementing c3 by 1 until c2 = 0.
– If c1 becomes zero before the completion of (*), M rejects.
– If c1 = 0 after the completion of (*), M accepts, else M sets k :=
k + 1 and goes back to (*).

Clearly, the values of the counters when k becomes k + 1 are: c1 = n −
(1 + 3 + ... + (2k − 1) + (2k + 1)) = n − (k + 1)2, c2 = 0, c3 = (2k + 1). It
follows that M can be constructed to accept the set {n2 | n ≥ 1}, which is
not semilinear. 2
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From the above discussion and example, we have:

Theorem 7 Deterministic 3-counter cascade machines can accept nonsemi-
linear sets. Moreover, their emptiness problem is undecidable.

Remark 1. The construction of the deterministic 3-counter cascade ma-
chine in the example above can be modified to accept the set R1 = {2n2 | n ≥

1}. Now define for eack k ≥ 1, the set Rk = {2n2k

| n ≥ 1}. One can show
by essentially iterating the construction in the example that Rk can be ac-
cepted by a deterministic (2 + k)-counter cascade machine. We believe (but
have no proof at this time), that the Rk’s form an infinite hierarchy: Rk+1

can be accepted by a deterministic (2 + k)-counter cascade machine but
cannot be accepted by any deterministic or nondeterministic (2 + (k − 1))-
counter cascade machine. Note that 1- and 2- counter cascade machines are
equivalent — both accept exactly the semilinear sets. 2

It is interesting to observe that for a k-counter cascade machine M,
if counter c1 cannot be tested for zero, then either R(M) = ∅ (if M never
enters an accepting state regardless of the input initially given in c1) or there
exists an m ∈ N such that R(M) = {n | n ≥ m, n ∈ N} (m is the smallest
input for which M accepts). Hence, for cascade counter machines lacking
the capability of testing counter c1 for zero, they accept only semilinear
sets. The emptiness problem, nevertheless, remains undecidable for such a
restricted class of cascade counter machines, implying that the semilinear
sets associated with such machines are not effective.

We conclude this section by noting that Theorem 7 is not true for (deter-
ministic or nondeterministic) 2-counter cascade machines. In fact, consider
a nondeterministic machine M which has k + 1 counters, where the first
k counters are initially set to input values n1, ..., nk, respectively, and the
last counter set to zero. The computation is restricted in that the first
k counters can only be decremented, but the last counter can be decre-
mented/incremented independently. It follows from Theorem 1 that these
machines accept exactly the semiliner sets.

3.2 Cascade SAs

A cascade SA has k membranes m1, ..., mk (for some k) that are nested:
For 1 ≤ i ≤ k − 1, membrane mi is enclosed in membrane mi+1. The
input membrane, m1, initially contains on for some n. Again, in the rules of
the forms (v, in) and (u, out; v, in), v does not contain o’s. There are fixed
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multisets w1, ..., wk not containing o’s in membranes m1, ..., mk initially. The
environment initially contains a fixed multiset of symbols.

The connection between cascade counter machines and cascade SAs is
given by the following theorem.

Theorem 8 Let k ≥ 1 be a positive integer. A set Q ⊆ N is accepted by
a k-membrane cascade SA if and only if it can be accepted by a k-counter
cascade machine.

Proof. Let P be a k-membrane cascade SA. We construct an equivalent k-
counter cascade machine M. We associate a counter ci for every membrane
mi to keep track of the number of o’s in membrane mi during the computa-
tion. The construction of M simulating P is straightforward, following the
strategy in the proof of Lemma 2.

We now prove the converse. Let M be a k-counter cascade machine.
For notational convenience we will assume the program instructions for M
are labeled l0, l1, . . . , ln and begin with instruction l0. We also assume they
are written in the form li : (SUB(r), ls, lt) meaning that when instruction
li is executed, counter r is decremented. If counter r was initially positive
(meaning it was able to be decremented), the machine will next execute the
instruction ls, otherwise it will execute the instruction lt. Also, since M
is a cascade counter machine, each decrement from counter r where r < k

must be followed by an instruction which increments the counter r + 1.
Hence, we can incorporate each increment instruction into its preceding
decrement instruction. (In the case where we decrement counter r and r =
k, no increment instruction follows since the decremented value is thrown
out of the system.) In this way we can consider the program for M to
consist entirely of decrement instructions. We now construct an equivalent
k-membrane cascade SA P which simulates each decrement instruction of
M. The membrane structure of P is a set of nested membranes which each
correspond to a counter in M. The skin membrane also acts as program
control membrane. Formally, the simulation occurs by creating the following
cascade SA membrane system from a given cascade counter machine:

P = (V, H, µ, wm1
, . . . , wmk

, E, Rm1
, . . . , Rmk

)

where

V = {li1, li2, li3, li4, dij |li is an instruction label of the form
li : (SUB(r), ls, lt) where r 6= k and 0 ≤ j ≤ 2(k − r) + 1} ∪
{li1, li2, li3|li is an instruction label of the form
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li : (SUB(r), lj , ls) where r = k} ∪
{d0, d1} ∪
{c, c′, c1, . . . , cm} ∪
{o}

H = {m1, m2, . . . , mk}
µ = [mk

[mk−1
. . . [m1

]m1
. . . ]mk−1

]mk

wm1
= c1o

n

wmi
= ci for all 1 < i < k

wmk
= l01ck (since l0 is the first instruction to execute)

E = one copy of each element in V except o and l01

The rule sets (Rm1
, . . . , Rmk

) are created based on the cascade machine’s
program. Initially we create the rule (d0, out; d1, in) within Rmk

. For each
rule of the form li : (SUB(r), ls, lt) where r 6= k we add the following rules:

1. Rmk
contains:

(a) (li1, out; li2cd0di0, in)

(b) (dij , out; di(j+1), in) where 0 ≤ j ≤ 2(k − r)

(c) (d1di[2(k−r)+1], out; li4c
′, in)

(d) (li2d1, out; li3, in)

(e) (li3cdi[2(k−r)+1], out; ls1, in)

(f) (li2li4, out; lt1, in)

(g) (cc′, out)

2. Rmn
where k ≥ n > r contains:

(a) (li2c, in)

(b) (li2cr, out)

(c) (li3cr, in)

(d) (li3c, out)

(e) (li4c
′, in)

(f) (li2li4, out)

(g) (cc′, out)

3. Rmr
contains:

(a) (cr, out; li2c, in)
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(b) (li2o, out)

(c) (li3cr, in)

(d) (li3c, out)

(e) (li2, out; crc
′, in)

(f) (cc′, out)

For a rule of the form li : (SUB(r), ls, lt) where r = k we create the
following rules:

4. Rmr
= Rmk

contains:

(a) (li1, out; li2d0, in)

(b) (li2o, out; li3, in)

(c) (li3d1, out; ls1, in)

(d) (li2d1, out; lt1, in)

Informally, the above simulation operates as follows. The process of
simulating a single subtract instruction li : (SUB(r), ls, lt) if r 6= k begins
by the presence of the object li1 within the outermost membrane (mk).
This object is used to bring in the necessary execution objects li2, c, d0, and
di0 using rule 1a. The objects li2 and c are used cooperatively and are
drawn deeper through the membrane hierarchy until they have reached the
membrane mr+1. Here they are drawn into membrane mr while the object
cr is thrown out.

If membrane mr contains an o object (meaning counter r is not empty)
the objects li2 and o are thrown out into membrane mr+1. This simulates
both the current subtract instruction along with the add instruction we
know must follow. Now, the objects li2 and cr are used cooperatively and
are thrown out of each membrane until they located in the skin membrane.

While this has been occurring, the delay objects in the skin membrane
have been being incremented. The d objects are delay objects and are used
to delay certain execution steps. During each step of computation, their
subscripts are incremented by one. The object d0 only changes to d1 to delay
an action for a single step while the object di0 increments to di[2(k−r)+1]. This
number (2(k − r) + 1) corresponds to the number of steps plus one that li2
will take to travel to membrane r and back if membrane r contains a o. This
allows us to determine whether the object li2 is stuck in membrane r.

If the membrane mr contains an o (meaning counter r is not zero),
objects li2 and cr will return to the skin membrane in 2(k − r) steps and
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rule 1d is applicable before di[2(k−r)+1] has been brought into the membrane.
So, li2 and d2 are thrown out into the environment and object li3 is brought
into the system. Now the objects c and cr must be swapped to their original
positions. This occurs by having objects li3 and cr work cooperatively to
move deeper through the membranes to membrane r and then objects li3
and c work cooperatively to be thrown out of each membrane until they
return to the skin membrane. At this point, everything is completed and
all objects are in the correct location. So objects li3, c, and di[2(k−r)+1] are
thrown out into the environment while object ls1 is brought in. At this
point, instruction li is complete and instruction ls will execute next.

If the objects li2 and cr have not returned to the skin membrane after
2(k − r) + 1 steps, then the membrane r must not have contained an o.
At this point, the objects d1 and di[2(k−r)+1] are thrown out of the skin
membrane and objects li4 and c′ are brought in. Now, objects li4 and c′ work
cooperatively to move deeper through the membranes to membrane mr+1.
Object c′ is drawn into membrane mr while object li2 is thrown out. At this
point, membrane mr contains the objects c and c′ while membrane mr+1

contains the objects li2 and li4. These pairs of objects work cooperatively
to be thrown out of each membrane. The pair li2li4 will get to the skin
membrane a step ahead of the pair cc′. The objects li2 and li4 are thrown
out into the environment while bringing in the object lt1. During the next
step the pair cc′ will be thrown out into the environment. At this point,
instruction li is complete and instruction lt will execute next.

If the instruction to be simulated is of the form li : (SUB(r), ls, lt) where
r = k, the simulation is much simpler. In this case, since the instruction is
immediately placed within the counter membrane, only a single delay object
is needed along with the instruction object li2. If membrane k contains an
o, it is thrown out during the next step along with the object li2 and the
object li3 is brought in allowing the final step to clean up and bring in the
instruction object ls1. If li2 is still in membrane m after one step, the delay
object can cooperate with object li2 to bring in the next instruction object
lt1.

Consequently, these cascade SA rules simulate the operation of M . 2

From Theorems 7 and 8, we have,

Corollary 9 3-membrane cascade SAs can accept nonsemilinear sets. More-
over, their emptiness problem is undecidable.

A careful examination of the proof of Theorem 8 reveals that the degree
of maximal parallelism for the constructed SA is finite (i.e., at every step
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of the computation, the size of the multiset of applicable rules is bounded
by some fixed integer). Hence, Corollary 9 holds even if the 3-membrane
cascade SAs have bounded degree of maximal parallelism.

4 Another SA Acceptor Characterizing the Semi-

linear Sets

The k-membrane cascade SA of the previous section can be generalized. A
k-membrane extended cascade SA has a set of objects V = F ∪ Σr, where
now the input alphabet is Σr = {a1, ..., ar} (r ≥ 1). Again the rules are
restricted in that in the rules of the forms (v, in) and (u, out; v, in), v does not
contain any symbol in Σr. The environment initially contains only F . There
are fixed strings wi ∈ F ∗ such that the system starts with w1a

n1

1 ...anr

r in
membrane m1 (the input membrane) and wi in membrane mi for 2 ≤ i ≤ k.
If the system halts, then we say that the r-tuple (n1, ..., nr) is accepted.

Next consider a finite-state device M with a finite-state control and a
“bag” that can hold a multiset of symbols. M starts in its initial state with
the bag containing a multiset an1

1 ...anr

r . The instructions of M are of the
following form:

q → (q′ delete ai from the bag if it is in the bag else q′′)

Thus, from state q, M removes ai from the bag if it is in the bag and goes
to state q′; otherwise, M goes to state q′′. The initial multiset in the bag
is accepted if M enters an accepting state. We call this device a 1-bag
automaton. A 1-bag automaton is like a multiset automaton studied in [2].
Although the notion is not the same, the idea is quite similar.

We can generalize the 1-bag automaton to a k-bag automaton, where
now, a symbol is deleted from bag i if and only if it is exported into bag
i + 1. A symbol can be deleted from the k-th bag independently.

Lemma 10 A set R ⊆ N r is accepted by a 1-bag automaton if and only if
it is accepted by a decreasing r-counter machine.

Proof. Clearly, deleting ai from the bag corresponds to decrementing counter
i (1 ≤ i ≤ r). 2

Theorem 11 Let k ≥ 1. A set of tuples R is accepted by a k-membrane
extended cascade SA if and only if R is accepted by a k-bag automaton.
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Proof. The proof for the ”only if” part is a straightforward generalization of
the proof of the first part of Theorem 1 (which was for k+1). For the second
part, let M be a k-bag automaton. We construct a k-membrane extended
cascade SA P equivalent to M, in the same manner as the construction of
Theorem 8 where each membrane corresponds to a bag. The rules can be
created by mapping each subtraction rule of the form li : (SUB(r), ls, lt) to
the bag rule of the form q → (q′ delete ai from the bag if it is in the bag
else q′′) as follows. The instruction labels of a counter machine can also be
viewed as states so we can say li corresponds to q, ls corresponds to q′, and
lt corresponds to q′′. The bag associated with q corresponds to the counter
r. The additional difference is that the bag also specifies the object (ai) in Σ
which should be thrown out of the bag. Hence, we can create P to simulate
M using the techniques in Theorem 8 and the above mapping along with the
following changes. The set V will now additionally contain the set of objects
{a1, . . . , ar} rather than the single object {o}. The set wm1

= c1a
n1

1 ...anr

r

rather than c1o
n. Also, the rules 3b: (li2o, out) and 4b: (li2o, out; li3, in)

will be changed to (q2ai, out) and (q2ai, out; s3, in) respectively. Clearly this
k-membrane extended cascade SA now simulates a k-bag automaton. 2

Theorem 12 A set R ⊆ N r is accepted by a 1-membrane extended cascade
SA if and only if it is a semilinear set.

Proof. Let P be a 1-membrane extended cascade SA with input alphabet
Σr. We can easily construct a decreasing r-counter machine M which, when
the counters are initially given n1, ..., nr, simulates the computation of P on
wan1

1 ...anr

r . The simulation is straightforward, as in Lemma 2. It follows
from Theorem 1 that R(P) is a semilinear set.

For the converse, by Lemma 10, we need only show that a 1-bag automa-
ton can be simulated by a 1-membrane extended cascade SA. This follows
from Theorem 11. 2

Let Σ2 = {a1, a2}. Using the ideas in the example of the previous section,
we can easily construct a 2-bag automaton accepting the nonsemilinear set
{(n1, n2) | n1, n2 ≥ 0, n1 + n2 = m2 for some m ≥ 1}. It is also easy to
construct a 2-bag automaton with input alphabet Σ2 that simulates the
computations of a 2-counter automaton. The values of the counters are
represented in the second bag. The number of a1’s (resp., a2’s) in that bag
denotes the value of the first (resp., second) counter. The a1’s and the a2’s
in the first bag are the suppliers (sources) of the “increments” for the two
counters in the second bag.
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From the above discussion and Theorem 11, we have,

Theorem 13 2-bag automata (and, hence, 2-membrane extended cascade
SAs) can accept nonsemilinear sets. Moreover, their emptiness problem is
undecidable.

5 Restricted Symport/Antiport Systems as Gen-
erators

In this section, we look at symport/antiport systems used as generators of
tuples. We only state the results; the proofs will be given in the full paper.

In the definition of a k-membrane cascade SA, the input on is initially
given in m1 (the innermost membrane) with no o’s in the other membranes.
The computation is such that the o’s can only be exported from membrane
mi to membrane mi+1 (or to the environment in the case of mk).

Now consider a model P which is a generator of tuples and the cascading
(flow of o’s) is from the environment to the innermost membrane. More
precisely, let m1, ..., mk be the membranes of P, where mi is enclosed in
mi+1 for 1 ≤ i ≤ k − 1 (m1 is the innermost membrane and mk is the skin
membrane). Initially, there are no o’s in the membranes, but there is an
infinite supply of o’s in the environment. There may also be a finite supply
of other symbols in the environment initially. The rules of the forms (u, out)
and (u, out; v, in) are restricted in that u cannot contain o’s. Thus the o’s
can only be moved from the environment to membrane mk and from mi+1 to
mi for 1 ≤ i ≤ k − 1. (Note that once o’s reach membrane m1, they remain
there.) The set of numbers generated by P is G(P) = { n | P halts with
on in the skin membrane mk}. It is important to point out that the skin
membrane is the output membrane. We call this new model a k-membrane
reverse-cascade SA.

Theorem 14 1. 1-membrane and 2-membrane reverse-cascade SAs are
equivalent, and they generate exactly the semilinear sets over N .

2. 3-membrane reverse-cascade SAs can generate nonsemilinear sets. In
fact, for any recursively enumerable (RE) set R ⊆ N , the set {2n | n ∈
R} can be generated by a 3-membrane reverse-cascade SA. (Hence,
their emptiness problem is undecidable.)

3. Any RE set R can be generated by a 4-membrane reverse-cascade SA.
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The proof of Theorem 14 involves the use of a counter machine similar
to the k-counter cascade machine in Section 3. Define a k-counter reverse-
cascade machine M as a nondeterministic machine with k counters c1, ..., ck.
M starts in its initial state with all counters zero. As usual, the counters
can be incremented/decremented and tested for zero but with the following
restrictions:

1. If counter ci+1 is decremented it must be followed by an increment of
counter ci for 1 ≤ i ≤ k − 1, and this is the only way counter ci can
be incremented.

2. Counter ck can be incremented independently.

3. Counter c1 cannot be decremented. (Thus, c1 is nondecreasing, hence,
essentially useless. The reason is that once it becomes positive, it will
remain positive, and can no longer affect the computation. We include
this counter for convenience.)

We say that M generates a nonnegative integer n if it halts with value n in
counter ck, and the set of all such numbers generated is the set generated
by M.

It can be shown that for any k ≥ 1, a set R ⊆ N is generated by a
k-membrane reverse-cascade SA if and only if it can be generated by a k-
counter reverse-cascade machine. Then to prove items (1), (2), and (3) of
Theorem 14, we need only show that they hold for 1-counter/2-counter, 3-
counter, and 4-counter reverse-cascade machines, respectively.

Remark 2. We believe that the 4 membranes in Theorem 14, item (3) is
best possible. We think that there are RE sets (even recursive sets) that
cannot be generated by 3-counter reverse-cascade machines based on the
following discussion.

By definition, in a 3-counter reverse-cascade machine M, with three
counters, c1, c2, c3, counter c1 cannot be decremented. So, in fact, the com-
putation of M can be simulated by a machine M′ with only two counters:
d1, d2. Again, the only restriction is that if d2 is decremented, it must be
followed by an increment of d1, and this is the only way d1 can be incre-
mented. But now, we allow d1 to be decremented independently and, as
before, d2 can be incremented independently.

We conjecture that there is an RE set (even a recursive set) that cannot
be generated by a 2-counter machine M′ as defined above. (Note that by
definition, the generated number is in counter d2 when the machine halts.)
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However, we have no formal proof at this time. 2

We can generalize the reverse-cascade SA by using, instead of only one
input symbol o, a set of symbols Σr = {a1, ..., ar} as input symbols, again
with the restriction that these symbols can only be moved from the envi-
ronment to membrane mk and from mi+1 to mi for 1 ≤ i ≤ k − 1. Now
the system generates a set of r-tuples of nonnegative integers in the skin
membrane when it halts. We can prove:

Theorem 15 1. 1-membrane reverse-cascade SAs with input alphabet
Σr = {a1, ..., ar} generate exactly the semilinear sets over N r.

2. 2-membrane reverse-cascade SAs with input alphabet Σ2 = {a1, a2}
can generate nonsemilinear sets over N2. In fact, for any RE set R,
the set {(2n, 0) | n ∈ R} can be generated by a 2-membrane reverse-
cascade SA with input alphabet Σ2.

3. For any RE set R, the set {(n, 0) | n ∈ R} can be generated by a
3-membrane reverse-cascade SA with input alphabet Σ2.

4. For any RE set R, the set {(n, 0, 0) | n ∈ R} can be generated by a
2-membrane reverse-cascade SA with input alphabet Σ3.

Remark 3. Again, as in Remark 2, we believe that Theorem 15, item (3),
does not hold for 2-membrane reverse-cascade SAs with input alphabet Σ2.

2

In the definition of a reverse-cascade SA, the skin membrane is the output
membrane. We now consider the model where the output membrane is the
innermost membrane m1 (and not the skin membrane). Similar to Theorem
14, we can prove the following (but item (3) is weaker):

Theorem 16 Under the assumption that the output membrane is the in-
nermost membrane m1 (and not the skin membrane), we have:

1. 1-membrane and 2-membrane reverse-cascade SAs are equivalent, and
they generate exactly the semilinear sets over N .

2. 3-membrane reverse-cascade SAs can generate nonsemilinear sets (e.g.,
the set {n2 | n ≥ 1}). Moreover, their emptiness problem is undecid-
able.
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3. Any RE set R can be generated by a 5-membrane reverse-cascade SA.

Remark 4. It does not seem that item (3) of the above theorem holds for
a 4-membrane reverse-cascade SA, but we have no proof at this rime. 2

Finally, consider a 2-level symport/antiport system P has membranes
m1, m1, ..., mk+1, where m1, ..., mk are at the same level, and they are en-
closed in the skin membrane mk+1. The environment contains F initially
and an infinite supply of o’s. We require that for membranes m1, ..., mk,
in the rules of the forms (u, out) and (u, out, v, in), u does not contain o’s.
Note that there is no restriction on the rules in the skin membrane. For this
system, we say that (n1, ..., nk) is generated if, when P is started with no
o’s in the system and fixed wi ∈ F ∗ in mi (1 ≤ i ≤ k + 1), P halts with
on1 , ..., onk in membranes m1, ..., mk. Call the system just described a simple
SA generator. We can show the following:

Theorem 17 A set R ⊆ Nk is generated by a simple SA generator if and
only if R is a semilinear set.

The theorem above no longer holds when the simple SA generator is
extended to a 3-level structure, as Theorem 16, item (2) shows.

6 Conclusion

In this paper, we introduced restricted models of symport/antiport P sys-
tems and proved that they characterize precisely the semilinear sets. We also
showed that “slight” generalizations of the models allowed them to accept
nonsemilinear sets, and made their emptiness problem undecidable. We also
looked at related models that are used as generators of sets of tuples. Some
models generate exactly the semilinear sets; others generate the recursively
enumerable sets. We mentioned some interesting open questions in Remarks
1-4.
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Abstract

Some features capturing the computational completeness of P sys-
tems with maximal parallelism, priorities or zero-test using symbol
objects are studied through Petri nets. The obtained results are not
limited to P systems.

1 Introduction

Membrane systems (also called P systems) are a new class of distributed
and parallel theoretical computing devices introduced in [17]. In the semi-
nal paper the author considers systems based on a hierarchically arranged,
finite cell-structure consisting of several cell-membranes embedded in a main
membrane called the skin. The membranes delimit regions where objects,
elements of a finite set, and evolution rules can be placed.

In [17] the author examines three ways to view P systems: transition,
rewriting and splicing P systems. Starting from these, several variants were
considered [24, 18]. These variant can be divided in two main categories: P
systems using symbol objects and P systems using string objects. Several
proofs of computationally complete P systems using symbol objects are a
simulation of Program machines.

In this research we tried to discover and study the principles underlying
the P systems using symbol objects that happen to be computationally
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complete. We focused our attention on the processes of these systems and
we used Petri nets as tool for our investigations. Links between P systems
and Petri nets have been already investigated [25, 20, 11].

The results obtained by us are not limited to P systems.

2 Basic Definitions

We assume the reader to have familiarity with basic concepts of formal
language theory [10], in particular with the topic of P systems [18], Petri
nets [21] and program machines [14]. In the following subsections we recall
particular aspects relevant to our presentation.

2.1 General

We denote with N the set of natural numbers while N0 = {0} ∪ N. We
use N0RE to denote the family of recursively enumerable sets of natural
numbers. For k ∈ N0, Nk ·RE equals the family of recursively enumerable
sets with elements greater or equal than k.

Let V be a finite set of objects. With V ∗ we indicate the free monoid
generated by V with the operation of concatenation, λ indicates the empty
word. A multiset (over V ) is a function M : V → N0 ∪ {+∞}; for a ∈ V ,
M(a) defines the multiplicity of a in the multiset M . We will say that
an element a of a multiset M has infinite multiplicity if M(a) = +∞. In
case the multiplicity of an element of a multiset is 1 we will indicate just
the element, otherwise (a, M(a)) is indicated. The support of a multiset
M is the set supp(M) = {a ∈ V | M(a) > 0}. The size of a multiset is
defined by the function | · | : (V → N0 ∪ +{∞}) → N0 ∪ {+∞}, where for
M multiset over V , |M | =

∑
a∈supp(M) M(a). The symbol φ indicates the

empty multiset, that is the multiset whose support is the empty set.
Let M1, M2 : V → N0 ∪ {+∞} be two multisets. The union of M1 and

M2 is the multiset M1 ∪ M2 : V → N0 ∪ +{∞} defined by (M1 ∪ M2)(a) =
M1(a) + M2(a), for all a ∈ V . The difference M1\M2 is here defined only
when M2 is included in M1 (which means that M1(a) ≥ M2(a) for all a ∈ V )
and it is the multiset M1\M2 : V → N0 ∪ {+∞} given by (M1\M2)(a) =
M1(a)−M2(a) for all a ∈ V . Of course, if M1(a) = +∞ and M2(a) is finite,
then M1(a)\M2(a) = +∞. If M2(a) = +∞, then M1(a)\M2(a) = 0.
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2.2 P Systems

In this subsection we will not give the definition of a specific P system, we
will give a general definition for P systems whose content of the membrane
compartments are multisets of objects.

Let us consider the construct Π = (V, µ, L1, . . . , Lm, R, fin), where:

V is a set of objects;

µ = (N, E) is a directed graph underlying Π. The set N ⊂ N contains
vertices, for simplicity we define N = {1, . . . , m}. Each vertex in N

defines a membrane of Π. The set E ⊆ N × N defines directed edges
between vertices indicated by (i, j).

Li over V → N0 ∪{+∞} are the multisets associated to membranes i ∈ N ,
they define the input of the system. If an object belongs to the support
of a multiset associated to a membrane, then we will say that the object
is present into the membrane.

R is a finite sets of rules, that is quadruples of the form (αi, βi; γj , δj)
where each α, β, γ and δ are (possibly empty) multisets over V and
i, j ∈ N . If Mi and Mj are the multisets associated to membranes i

and j respectively, then the application of (αi, βi; γj , δj) ∈ R changes
Mi into M ′

i and Mj into M ′

j such that: M ′

i = Mi\αi ∪ βi and M ′

j =
Mj\δj ∪ γj .

fin ∈ N defines the final membrane indicating the multiset output of the
system when a certain condition is met. This condition can be, for
instance, the impossibility to apply any rule (as in P systems with
symport/antiport [16, 12, 8, 2, 23]) or the presence of an object in a
specific membrane (as in conformon-P systems [6]).

Let us clarify how the rules in R generalize other rules present in variants
of P systems. We consider a P system P having [0[1[2]2]1]0 as membrane
structure. If P is with symport/antiport and (aa, out) and (b, in; cc, out) are
associated to membrane 2, then this is equivalent to a system Π having rules
(aa2, ∅; ∅, aa1) and (cc2, b2; b1, cc1). If P is a system with catalyst [17, 4] and
Cab → Cdhere and Cab → Cdout are associated to membrane 2 (C is a
catalyst while a, b and d are not), then this is equivalent to a system Π hav-
ing rules (ab2, d2; ∅2, ∅2) and (ab2, ∅2; ∅1, d1). If P is a conformon-P system

having the rule r : A
3
→ B associated to membrane 2, then this is equivalent
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to a system Π having rules ([A, x][B, y]2, [A, x − 3][B, y + 3]1; ∅1, ∅1), x ∈
{3, 4, 5, . . .}, y ∈ N0 associated to membrane 2.

A configuration of Π is an m-tuple (M1, . . . , Mm) of multisets over
V × N0 ∪ {+∞}. From two configurations (M1, . . . , Mm), (M ′

1, . . . , M
′

m) of
Π we write (M1, . . . , Mm) ⇒ (M ′

1, . . . , M
′

m) indicating a transition from
(M1, . . . , Mm) to (M ′

1, . . . , M
′

m) that is the parallel application of a multiset
of rules. If no rule is applied to a multiset Mi, then Mi = M ′

i . Notice that
transitions could be applied under the requirement of maximal parallelism
that is, a multiset of rules cannot be applied if there is a strictly larger
multiset of rules that could be applied.

A computation is a finite sequence of transitions between configurations
of a system Π starting from (L1, . . . , Lm). The result of a computation is
given by the multiset of objects present in membrane fin when a condition
is met, and such a multiset is indicated by L(Π).

2.3 Petri Nets

Definition 1 A Petri net is a quadruple M = (P, T, F, Cin), where:

i) (P, T, F ) is a net, that is:

1. P and T are sets with P ∩ T = ∅;

2. F ⊆ (P × T ) ∪ (T × P );

3. for every t ∈ T there exist p, q ∈ P such that (p, t), (t, q) ∈ F ;

4. for every t ∈ T and p, q,∈ P , if (p, t), (t, q) ∈ F , then p 6= q.

ii) Cin ⊆ P is the initial configuration.

Given a Petri net M = (P, T, F, Cin), (P, T, F ) is the underlying net of
M .

A directed edge-labelled tree is a tree provided with a labelling function
for its edges. Given a Petri net M = (P, T, F, Cin) we define the sequential
configuration graph of M, denoted by SCG(M), as a directed edge-labelled
tree having elements in CM (the set of all reachable configurations) as ver-
tices, Cin as root, E = {(C, D) | C, D ∈ CM , t ∈ T, C[t〉D} as set of directed
edges and label : E → T as labelling function. If e = (C, D) ∈ E, then
label(e) = t if C[t〉D (that is, if t ∈ T fires from C to D).

Moreover, UC,D = {Ui ⊆ T | Ui is a concurrent step from C to D} is the
set of concurrent steps from C to D and Umax

C,D = {U | |U | ≥ |V | ∀U, V ∈
UC,D} is the maximal set of concurrent steps from C to D.
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The configuration graph of M, denoted by CG(M), is similar to the
SCG(M) but it has E = {(C, D) | C, D ∈ CM , U ⊆ T, C[U〉D} and label :
E → P(T ) (where, given a set A, P(A) indicates its power set, the set of
all subsets of A). If e = (C, D) ∈ E, then label(e) = U if C[U〉D (that is,
U ⊆ T is a concurrent step from C to D).

The configuration graph with maximal concurrency of M, denoted by
CGMC(M), is similar to the CG(M) but is has E = {(C, D) | C, D ∈
CM , U ∈ Umax

C,D } and label : E → P(T ) is such that if e = (C, D) ∈ E, then
label(e) = U ∈ Umax

C,D .

The definition of Petri nets can be extended to the one of place/transition
systems, P/T systems for short, allowing a place to contain more than one
token and more than one token to be removed/added from/to places as a
consequence of a firing.

Definition 2 A P/T system is a tuple M = (P, T, F, W, K, Cin), where:

i) (P, T, F ) is a net (see Definition 1);

ii) W : F → N is a weight function;

iii) K : P → N ∪ {+∞} is a capacity function;

iv) Cin : P → N0 is the initial configuration.

A configuration of a P/T system is a multiset over P ; if we consider a
linear order on the elements of P , then a configuration can be regarded as
a vector (this fact will be used in Definition 3). The dynamic behaviour of
a P/T system is analogous to the one of a Petri net, but considering the
weight and capacity functions.

A P/T system with maximal concurrency M is such that for each
C, D ∈ CM if there is a U ⊆ T such that C[U〉D, then U ∈ Umax

C,D .

Petri nets can be regarded as a specific kind of a P/T systems having W :
F → {1} and K : P → {1} as weight and capacity functions, respectively.
Moreover, a P/T system can be regarded as a ‘compressed’ Petri net so,
given a P/T system it is always possible to create a Petri net modelling the
same process of the P/T system.

Definition 3 Given a P/T system M = (P, T, F, W, K, Cin) a vector i :
P → Z is a p-invariant of M if for all configurations C, D of M and all
t ∈ T : if C[t〉D, then C · i = D · i (in this case a configuration is regarded
as a vector).
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2.4 Program Machines

Non-rewriting Turing machines were introduced by M. L. Minsky in [13] and
then reconsidered in [14] under the name of program machines.

Formally a program machine with n counters (n ∈ N) is defined as
M = (S, R, s0, f), where S is a finite set of states, s0, f ∈ S are respectively
called the initial and final states, R is the finite set of instructions of the
form (s, op(l), v, w), with s, v, w ∈ S, s 6= f, op(l) ∈ {l+, l−}, 1 ≤ l ≤ n

A configuration of a program machine M with n counters is given by an
element in the n + 1-tuples S × N

n
0 . Given two configurations (s, l1, . . . , ln),

(r′,
l′1, . . . , l

′

n) we define a computational step as (s, l1, . . . , ln) ⊢ (s′, l′1, . . . , l
′

n) if
(s, op(l), v, w) ∈ R and:

• if op(l) = l−, l = li and li 6= 0, then s′ = v, l′i = li − 1, l′j = lj , j 6=
i, 1 ≤ j ≤ n;
if op(l) = l−, l = li and li = 0, then s′ = w, l′j = lj , 1 ≤ j ≤ n;
(informally: in state s if the content of counter l is greater than 0,
then subtract 1 from that counter and change state into v, otherwise
change state into w)

• if op(l) = l+, l = li, then s′ = v, l′i = li + 1, l′j = lj , j 6= i, 1 ≤ j ≤ n;
(informally: in state s add 1 to counter l and change state into v).

The reflexive and transitive closure of ⊢ is indicated by ⊢∗.
A computation is a finite sequence of transitions between configurations

of a program machine M starting from the initial configuration (s0, l1, . . . , ln)
with l1 6= 0, lj = 0, 2 ≤ j ≤ n. If the last of such configurations has f

as state, then we say that M accepted the number l1. The set of numbers
accepted by M is defined as L(M) = {l1 | (s0, l1, · · · , ln) ⊢∗ (f, l′′1 , · · · , l′′n)}.

2.5 From P to P

Throughout this paper we only consider systems whose set of configurations
is finite and such that some elements of this set are final, i.e. there is no
transition from a final state to any other state.

The results present in Section 5 are related to the simulation of one
system performed by another one. A simulation is a relation from the set of
subsets of the configurations of a system, the simulating one, to the set of
configurations of another (different) system, the simulated one.
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This relation (mapping) induces a partition in the set of configurations of
the simulating system and associates the final configurations of this system
to the final configurations of the simulated one.

Now we formally define a simulation between two such systems.
Given a set A we define with Sub(A) = {A1, . . . , At}, Ai ⊆ A, 1 ≤ i ≤ t

a subdivision of A into subsets. If Sub(A) is such that
⋃t

i=1 Ai = A and
Ap ∩ Aq = ∅, p 6= q, 1 ≤ p, q ≤ t, then Sub(A) is a partition of A indicated
with Part(A).

Let S, S′ two different systems with C = {c1, c2, . . . , cv} and C
′ = {c′1,

c′2, . . . , c
′

v′} their respective (finite) sets of configurations.
A computation of a system S is a finite sequence of configurations (in

which it can be that not all configurations of the system are present).
Given the set of configurations C of a system S it is possible to distinguish

one subset FC in it: the set of final configurations (all sharing a certain
termination criterion). The last configuration in all computations of S is an
element of FC.

Let us denote with ⇒ (⇒′) the transition from one configuration to
another in a computation of S (S′). Moreover, let ⇒∗ (⇒′) the reflexive
and transitive closure of ⇒ (⇒′).

We will say the S can simulate S′ if there is a relation Sim ⊆ Sub(C)×C
′

such that:

1. for each c′g′ , c
′

h′ ∈ C
′, g′ 6= h′ such that c′g′ ⇒′ c′h′ there are G, H ∈

Sub(C) such that Sim(G) = c′g′ and Sim(H) = c′h′ and cg ⇒ ch with
cg ∈ G and ch ∈ H;

2. for each c′f ′ ∈ FC′ there is F ∈ Sub(C), F = FC such that Sim(F ) =
c′f ′ .

So, if b′ ⇒′ e′, e′ ∈ FC′ , then there are B, E ∈ Sub(C), E = FC such that
Sim(B) = b′, Sim(E) = e′ and b ⇒∗ e with b ∈ B and e ∈ FC. In this case
we can also write B ⇒∗ E.

S is called the simulating system and the S′ the simulated system.
Notice that neither all elements in Sub(C) are in relation with an element

e′ ∈ C
′, nor for each element in C

′ there is E ∈ Sub(C) such that Sim(E) =
e′.

Lemma 1 Give two systems S and S′ the simulation relation Sim ⊆
Sub(C) × C

′ induces a partition in C.
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So we can say that if S can simulate S′, then there is a relation
Sim ⊆ Part(C) × C

′.

Given two systems it is possible to have several relations defining different
simulations.

3 Maximal Parallelism, Priorities and Indication

of Emptiness

Several proofs of the computational completeness of P system using symbol
objects are based on the simulation of program machines and use either
maximal parallelism [16], or priorities [22] or indication of emptiness of the
counters (of the simulated program machine) [6]. With indication of emp-
tyness we mean that in the P system there is a configuration associated to
the one(s) of the program machine in which one of the counters is zero (i.e.
is empty). For some of these variants (for instance, [7, 6]) it is proved that
when these elements are missing, then the computational power is reduced
to the one of partially blind program machines.

These facts suggests that maximal parallelism, priorities and the indi-
cation of emptiness are different aspects of the same feature, that is that
they are equivalent. To our knowledge there is not direct proof of this (an
indirect proof would be to consider one computational device and show that
with either maximal parallelism, priorities or indication of emptiness it is
computationally complete).

In this section we prove that, for P/T systems maximal concurrency,
priorities and indication of emptiness are equivalent.

In [3] it is indicated that P/T systems with maximal concurrency (there
called maximum strategy) can perform the test on zero (addressed by us as
the 0-test) simulating the rule (s, l−, v, w) (addressed by us as the 0-rule)
of a program machine. This simulation is performed by the net underlying
the P/T system with maximal concurrency depicted in Figure 1. The same
P/T system simulates the 0-rule if the firing of transition t2 has priority on
the firing of transition t5 (and maximal concurrency is not present). In this
P/T system the number of tokens that can be present in pc is unbounded. It
is important for us to notice that in the P/T system simulating the program
machine there are as many such P/T systems performing the 0-test as many
0-rules present in the simulated program machine. Moreover, as the program
machine can be in only one state per time, then at most one place ps in a
P/T system performing a 0-test can have a token.
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the 0-test

t5
pw

pc=3

t
1

2

t
3

2

ps p2 p4

t1 t3

t4

p3

p1

pc=0

pc=1

pc=2

t
2

2

pv

Figure 2: Net underlying the Petri net for the
0-test

If we transform the net underlying the P/T system present in Figure 1
into a Petri net, then we obtain what depicted in Figure 2 (without con-
sidering the dashed place and edge) where, if we consider the presence of
priorities (and the absence of maximal parallelism), all the ti2, i ∈ N have
priority on t5. In Figure 2 if the counter c of the simulated program machine
has value i, i ∈ N, then a place pc=i has a token (we will discuss the case
i = 0 in a while).

It should be clear that neither the just mentioned P/T system, nor the
Petri net perform the 0-test if maximal parallelism and priorities are not
considered. In the net underlying the P/T system in Figure 1 it can be, for
instance, that if at least one token is present in pc and one token is present
in ps, the system can fire t1, t3 and t5 in sequence reaching a configuration
having one token in pw.

As in the net underlying the P/T system in Figure 1 the place pc can
contain arbitrary many tokens, then the net underlying the Petri net in
Figure 2 the number of transitions ti2 and of places pc=i, i ∈ N is infinite.

The CGMC and the SCG (in case of priorities) for all the permitted
initial configurations of the net underlying the Petri net depicted in Figure
2 are represented in Figure 3. The graphs depicted in Figure 3 are such
that, once in the root, the system can only evolve toward the configuration
at the bottom. So we can write a ‘reduced’ graph. This is done in Figure
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Figure 3: (a), (b) SCG for the 0-test with priorities, (a), (b) CG for the
0-test with maximal parallelism, i ∈ N

4.a and Figure 4.c.
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(a)

Figure 4: ‘Reduced’ (S)CGs, i ∈ N

As in each configuration of a program machine a counter can have only
one value, a Petri net simulating it would have

∑
∞

i=1 pc=i = 1 as p-invariant
(where pc=i are the places in the net depicted in Figure 2). If in the same net
we consider the dashed place pc=0 and the dashed edge incoming this place,
then its ‘behaviour’ is not changed, but it is actually enlarged to model a
program machine also when a counter c is empty. The configuration graphs
are changed adding the place pc=0 to every configuration in Figure 3.a. This
means that its ‘reduced’ configuration graph changes into the one depicted
in Figure 4.b.

If we now consider the ‘reduced’ configuration graphs depicted in Figure
4.b and Figure 4.c, then we can create another net underlying a Petri net
implementing the 0-test. This is depicted in Figure 5. Because of the edges
from p′c=0 to t

′0
2 and vice versa, what depicted in Figure 5 it is not a net

underlying a Petri net as defined in Definition 1 (as point 4 is not satisfied).
We can overcome this simply removing the edge from t

′0
2 to p′c=0 and adding
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Figure 5: Net underlying the ‘reduced’ Petri net for the 0-test

the dashed place, transition and edges.
The net underlying the Petri net depicted in Figure 5 can be regarded

as a rewriting of the one depicted in Figure 2. Such rewriting implements
the 0-test without maximal concurrency and priorities but with an infinity
of places and transitions.

Recalling (from Section 2.3) that a Petri net can be regarded as a specific
kind of a P/T system we can say that:

Theorem 1 For a P/T system

1. finite number of places + unbounded number of tokens in a place +
maximal concurrency;

2. finite number of places + unbounded number of tokens in a place +
priorities;

3. infinite number of places (that is, indication of emptiness)

are similar ways to perform the 0-test.

It is important to notice that the net underlying the Petri net depicted
in Figure 5 performs more than just the 0-test, it performs the i-test for
i ∈ N0.

4 0-Test and 0-Gamble

In this section we will show that two ways to simulate the 0-rule are equiv-
alent. The proof uses nets and building blocks.
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The 0-test can be performed by nets different from the one depicted in
Figure 1. Several papers on variant of P systems using symbol objects use
another mapping from P systems to P/T systems) to simulate the 0-rule
(s, l−, v, w).

This procedure, addressed by us as the 0-gambling, can be represented
by the net underlying the P/T system depicted in Figure 6 where maximal
concurrency or priorities (transition t4 has priority on transition t6) are
present.

ps

pc

pv

p2

p3

pw

t>0 t=0

t3

t5

t6

p>0 p=0

t2

pc̄

t4

pwrong

Figure 6: Net underlying the P/T system for the 0-gamble

Let us say that once in state ps the system ‘gambles’ one of two cases:
either the counter is empty or it is not. If the gamble is correct, then the
system will evolve in state pw or pv respectively, in case of wrong gamble it
will go into the state pwrong or it will block, respectively.

It is interesting to notice what happens when the system gambles that
the counter in not empty. In this case the places pc̄ and p2 get a token and
then either pwrong or into ps0

will get a token.
The presence of the place pc̄ is of interest for our discussion. Following

what indicated in [8] we can name this place ‘conflicting counter’. Similar
concept has been used also in [5]. Even if explicitly defined in the just
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0-test c-b, c-d, b-b, d-b
0-gamble a-b, a-c, b-b, c-b, c-d, d-b

Table 1: Pairs of building blocks for the 0-test and the 0-gamble (with d)

mentioned papers, the concept of ‘conflicting counter’ was already implicitly
present in all the proofs of P systems using symbol objects generating N·RE

and using the 0-gamble ([16], for instance).
Some of these proofs were so made that once in pw the computation

could still enter the pwrong place (for instance Theorem 1 in [7]).
At this point we can wonder on the relation between the 0-test (Figure

1) and the 0-gamble (Figure 6).
Before studying this further, let us introduce the nets depicted in Figure

7. We call these nets building blocks.

(d)(b)(a) (c)

Figure 7: Building blocks: (a) nondeterminism, (b) join, (c) fork, (d)
determinism

Both the 0-test and the 0-gamble are implemented by a combination
of the building blocks. In the net underlying the P/T system for the 0-test
(Figure 1) {pc, p1, p3}, {p3, p4, pv} and {p1, p4, pv} are building blocks of type
b; {ps, p1, p2} is a building block of type c and {p2, p4} is a building block of
type d. In the net underlying the P/T system for the 0-gamble (Figure 6)
{ps, p>0, p=0} is a building block of type a; {p>0, pc, pv}, {pc, pc̄, pwrong} and
{pc̄, p3, pw} are building blocks of type b; {p=0, pc̄, p2} is a building block of
type c and {p2, p3} is a building block of type d. In this figures we also see
that the relative arrangement of pairs of building blocks is the one indicated
in Table 1.

At this point we can say that:
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0-test c-b, b-b
0-gamble a-b, a-c, b-b, c-b

Table 2: Pairs of building blocks for the 0-test and the 0-gamble (without
d)

Theorem 2 A necessary condition such that a system S with maximal par-
allelism or priorities using symbol objects can implement the 0-test (or the
0-gamble) is that there is a mapping from S to a net underlying a P/T sys-
tem such that it is possible to have a sequence of sets of configurations in
S associated to the subsequent firing of transitions present in the pairs of
building blocks listed above.

The previous theorem does not give a sufficient condition as the system
could have features (limits in the number of tokens present in a place,
limits on the firing of transitions, etc.) not allowing it to perform the 0-test
even if its process can be described by the building blocks and that pairs of
building blocks can be combined in the ways listed in Table 1.

As the relative arrangements of the pairs of building blocks present in
the 0-test are part of the relative arrangements of building blocks present in
the 0-gamble, then we can say that:

Corollary 1 If a system with maximal parallelism or priorities using symbol
objects can implement the 0-gamble, then it can implement the 0-test.

Both in the 0-test (Figure 1) and the 0-gamble (Figure 6) the building
block d can be substituted by the building block c followed by the building
block b without affecting the behaviour of the P/T system. If we consider
this the relative arrangements of pairs of building blocks indicated in Table
1 changes into the one indicated in Table 2.

5 Unifying Results

In this section we generalise the result obtained in Section 3 showing that
maximal parallelism, priorities and indication of emptiness are equivalent
concepts for systems using symbol objects. To do so we use the same tech-
nique used in Section 4.
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0-test, non det. b-a 0-gamble, non det. b-a
non det., 0-test a-c non det., 0-gamble a-c
fork, 0-test c-b, c-c fork, 0-gamble c-b, c-a
0-test, fork b-c 0-gamble, fork b-c
fork, non det. c-a fork, non det. c-a
non det., fork a-c non det., fork a-c

Table 3: Pairs of building blocks for 0-test (0-gamble), fork and nondeter-
minism

The capability to simulate the 0-rule is only one of the operations needed
for a system using symbol objects to simulate a program machine. The
system has also to simulate the rule (s, l+, v, w) (adding 1 to a counter) and
to simulate nondeterminism (see Section 2.4). These two operations can be
simulated by the building blocks c and a respectively. These operations:
0-rule, addition of 1 and nondeterminism, can be performed by the system
in any order. If we consider that the simulation of the 0-test can be followed
by the simulation of nondeterminism, then it has to be possible that the
building block b (as in Figure 1 both pv and pw are in such building block)
is followed by the building block a. Reasoning in a similar way we obtain
the pairs of building blocks listed in Table 3.

This implies that:

Corollary 2 A necessary condition such that a system S with maximal par-
allelism or priorities using symbol objects can simulate a program machine
is that there is a mapping from S to a net underlying a P/T system such
that it is possible to have a sequence of sets of configurations in S associated
to any subsequent firing of transitions present in the pairs of building blocks
listed in Table 1 and Table 3.

Reasoning in a similar way we can say that

Corollary 3 A necessary condition such that a system S using symbol ob-
jects can simulate a P/T system with indication of emptiness is that there is
a mapping from S to a net underlying a P/T system such that it is possible
to have a sequence of sets of configurations in S associated to any subsequent
firing of transitions present in the pairs of building blocks listed in Table 4.

Now we are ready to state the main result of this paper.
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inside ind. empty b-c
ind. empty., non det. c-a
non det., ind. empty. a-b
fork, ind. empty. c-b
ind. empty, fork c-c
fork, non det. c-a
non det., fork a-c

Table 4: Pairs of building blocks for indication of emptiness, fork and non-
determinism

Theorem 3 Let X = {maximal parallelism, priorities, indication of
emptiness} and let D with x ∈ X be a computationally complete device
using symbol objects. Let D′ be similar to D but with x′ ∈ X, x′ 6= x.

1. If x = ‘maximal parallelism’ and x′ = ‘priorities’, then D′ with x′

is also computationally complete (similar if x = ‘priorities’ and x′ =
‘maximal parallelism’);

2. If x = ‘maximal parallelism’ and x′ = ‘indication of emptiness’, then
necessary condition for D′ with x′ to be computationally complete is
the presence of a mapping from D′ to the net underlying a P/T system
such that it is possible to have a sequence of sets of configurations in
D′ associated to the subsequent firing of the transitions present in the
pair of building blocks c-c (similar if x = ‘priorities’);

3. If x = ‘indication of emptiness’ and x′ = ‘maximal parallelism’, then
necessary condition for D′ with x′ to be computationally complete is
the presence of a mapping from D′ to the net underlying a P/T system
such that it is possible to have a sequence of sets of configurations in
D′ associated to the subsequent firing of the transitions present in the
pairs of building blocks b-b and b-a (similar if x′ = ‘priorities’);

In the previous theorem if x′ = ‘indication of emptiness’ more than being
able to arrange the building blocks as indicated, D′ needs a finite way to
address the infinite number of places that are created.

6 Final Remarks

How can the results obtained in the previous sections be of any use in the
study of the computational power of a system using symbol objects?
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Given a computability system S using symbol objects one can prove
that it is computationally complete using Theorem 3, and not trying the
simulation of a computationally complete device. As Theorem 3 states only
a necessary condition it has also to be proved that there are no limitations
affecting the work of S.

More relevant consequences are present in case a system S using symbol
objects cannot fulfil what stated in Theorem 3. Not verifying the necessary
condition present in that theorem S cannot be computationally complete.

At the present time we do not know if the building blocks a, b and c
represent a base for nets underlying a P/T systems generating N·RE. For
sure they do not represent a base for a general net.

Our intention is to go further on the line of this research trying to give
an answer to the following questions:

How computationally powerful is a P/T system having an underlying net
composed by proper subsets of the building blocks depicted in Figure
7? (in this respect the computational differences between program
machine and partially blind program machine [9] and the infinite hi-
erarchy described in [15] are going to be of help)

How the computational power is affected if we limit the kind of relative
arrangements of pairs of building blocks?

What happens if we allow the P/T system having as underlying net the
one depicted in Figure 2 to have as p-invariant

∑
∞

i=1 pc=i = n, n ∈ N0?
(which means that more than one place of the kind pc=i can have a
token or that some of them have more than one token)

Is it possible to extend these results to systems not using symbol objects?

Our ultimate question on this subject is: is it possible to create an hier-
archy of computational power based on building blocks, their combinations
and the functions W and K (see Definition 2)?
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[12] C. Mart́ın-Vide, A. Păun, G. Păun: On the power of P systems with
symport rules. Journal of Universal Computer Science 8 (2002), 317–
331.

353



[13] M. L. Minsky: Recursive unsolvability of Post’s problem of “tag” and
other topics in theory of Turing machines. Annals of Mathematics 74
(3) (1961), 437–455.

[14] M. L. Minsky: Computation: finite and infinite machines.Prentice-Hall
(1967).

[15] B. Monien: Two-way multihead automata over a one-letter alphabet.
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Abstract

A simulator of conformon-P systems is presented together with an
initial study of an evolution program optimising processes described
by conformon-P systems.

1 Introduction

The compartmentalization created by membranes present inside (eucaryotic)
cells has been of inspiration to G. Păun [13] for the definition of distributed
and parallel theoretical computational models called Membrane systems (or
P systems).

Despite the biological motivations of these devices the first investigations
about them had a solely computability focus: the computational aspects of
numerous variants of P systems has been (and is) deeply studied. In the
later years the attention of researchers on P systems widened to other fields
[15, 4] ([16] is the most updated source of information on P systems). The
study of biological processes through variants of P systems is one of these
new lines of research.

Conformon-P systems [5] are the variant of P systems considered in
this paper. They are characterised by a rather simple definition that fits
quite well with the modelling of (biological) systems at any scale. Given a
conformon-P system modelling a biological process the conformons present
in it can represent chemicals, molecules or entire systems, the interaction
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between these conformons can describe the interaction between what is rep-
resented by them. For instance, two conformons representing two different
chemicals can interact to create a molecule represented by another confor-
mon; a conformon representing a molecule can interact with another repre-
senting a system (i.e., an organelle or an entire cell), etc.

In this paper we present a simulator of conformon-P systems (Section
4) and its application to the modelling of chemical reactions (the first ten
chemical reactions involved in glycolysis are our test case, Section 4.2).

We also report initial results about an evolution program optimising
processes described by conformon-P systems (Section 5). Here the target is
to create a (evolution) program that can be of help in the study of not well
understood processes.

2 Basic Definitions

Let V be a finite alphabet and N the set of natural numbers and N0 = N∪{0}.
A conformon is an element of V × N0 ∪ {+∞}, denoted by [X, x]. We will
refer to X as the name of the conformon [X, x] and to x as the value of [X, x].
The symbol X will also refer to the conformon itself; the context will help the
reader to understand when we refer only to the name aspect of the conformon
or to the whole conformon. Moreover let r = 〈A, e, B〉, A, B ∈ V, e ∈ N, be
a rule (also indicated as A

e
→ B) defining the passage of (part of the) value

from one conformon to another so that:

([A, a], [B, b]) ⇒ ([A, a − e], [B, b + e])

with a, b ∈ N0, a ≥ e indicating that [A, a] and [B, b] interact according to r.
Informally this means that e is subtracted from the value of the conformon
(with name) A and e is added to the value of the conformon (with name) B

only if the value of A is at least e.
A multiset M (over V ) is a function M : V → N0 ∪ {+∞}; for d ∈ V ,

M(d) defines the multiplicity of d in the multiset M . We will indicate this
also with (d, M(d)). In case the multiplicity of an element of a multiset is
1 we will indicate just the element. The support of a multiset M is the set
supp(M) = {d ∈ V | M(d) > 0}. Informally we will say that an element
belongs to a multiset M if it belongs to the support of M . The size of a
multiset is defined by the function | · | : (V → N ∪ +{∞}) → N ∪ {+∞},
where for M multiset over V , |M | =

∑
a∈supp(M) M(a). Intuitively the size

of a multiset M gives the number of elements in supp(M) counted with their
multiplicity.
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Let M1, M2 : V → N0 be two multisets. The union of M1 and M2 is the
multiset M1 ∪M2 : V → N0 defined by (M1 ∪M2)(d) = M1(d) + M2(d), for
all d ∈ V . The difference M1\M2 is here defined only when M2 is included
in M1 (which means that M1(d) ≥ M2(d) for all d ∈ V ) and it is the mul-
tiset M1\M2 : V → N0 given by (M1\M2)(d) = M1(d)−M2(d) for all d ∈ V .

A conformon-P system of degree m, m ≥ 1, is a construct
Π = (V, µ, fin, ack, L1, . . . , Lm, R1, . . . , Rm), where:

V is an alphabet;

µ = (N, E) is a directed labelled graph underlying Π, where:

N ⊂ N contains vertices; for simplicity we define N = {1, . . . , m}.
Each vertex in N defines a region (or membrane) of the system
Π;

E ⊆ N×N×pred(N0) defines directed labeled edges between vertices,
indicated by (i, j, p) where p ∈ pred(n) = {≥ n,≤ n | n ∈ N0} set
of predicates. So, for instance, an edge can be (3, 5,≥ 2) where
the first two elements (3 and 5) indicate nodes, the third one the
predicate associated to the edge. The semantics of a predicate
p ∈ pred(n) is the following: given x ∈ N0, p(x) may be either
(≥ n)(x) indicating x ≥ n, or (≤ n)(x) indicating x ≤ n.

fin ∈ N defines the final membrane;

ack ∈ N the acknowledgement membrane.

Li over V × N0, contain conformons associated to region i, i ∈ N;

Ri are finite sets of rules for conformons interaction associated to region i,
i ∈ N.

Two conformons associated to a membrane i may interact according to a
rule r associated to the same membrane such that the multiset of conformons
Mi changes into M ′

i . So, for i ∈ N , [A, a], [B, b] ∈ Mi and r = 〈A, e, B〉 ∈
Ri, A, B ∈ V, a, b, e ∈ N0, we have that M ′

i = (Mi\{[A, a], [B, b]})∪{[A, a−
e], [B, b + e]}.

A conformon [X, x] associated to a membrane i may pass to a mem-
brane j if (i, j, p) ∈ E and p(x) holds changing the multisets of conformons
Mi and Mj to M ′

i and M ′

j , respectively. In this case M ′

i = Mi\{[X, x]} and
M ′

j = Mj ∪ {[X, x]}. The fact that the passage of an object to a membrane
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is regulated by some features present in the compartments themselves is al-
ready discussed by others in literature when P systems with electrical charge
and variable thickness have been considered [14] or only communication was
used to compute [12, 11].

The interaction of two conformons according to a rule and the passage
of a conformon from one membrane to another are the only operations that
may be performed by a conformon-P system. A conformon present in a
membrane may be involved in one of these two operations or none of them.

A configuration of Π is an m-tuple (M1, . . . , Mm) of multisets over V ×N0.
The m-tuple (L1, . . . , Lm), supp(Lack) = ∅, is called initial configuration
(so in the initial configuration the acknowledge membrane does not contain
any conformon) while any configuration having supp(Mack) 6= ∅ is called
final configuration. For two configurations (M1, . . . , Mm), (M ′

1, . . . , M
′

m) of
Π we write (M1, . . . , Mm) ⇒ (M ′

1, . . . , M
′

m) indicating a transition from
(M1, . . . , Mm) to (M ′

1, . . . , M
′

m) that is the parallel application of one or no
operation to all the conformons associated to each membrane of µ. In other
words in any configuration in which supp(Lack) 6= ∅ any conformon associ-
ated to a membrane can either interact with another conformon associated
to the same membrane or pass to another membrane or remain in the same
membrane. If no operation is applied to a multiset Mi, then Mi = M ′

i . The
reflexive and transitive closure of ⇒ is indicated by ⇒∗.

A computation is a finite sequence of transitions between configurations
of a system Π starting from (L1, . . . , Lm). The result of a computation is
given by the multisets of conformons associated to membrane fin when any
conformon is associated to membrane ack. When this happens the compu-
tation is halted, that is no other operation is performed even if it could.
When a conformon is associated to the acknowledge membrane the number
of conformons (counted with their multiplicity) associated to membrane fin

define the number generated by Π, indicated by L(Π).
Conformon-P systems have been proved to be computationally complete

[5].

In the following we will use the concept of module: a group of membranes
with conformons and interaction rules in a conformon-P system able to
perform a specific task. A module is not a conformon-P systems as it lacks
of the specification of a final and of an acknowledgement membrane.

For a better understanding of the systems presented in this paper figures
representing them are provided. In these figures membranes are depicted
as enclosed compartments having their label written in bold on their right-
upper corner. Rules related to a membrane are written inside it; conformons
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associated to a membrane in one of the possible configurations of the system
are written in normal font.

As a module is supposed to be part of a bigger system it will have edges
coming from or going to vertices not defined in the module itself. For this
reason in the figures representing modules we depict these vertices with a
dashed line; modules, on the other hand, will be indicated by a unique
enclosed compartment with a thicker line. Such modules will have a label
written in bold on its right upper corner indicating the kind of module. A
subscript is added to differentiate labels referring to the same kind of module
present in one system.

In the paper we will use the following labels associated to modules (de-
scribed in [5]:

spl a splitter, a module that when a conformon [X, x] with x ∈ {x1, . . . , xh},
xi < xi+1, 1 ≤ i ≤ h− 1, is associated to a specific membrane of it, it
may pass such a conformon to other specific membranes according to
its value x.

Inc[x]/Dec[x] a increaser/decreaser, a module that when a conformon
[X, x] with x ≥ 1 is associated to a specific membrane of it may de-
crease or increase the value of such conformon to q, so that [X, q] may
pass to another specific membrane.

Edges outgoing a splitter can also have predicates of the form = n for
n ≥ 0 while edges outgoing a increaser/decreaser can also have predicates
of the form = n for n ≥ 1.

Some edges of the modules presented in Section 3 have predicates of the
kind [A, a] (a conformon). This is a shorthand for a separator module: when
conformons of type [Xi, x], 1 ≤ i ≤ h, x ≥ 1 are associated to a specific
membrane of it, may pass them to specific different membranes according
to their name content. So if there is an edge between membrane 1 and
membrane 2 having [A, a] as predicate, it means that only the conformon
[A, a] can pass from membrane 1 to membrane 2.

If a membrane contains both the rules A
x
→ B and B

x
→ A, then this is

abbreviated with A
x
↔ B.

3 Some Modules

The modelling of chemical reactions with conformon-P systems can be per-
formed in a more direct way if some phenomena (present during chemical
reactions) are defined by modules.
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Lemma 1 (Bounded increase) Let [A, a] and [B, b] two conformons and
x, y,

a′ ∈ N such that b + x = y ≥ 1, a′ = a − x ≥ 1, y ≥ x, a ≥ x and b ≤ y.
There is a module that allows [A, a] and [B, b] to interact such that [A, a′]
and [B, y] are produced.

Proof. Figure 1 represents a detailed module for bounded increase. Once
in membrane 1 conformons A and B can exchange x value. At any time a
conformon with a value bigger equal than y can pass from membrane 1 to
spl1 and from here to membrane 4 only if it is [B, y]. In a similar way from
membrane 1 conformons with value smaller equal to a′ can pass to spl2 and
from here only [A, a′] can pass into membrane 5. �

[A, a′]

[B, b′]

[A, a]

[A, a]

[B, b]

p

[B, b]

1

[A,≤ a′]

≤ a′

[B,≤ b′]

3

[A, a′]

[A, a′]

5

spl2

[B, b′]

[A,≥ y]

[B,≥ y]≥ y + 1

[A, y]

[B, y]

[B, y]

4

2≤ a′ − 1

spl1

[A, y]

= a′

= y

[B, y]

u

A
x
↔ B

≥ y

Figure 1: A module for bounded increase

The previous lemma states that the conformon A can pass x value to B

even if A could pass z > x to B.

The interaction between two conformons defined in Section 2 cannot
model in a direct way the reaction of several chemicals. We prefer to have
a module that model this phenomenon.

Lemma 2 (Multiple interaction) There is a module that when all the con-
formons [Xi, xi], xi ≥ 1, 0 ≤ i ≤ n are associated to a specific membrane

360



can let the conformons [Yj , yj ], yj ≥ 1, 0 ≤ j ≤ m pass to another specific
membrane.

Proof. Figure 2 represents a detailed module for multiple interaction in
which when two conformons A and B are present in membrane 1, then
they can interact in a way that conformons C and D will be associated to
membrane 4. What represented in Figure 2 can be easily generalised to
more conformons in membrane 1 and more conformons in membrane 4, also
the values of the conformons can differ.

From membrane 1 a conformon with the sum of the values of all the
conformons that have to be present can pass to membrane 2. Here these
conformons interact with one of the Y conformons. This last conformon
then passes to the other membranes so to create (adding 1 to their value)
the remaining Y conformons.

�

[C, 1]

[D, 1]

4

[A, a] [B, b]

A
a
→ B

[A, a]

[B, b]

u

p
1

[B, a + b] [C, a + b]
Inc[2]/Dec[2]

[C, a + b]

= 2
([C, 0], +∞)

B
a+b
→ C

[B, a + b]

2

[C, 1]

[D, 1] ([D, 0], +∞)

C
1
↔ D

3

[C, 2]

Figure 2: A module for multiple interaction

Notice that in the previous lemma i and j can be different and that the
decrease of value of the Xi conformons has to be equal to the increase of value
of the Yj conformons. Anyhow the Yj can pass to an increaser/decreaser and
have their values changed independently from the values of the Xi.

We redefine the interaction between conformons in the following way:
〈M1;
V1; M2; T2〉 where M1 and M2 are vectors of name of conformons, while V1

and T2 are vectors with values in N0. Vectors M1 and V1 have the same
dimension; similarly for M2 and T2.

The meaning of 〈M1; V1; M2; T2〉 is: the conformons with names in M1

can pass the (respectively) values in V1 to the conformons with names in M2

and the value of the conformons in M2 can have at most what is indicated
in T2 (respectively).
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For instance let us assume that we want to model the chemical reaction
2H2 + O2 ⇀ 2H2O and that we use conformons [2H2, m] and [O2, n] indi-
cating that there are m molecules of 2H2 and n molecules of O2. The result
of the interaction of these conformons has to create pairs of conformons of
the kind [H2O, 1] indicating one molecule of H2O (so we do not want to
create conformons of the kind [H2O, p] with p ≥ 2).

The rule 〈(H2, O2); (2, 1); (H2O, H2O); (1, 1)〉 represents what just we de-
scribed: every H2 conformon loses 2 units of value and every conformon O

loses 1 unit of value, at the same time two conformons with names H2O

get 1 as value. This implies that if a conformon [H2O, 1] is already present,
its value is not going to be increase further (because it is already 1, the
maximum value indicated by the rule).

Considering that some chemical reactions are reversible, then the combi-
nation of the interactions 〈M1; V1; M2; T2〉 and 〈M2; V2; M1; T1〉 leads to the
general chemical interaction 〈M1; V1; T1; M2; V2; T2〉.
So, for instance, let us assume that we want to model the (reversible) reac-
tion 2SO2 + O2 ⇋ 2SO3 and that we use conformons [SO2, 2] and [O2, 1]
indicating two molecules of SO2 and one of O2, respectively, with several
copies of each of these conformons. Moreover, there are also conformons
with name SO3 whose value indicates the number of the SO3 molecule. For
some reason we do not want that the value of these last conformons to go
above 4.

The rule 〈(SO2, O2); (2, 1); (2, 1); (SO3); (2); (4)〉 represents what just
described: the value of the conformon SO3 increases of two units every time
the value of one of the conformons with name SO2 decreases of 2 together
with the decrease of 1 of the value of one of the conformons with name O2.
The value of a conformon SO3 cannot go above 4. A conformon with this
name can lose two units and while a conformon SO2 gets two units and a
conformon O2 gets one unit. The value of a conformon SO2 cannot go above
2 and the value of a conformon O2 cannot go above 1.

4 The Simulator

It is not difficult to devise a simulator for conformon-P systems based on
an object-oriented programming language. Conformons, interaction rules,
membranes and the movement of a conformon from a membrane to another
can easily be modelled by objects. This, together with the desire to allow
the code to be run on different platforms, leads us to choose Java as the
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programming language. Similar choice has been taken in [10, 2] in the
creation of a simulator for P systems.

We also wanted to have a simulator that could have the definition of any
conformon-P system as input. In this case the choice for the format of the
input file has been XML (Section 4.1). The main advantage in the use of
XML is the presence of libraries designed to process an XML file. Similar
choice has been taken in [2] in the creation of a simulator for P systems.

The simulator program can simulate any conformon-P systems as defined
in Section 2, but, as in our tests we modelled chemical reactions (Section
4.2) the implementation of some modules is embedded in the code.

The simulation of the conformon-P system defined in the input file is
divided into x time steps. In each time step the simulator implements a
transition of the conformon-P system. After the xth time step an output
file, describing the configuration of the conformon-P system after this time
step, is produced. It is possible to define the format of the output file which
can contain the membrane structure, the conformons, the interaction rules,
the passage rules and any combination of them.

We will not go into the details of the implementation, but we describe
how the simulation of the operations is performed.

Looping through all membranes in the system, either interaction rules
or passage rules are simulated first (50% chance).

When rules are simulated one rule per time is chosen at random. A
chosen rule can be applied at most c times where c is the number of con-
formons present in the membrane in that time unit. For each application of
the rule it is first checked if all the needed conformons (on the left side of
a rule) are available (random choice between the conformons present in the
membrane). In an affirmative case the chosen conformons are selected for
the rule. If a randomly generated number is smaller than the probability
associated to the rule, then the selected conformons are ‘tagged’. A ‘tagged’
conformon is not available to any other operation in that time unit.

When passage rules are simulated each conformon traverses in a random
order all the links. If the link can be applied to the conformon, then there
is 50% chance of the conformon to pass to another membrane.

It should be clear that this algorithm allows a conformon not to be
involved in any interaction or passage rule even if it could.

4.1 The Input File

Appendix A contains an XML file with the definition of a conformon-P
system.
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The majority of the XML tags are self-explanatory. The ones we believe
not self-explanatory are:

Equation: indicates the conformons involved in a rule, the valued that
are passed and the maximum threshold that can be reached;

Conformon1, Conformon1PassValues, Conformon1Limit, Conformon2,
Conformon2PassValues, Conformon2Limit: list, eventually divided by a
pipe (|), what present in M1, V1, T1, M2, V2 and T2, respectively, in a general
chemical interaction;

Condition: the allowed values are le (less or equal), ge (greater or
equal) and e (equal);

MustBeId: it refers to a Separator (see Lemma 2 in [5]) and indicates
that only conformons with the specified name verify the predicate.

The tags: Multiplicity, Id (for a rule), Reversible, Conformon1Limit,
Conformon2Limit and MustBeId are optional.

In the input file only the conformons present with a value different than
0 in the initial configuration have to be indicated, the remaining conformons
are created at runtime by the simulator. In Appendix A, for instance, con-
formon C is not defined as conformon present in the initial configuration
but it appears as argument in an interaction rule.

4.2 The Toy Simulation

The chemical process that we decided to simulate are the first ten chemical
reactions of glycolysis [1]. Glycolysis is a very well understood process in a
cell and can be an excellent benchmark to test the validity of our simulator.

In this process for each molecule of glucose present at the begin, two
molecules of pyruvate are produced. This can only happen only if two
molecules of ATP are also available at the begin. The net effect of these ten
steps is that for each molecule of glucose and two molecules of ATP, two
molecules of NADH, four of ATP and two of pyruvate are created.

This can be expressed by:

glucose + 2 ATP ⇀ 2 NADH + 4 ATP + 2 pyruvate

Two of the ten chemical reactions are not reversible (as they involve
ATP) and each of them involves an enzyme.

At the end of Section 3 we discussed how with conformon-P systems
it is possible to model a (reversible) chemical reaction. Now we describe
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how a chemical reaction catalyzed by an enzyme has been modelled. Let us
consider the first chemical reaction in glycolysis:

glucose + ATM
hexokinase

⇀ glucose6P + ADP + H+ (1)

catalyzed by hexokinase.
We described a chemical reaction not using the enzyme and we associated

to it a very low probability. Moreover, we described the reversible chemical
reaction

glucose + hexokinase ⇋ glucoseHexokinase (2)

and the irreversible one

glucoseHexokinase + ATP ⇀ glucose6P + ADP + H+ + hexokinase (3)

The probability associated to reaction (3) is much bigger than the one
associated to reaction (1). Lacking a precise analysis of the dissociation rate
(between substrate and enzyme) we gave a random (high) probability to
reaction (2).

Appendix B indicates the description of the previous three reactions in
the input XML file.

Running the simulator on the first ten chemical reactions present in
glycolysis led to the expected result: for each molecule of glucose and two
molecules of ATP present at the begin two molecules of NADT, four of ATP
and 2 of pyruvate have been created in around 100 time units. This result is
promising but not unexpected: the simulated process is quite small (a few
chemicals and just ten chemical reactions) and moreover the probabilities
associated to each rule were not related to the modelled process.

5 An Evolution Program

Our intention is to create a tool that could be used (for instance by biologist)
to simulate known processes and as an help in the study of processes not
entirely defined.

We consider the scenario in which a researcher is trying to discover all
the steps present in a process. At some stage during this research some
parts of the process are known, others are partially known, while others are
unknown. We would like to provide such a researcher with a tool that could
easily model known part of the process under study but that could also be
used to get predictions on what is unknown.
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For instance in glycolysis the ratio glucose:ATP present at the beginning
of the reaction is 1:2. A simulator using a 1:1 ratio would not have results
comparable with the experiments. Knowing part of what happens during
glycolysis an evolution program (EP) could be used to approximate the
proper ratio (or any other missing part of the process under study).

Evolution programs are used to search for the absolute maximum (min-
imum) value of high dimensional functions. In the following the way they
work is sketched, the reader is referred to [9] for a better description of EPs.

A population of candidate solutions (individuals) is initial created. Af-
terwards the individuals evolve following a finite and discrete timing (gen-
erations). In each generation the following operations are performed:

evaluation: each individual is given as input to the function and the re-
turned value (fitness value) is associated to it;

selection: depending on their fitness value some individual are selected,
the selected individuals form another (new) population;

mutation: some individuals in the new population undergo a modification.
If, for instance, an individual is a vector of numbers a modification
could be to change one of the numbers.

crossover: some individuals in the new population are used to create others
individuals. If, again, each individual is a vector of numbers, then the
numbers defining two individuals A and B could be used to create two
new individuals C and D.

The individual that during the evolution had the maximum (minimum)
fitness is what returned by the EP.

We implemented an EP that searches for the minimum number of con-
formons (i.e. the minimum sum of the values of some input conformons)
that can produce in the minimum number of generations a certain output
conformon in a specified conformon-P system. The EP has two files in in-
put: the one describing the conformon-P system to simulate (glycolysis),
and the other one specifying the input conformons (glucose and ATP) and
the output ones (pyruvate) and other parameters used during the evolution
process. The output of the EP is the minimum value of the input conformons
that succeeded in producing the desired output in the minimum number of
iterations of the simulated conformon-P system.

The specifications for the EP are given in Appendix C.
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The results obtained by the EP indicated that, indeed, a ratio 1:2 for
glucose:ATP is the best one for the process we considered. This result is
good but it is not surprising as the process we modelled is quite simple and
the value of only two elements has to be optimised.

6 Final Remarks

The research reported in this paper is definitely a promising starting point.
We are going to extend both the simulator and the evolution program trying
to apply them to real world case studies.

The simulator can be extended to include modules arising by other
processes. We can also envisage a simulator able to rearrange the conformon-
P system given as input in order to perform better (more efficient, accurate,
etc.) simulations.

We also think to extend the functionalities of a simulator including the
plot of the number of the conformons present in the system during the
simulation (similar studies have been reported in [2, 3]).

At the present time the simulator does not consider issues such as the
concentration of chemicals (as done in [2]) or other factors influencing a
chemical reaction. These elements will be added to the simulator in a later
stage.

Of course it is not our intention to simulate a chemical process performing
the simulation of each single chemical reaction present in it. We consider to
include into the simulator algorithms approximating such processes [6, 7, 8].

It is hard for us to think to a ‘universal’ evolution program for conformon-
P systems as each process can have different representations or function to
optimise. Depending on the process under study the evolution program
can be extended to include the evolution of rules, links and the membranes
themselves. Similarly the function to optimise can be related to any of the
variable aspects (number of initial conformons, time steps, number of usage
of certain rules, etc.) present in a conformon-P system.
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A An Input File

<XML version="1.0">

<Psystem>

<Membrane>

<Id>M1</Id>

<Conformon>

<Id>A</Id>

<Value>2</Value>

<Multiplicity>3</Multiplicity>

</Conformon>

<Conformon>

<Id>B</Id>

<Value>1</Value>

</Conformon>

<Rule>

<Id>r1</Id>

<Equation>

<Conformon1>A</Conformon1>

<Conformon2>B</Conformon2>

<Conformon1PassValues>1</Conformon1PassValues>

<Conformon2PassValues>1</Conformon2PassValues>

<Reversable>false</Reversable>

</Equation>

<Probability>1</Probability>

</Rule>

<Rule>

<Id>r2</Id>

<Equation>

<Conformon1>A|B</Conformon1>

<Conformon2>C</Conformon2>

<Conformon1PassValues>1|1</Conformon1PassValues>

<Conformon2PassValues>1</Conformon2PassValues>

<Conformon1Limit>1|1</Conformon1Limit>

<Conformon2Limit>2</Conformon2Limit>

<Reversable>true</Reversable>

</Equation>

<Probability>0.8</Probability>

</Rule>

<Link>

<Linkto>M2</Linkto>

<Value>6</Value>

<Condition>le</Condition>

<Probability>1</Probability>

<MustBeId>C</MustBeId>

</Link>

<Link>

<Linkto>M3</Linkto>

<Value>1</Value>

<Condition>be</Condition>

<Probability>0.1</Probability>

</Link>

</Membrane>

<Membrane>

<Id>M2</Id>

</Membrane>
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<Membrane>

<Id>M3</Id>

</Membrane>

</Psystem>

B Three Chemical Reactions

\scriptsize

<Rule>

<Equation>

<Conformon1>Glucose|ATP|Enz.Hexokinase</Conformon1>

<Conformon2>Glucose-6-phosphate|ADP|H+|Enz.Hexokinase</Conformon2>

<Conformon1PassValues>1|1|1</Conformon1PassValues>

<Conformon2PassValues>1|1|1|1</Conformon2PassValues>

<Reversable>false</Reversable>

</Equation>

<Probability>0.0000001</Probability>

</Rule>

<Rule>

<Equation>

<Conformon1>Glucose|Enz.Hexokinase</Conformon1>

<Conformon2>Glucose.Hexokinase--Attached</Conformon2>

<Conformon1PassValues>1|1</Conformon1PassValues>

<Conformon2PassValues>1</Conformon2PassValues>

<Reversable>true</Reversable>

</Equation>

<Probability>0.8</Probability>

</Rule>

<Rule>

<Equation>

<Conformon1>Glucose.Hexokinase--Attached</Conformon1>

<Conformon2>Glucose-6-phosphate|ADP|H+|Enz.Hexokinase</Conformon2>

<Conformon1PassValues>1</Conformon1PassValues>

<Conformon2PassValues>1|1|1|1</Conformon2PassValues>

<Reversable>false</Reversable>

</Equation>

<Probability>1</Probability>

</Rule>

C Specifications of the Evolution Program

An individual of the EP is a vector with the values of the input conformons.
The fitness function to minimize is:

((<time steps taken to reach the final configuration> *

<SimulatorPenalty>) * <SimulatorWeighting>) +

(<sum values input conformons> * <ChromosomeValueWeighting>)

where the sum of the elements of an individual are <sum values input

conformons> while <time steps taken to reach the final

configura-
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tion> indicates how many times steps an individual needed to reach the
final configuration.This value can be at most SimulatorIterations (see
below).

The file with the specifications of the EP is an XML file whose tags are:

SimulatorIterations: number of iterations of the simulator for each indi-
vidual;

SimulatorPenalty: in case an individual does not reach TargetConformon

then in its fitness SimulatorIterations is multiplied by
SimulatorPenalty;

SimulatorWeighting: how much weight is given to the number of genera-
tions needed to reach TargetConformon (see below);

ChromosomeValueWeighting: how much weight is given to the number of
conformons present in the initial configuration (see below);

PopulationSize: size of the population (number of individuals);

UpperConformonLimit: the maximum value that the conformons in the ini-
tial configuration can have. The bigger the number the bigger the
range of values and the smaller the probability to guess a smaller
value (if this leads to a fast solution);

Generations: number of generations the EP runs;

NumberOfChromosomesToMutate: how many individual mutate in each gen-
eration;

HowManyMutationsPerChromosome: how many values of the input confor-
mons are mutated;

NumberOfCrossoversToPerform: half of the crossovers performed in each
generation (if 1, it means that 2 individuals are chosen to crossover);

TournamentSelection: how many individual are picked up to be selected
for the next population according to tournament selection (see [9]);

SimulationAverageRuns: for each individual simulator is run Simulation

AverageRuns times (and each time for SimulatorIterations iter-
ations). The time steps taken to reach the final configuration is the
average of the time steps in the SimulationAverageRuns simulations;
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StartConformon: the name of the conformon present in the StartMembrane
membrane defined in the conformon-P system to simulate that repre-
sent the input conformons (this tag can be repeated if there are more
than one conformon);

StartMembrane: membrane defined in the conformon-P system to simulate
containing the input conformons;

TargetConformon: it has two sub-tags:

Id: name of target output conformon present in TargetMembrane;

Value: value of target output conformon present in TargetMembrane;

TargetMembrane: membrane defined in the conformon-P system to simulate
where the output conformons should be present.

SimulatorWeighting and ChromosomeValueWeighting are used to in-
dicate what is more important in a solution. If we are looking for so-
lutions having fast (small number of time steps) simulation time, then
SimulatorWeighting will be smaller than ChromosomeValueWeighting. In
this way if two individuals reach the TargetConformon using the same ini-
tial configuration but one individual uses less time steps than the other,
then the former gets an higher fitness value. If we are looking for solu-
tions having a small number of conformons in the initial configuration, then
ChromosomeValueWeighting will be smaller than SimulatorWeighting.

The output of the EP is on screen: it just indicates the progress of the
simulation and at the end of it the fitness of the best individual with the
value of each input conformon.
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Abstract

In this paper we study the membrane dissolution rules in the frame-
work of P systems with active membranes but without using electrical
charges. More precisely, we prove that the polynomial computational
complexity class associated with the class of recognizer P systems with
active membranes, without polarizations and without dissolution is
equal to the standard complexity class P. Furthermore, we demon-
strate that if we consider dissolution rules, then the resulting complex-
ity class contains the class NP.

1 Introduction

Membrane Computing is inspired by the structure and functioning of living
cells, and it provides a new non–deterministic model of computation which
starts from the assumption that the processes taking place in the compart-
mental structure of a living cell can be interpreted as computations. The
devices of this model are called P systems.

Roughly speaking, a P system consists of a cell-like membrane structure,
in the compartments of which one places multisets of objects which evolve
according to given rules in a synchronous non–deterministic maximally par-
allel manner.
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In this paper we work with P systems with active membranes. This
model was introduced in [11], abstracting the way of obtaining new mem-
branes through the process of mitosis (membrane division) and providing a
tool able to construct an exponential workspace in linear time. In these de-
vices membranes have polarizations, one of the “electrical charges” 0,−, +,
and several times the problem was formulated whether or not these polariza-
tions are necessary in order to obtain polynomial solutions to NP–complete
problems. The last result is that from [1], where one proves that two polar-
izations suffice.

P systems with active membranes have been successfully used to design
(uniform) solutions to well-known NP–complete problems, such as SAT
[20], Subset Sum [17], Knapsack [18], Bin Packing [19], Partition [4], and
the Common Algorithmic Problem [21].

The present paper can be considered as a contribution to the interesting
problem of characterizing the tractability in terms of descriptional resources
required in membrane systems.

Specifically, in the framework of recognizer P systems with membrane
division but without using polarizations we prove the following: (a) the
class of problems which can be solved in a polynomial time by a family of
such P systems without dissolution is equal to class P, and (b) the class of
problems which can be solved in a polynomial time by a family of such P
systems with dissolution contains the class NP. Hence, we show a surprising
role of the –apparently “innocent”– operation of membrane dissolution, as
it makes the difference between efficiency and non–efficiency for P systems
with membrane division and without polarization.

The paper is organized as follows. In the next section some prelimi-
nary ideas about recognizer membrane systems and polynomial complexity
classes are introduced. In Section 3 we present a characterization of the class
P through the polynomial complexity class associated with recognizer P sys-
tems with active membranes, without polarization and without dissolution.
In Section 4 we show that every NP–complete problem can be solved in a
semi–uniform way by families of recognizer P systems using membrane dis-
solution rules and division for elementary and non–elementary membranes.
Conclusions and some final remarks are given in Section 5.
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2 Preliminaries

2.1 Recognizer P Systems

In the structure and functioning of a cell, biological membranes play an
essential role. The cell is separated from its environment by means of a
skin membrane, and it is internally compartmentalized by means of internal
membranes.

The main syntactic ingredients of a cell–like membrane system (P sys-
tem) are the membrane structure, the multisets, and the evolution rules.

• A membrane structure consists of several membranes arranged hier-
archically inside a main membrane (the skin), and delimiting regions
(the space in–between a membrane and the immediately inner mem-
branes, if any). Each membrane identifies a region inside the system.
When a membrane has no membrane inside, it is called elementary.
A membrane structure can be considered as a rooted tree, where the
nodes are called membranes, the root is called skin, and the leaves are
called elementary membranes.

• Regions defined by a membrane structure contain objects correspond-
ing to chemical substances present in the compartments of a cell. The
objects can be described by symbols or by strings of symbols, in such a
way that multisets of objects are placed in the regions of the membrane
structure.

• The objects can evolve according to given evolution rules, associated
with the regions (hence, with the membranes).

The semantics of the cell–like membrane systems is defined through a
non–deterministic and synchronous model (a global clock is assumed) as
follows:

• A configuration of a cell–like membrane system consists of a membrane
structure and a family of multisets of objects associated with each
region of the structure. At the beginning, there is a configuration
called the initial configuration of the system.

• In each time unit we can transform a given configuration in another
configuration by applying the evolution rules to the objects placed
inside the regions of the configurations, in a non–deterministic, max-
imally parallel manner (the rules are chosen in a non–deterministic

375



way, and in each region all objects that can evolve must do it). In this
way, we get transitions from one configuration of the system to the
next one.

• A computation of the system is a (finite or infinite) sequence of con-
figurations such that each configuration –except the initial one– is
obtained from the previous one by a transition.

• A computation which reaches a configuration where no more rules can
be applied to the existing objects and membranes, is called a halting
computation.

• The result of a halting computation is usually defined through the mul-
tiset associated with a specific output membrane (or the environment)
in the final configuration.

In this paper we use membrane computing as a framework to address the
resolution of decision problems. In order to solve this kind of problems and
having in mind that solving them is equivalent to recognizing the language
associated with them, we consider P systems as recognizer language devices.

Definition 2.1 A P system with input is a tuple (Π, Σ, iΠ), where: (a) Π is
a P system with working alphabet Γ, with p membranes labelled with 1, . . . , p,
and initial multisets M1, . . . ,Mp associated with them; (b) Σ is an (input)
alphabet strictly contained in Γ and the initial multisets are over Γ−Σ; (c)
iΠ is the label of a distinguished (input) membrane.

The computations of a P system with input in the form of a multiset
over Σ are defined in a natural way, but the initial configuration of (Π, Σ, iΠ)
must be the initial configuration of the system Π to which we add the input
multiset. More formally,

Definition 2.2 Let (Π, Σ, iΠ) be a P system with input. Let Γ be the work-
ing alphabet of Π, µ the membrane structure, and M1, . . . ,Mp the initial
multisets of Π. Let m be a multiset over Σ. The initial configuration of
(Π, Σ, iΠ) with input m is (µ,M1, . . . ,MiΠ ∪m, . . . ,Mp).

Let (Π, Σ, iΠ) be a P system with input. Let Γ be the working alphabet
of Π, µ the membrane structure, andM1, . . . ,Mp the initial multisets of Π.
Let m be a multiset over Σ. Then we denote M∗

j = {(a, j) : a ∈ Mj}, for
1 ≤ j ≤ p, and m∗ = {(a, iΠ) : a ∈ m}.
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Let us recall that a decision problem X is a pair (IX , θX) where IX is a
language over a finite alphabet (the elements are called instances) and θX

is a predicate (a total boolean function) over IX .

Definition 2.3 Let X = (IX , θX) be a decision problem. Let Π =
(Π(n))n∈N be a family of P systems with input. A polynomial encoding
from X to Π is a pair (cod, s) of polynomial time computable functions
over IX such that for each instance w ∈ IX , s(w) is a natural number and
cod(w) is an input multiset for the system Π(s(w)).

Polynomial encodings are stable under polynomial time reductions [20].
More precisely, the following proposition holds.

Proposition 2.1 Let X1, X2 be decision problems. Let r be a polynomial
time reduction from X1 to X2. Let (cod, s) be a polynomial encoding from
X2 to Π. Then (cod ◦ r, s ◦ r) is a polynomial encoding from X1 to Π.

Definition 2.4 A recognizer P system is a P system with input and external
output such that:

1. The working alphabet contains two distinguished elements yes and no.

2. All computations halt.

3. If C is a computation of the system, then either object yes or object
no (but not both) must have been released into the environment, and
only in the last step of the computation.

In recognizer P systems, we say that a computation is an accepting com-
putation (respectively, rejecting computation) if the object yes (respectively,
no) appears in the environment associated with the corresponding halting
configuration.

2.2 Recognizer P Systems with Active Membranes and with-

out Polarizations

A particularly interesting class of membrane systems are the systems with
active membranes, where the membrane division can be used in order to
solve computationally hard problems in polynomial or even linear time, by
a space–time trade-off.

In this paper we work with a variant of P systems with active membranes
that does not use polarizations.
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Definition 2.5 A P system with active membranes and without polariza-
tions is a P system with Γ as working alphabet, with H as the finite set of
labels for membranes, and where the rules are of the following forms:

(a) [ a → u ]h for h ∈ H, a ∈ Γ, u ∈ Γ∗. This is an object evolution rule,
associated with a membrane labelled with h: an object a ∈ Γ belonging
to that membrane evolves to a string u ∈ Γ∗.

(b) a [ ]h → [ b ]h for h ∈ H, a, b ∈ Γ. An object from the region imme-
diately outside a membrane labelled with h is introduced in this mem-
brane, possibly transformed into another object.

(c) [ a ]h → b [ ]h for h ∈ H, a, b ∈ Γ. An object is sent out from
membrane labelled with h to the region immediately outside, possibly
transformed into another object.

(d) [ a ]αh → b for h ∈ H, α ∈ {+,−, 0}, a, b ∈ Γ: A membrane labelled with
h is dissolved in reaction with an object. The skin is never dissolved.

(e) [ a ]h → [ b ]h [ c ]h for h ∈ H, a, b, c ∈ Γ. An elementary membrane
can be divided into two membranes with the same label, possibly trans-
forming some objects.

These rules are applied according to the following principles:

• All the rules are applied in parallel and in a maximal manner. In one
step, one object of a membrane can be used by only one rule (chosen
in a non–deterministic way), but any object which can evolve by one
rule of any form, must evolve.

• If at the same time a membrane labelled with h is divided by a rule of
type (e) and there are objects in this membrane which evolve by means
of rules of type (a), then we suppose that first the evolution rules of
type (a) are used, and then the division is produced. Of course, this
process takes only one step.

• The rules associated with membranes labelled with h are used for all
copies of this membrane. At one step, a membrane can be the subject
of only one rule of types (b)-(e).

Let us note that in this framework we work without cooperation, without
priorities, with cell division rules for elementary membranes, and without
changing the labels of membranes. But we can use dissolution or not.
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We denote by AM0
−d (respectively, AM0

+d) the class of all recognizer
P systems with active membranes without polarizations and without using
dissolution (respectively, using dissolution).

2.3 Polynomial Complexity Classes in Recognizer P Systems

Definition 2.6 Let X = (IX , θX) be a decision problem. Let Π =
(Π(w))w∈IX

be a family of recognizer membrane systems without input.

• Π is sound with regard to X if for each instance of the problem w ∈ IX ,
if there exists an accepting computation of Π(w), then θX(w) = 1.

• Π is complete with regard to X if for each instance of the problem
w ∈ IX , if θX(w) = 1, then every computation of Π(w) is an accepting
computation.

These concepts can be extended to families of recognizer P systems with
input membrane.

Definition 2.7 Let X = (IX , θX) be a decision problem. Let Π =
(Π(n))n∈N be a family of recognizer P systems with input. Let (cod, s) be a
polynomial encoding from X to Π.

• We say that the family Π is sound with regard to (X, cod, s) if the
following holds: for each instance of the problem w ∈ IX , if there exists
an accepting computation of Π(s(w)) with input cod(w), then θX(w) =
1.

• We say that the family Π is complete with regard to (X, cod, s) if the
following holds: for each instance of the problem u ∈ IX , if θX(u) = 1,
then every computation of Π(s(u)) with input cod(u) is an accepting
computation.

The first results about solvability of NP–complete problems in polyno-
mial time (even linear) by membrane systems were given by Gh. Păun [10],
C. Zandron, C. Ferretti and G. Mauri [23], S.N. Krishna and R. Rama [7],
and A. Obtu lowicz [8] in the framework of P systems that lack an input
membrane. Thus, the constructive proofs of such results need to design one
system for each instance of the problem.

This method for solving problems provides an algorithmic solution of
specific purpose in the following sense: if we wanted to apply such a method
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to some decision problem in a laboratory, then the system constructed to
solve a concrete instance is useless when trying to solve another instance.

Now, we formalize these ideas in the following definition.

Definition 2.8 Let R be a class of recognizer P systems without input mem-
brane. A decision problem X = (IX , θX) is solvable in polynomial time by
a family, Π = (Π(w))w∈IX

, of P systems of type R, and we denote this by
X ∈ PMC∗

R, if:

• Π is polynomially uniform by Turing machines, that is, there exists a
deterministic Turing machine working in polynomial time which con-
structs the system Π(w) from the instance w ∈ IX .

• Π is polynomially bounded, that is, there exists a polynomial function
p(n) such that for each w ∈ IX , all computations of Π(w) halt in at
most p(|w|) steps.

• Π is sound and complete with regard to X.

Next, we propose to solve a decision problem through a family of P sys-
tems constructed in polynomial time by a Turing machine, and verifying that
each element of the family processes, in a specified sense, all the instances
of equivalent size. We say that these solutions are uniform solutions.

Definition 2.9 Let R be a class of recognizer P systems with input mem-
brane. A decision problem X = (IX , θX) is solvable in polynomial time
by a family Π = (Π(n))n∈N, of P systems from R, and we denote this by
X ∈ PMCR, if the following is true:

• The family Π is polynomially uniform by Turing machines.

• There exists a polynomial encoding (cod, s) from IX to Π such that

– The family Π is polynomially bounded with regard to (X, cod, s);
that is, there exists a polynomial function p, such that for each
u ∈ IX every computation of Π(s(u)) with input cod(u) is halting
and, moreover, it performs at most p(|u|) steps.

– The family Π is sound and complete with regard to (X, cod, s).

It is easy to see that the classes PMC∗
R

and PMCR are closed under
polynomial–time reduction and complement (see [15] for details).
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3 Characterizing the Tractability by Recognizer P

Systems with Active Membranes

Let Π be a recognizer P systems with active membranes without polariza-
tions and without dissolution. Let R be the set of rules associated with
Π.

Each rule can be considered, in a certain sense, as a dependency between
the object triggering the rule and the object or objects produced by its
application.

We can consider a general pattern for rules of types (a), (b), (c), (e) in
the form (a, h)→ (a1, h

′)(a2, h
′) . . . (as, h

′), where:

• The rules of type (a) correspond to the case h = h′ and s ≥ 1.

• The rules of type (b) correspond to the case h = f(h′) and s = 1.

• The rules of type (c) correspond to the case h′ = f(h) and s = 1.

• The rules of type (e) correspond to the case h = h′ and s = 2.

If h is the label of a membrane, then f(h) denotes the label of the father
of the membrane labelled with h. We adopt the convention that the father
of the skin membrane is the environment (and we denote by environment
the label associated with the environment of the system).

For example, let us consider a general rule (a, h) → (a1, h
′) . . . (as, h

′).
Then we can interpret that from the object a in membrane labelled with h

we can reach the objects a1, . . . , as in membrane labelled with h′.
Next, we formalize these ideas in the following definition.

Definition 3.1 Let Π be a recognizer P system with active membranes with-
out polarizations and without dissolution. Let R be the set of rules associ-
ated with Π. The dependency graph associated with Π is the directed graph
GΠ = (VΠ, EΠ) defined as follows:

VΠ = V LΠ ∪ V RΠ,

V LΠ = {(a, h) ∈ Γ×H : ∃u ∈ Γ∗ ([a→ u]h ∈ R)∨

∃b ∈ Γ ([a]h → [ ]hb ∈ R)∨

∃b ∈ Γ ∃h′ ∈ H (h = f(h′) ∧ a[ ]h′ → [b]h′ ∈ R)∨

∃b, c ∈ Γ ([a]h → [b]h[c]h ∈ R)},
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V RΠ = {(b, h) ∈ Γ×H : ∃a ∈ Γ ∃u ∈ Γ∗ ([a→ u]h ∈ R ∧ b ∈ alph(u))∨

∃a ∈ Γ ∃h′ ∈ H (h = f(h′) ∧ [a]h′ → [ ]h′b ∈ R)∨

∃a ∈ Γ (a[ ]h → [b]h ∈ R)∨

∃a, c ∈ Γ ([a]h → [b]h[c]h ∈ R)},

EΠ = {((a, h), (b, h′)) : ∃u ∈ Γ∗ ([a→ u]h ∈ R ∧ b ∈ alph(u) ∧ h = h′)∨

([a]h → [ ]hb ∈ R ∧ h′ = f(h))∨

(a[ ]h′ → [b]h′ ∈ R ∧ h = f(h′))∨

∃c ∈ Γ ([a]h → [b]h[c]h ∈ R ∧ h = h′)}.

Proposition 3.1 Let Π be a recognizer P system with active membranes
without polarizations and without dissolution. Let R be the set of rules
associated with Π. There exists a Turing machine that constructs the depen-
dency graph, GΠ, associated with Π, in polynomial time (that is, in a time
bounded by a polynomial function depending on the total number of rules
and the maximum length of the rules).

Proof. A deterministic algorithm that, given a P system Π with the set R

of rules, constructs the corresponding dependency graph, is the following:

Input: Π (with R as its set of rules)

VΠ ← ∅; EΠ ← ∅

for each rule r ∈ R of Π do

if r = [a→ u]h ∧ alph(u) = {a1, . . . , as} then

VΠ ← VΠ ∪
s⋃

j=1

{(a, h), (aj , h)}; EΠ ← EΠ ∪
s⋃

j=1

{((a, h), (aj , h))}

if r = [a]h → [ ]hb then

VΠ ← VΠ ∪ {(a, h), (b, f(h))};
EΠ ← EΠ ∪ {((a, h), (b, f(h)))}

if r = a[ ]h → [b]h then

VΠ ← VΠ ∪ {(a, f(h)), (b, h)};
EΠ ← EΠ ∪ {((a, f(h)), (b, h))}
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if r = [a]h → [b]h[c]h then

VΠ ← VΠ ∪ {(a, h)), (b, h), (c, h)};

EΠ ← EΠ ∪ {((a, h)), (b, h)), ((a, h), (c, h))}

The running time of this algorithm is bounded by O(|R| · q), where q is the
value max{length(r) : r ∈ R}. 2

Proposition 3.2 Let Π = (Γ, Σ, H,M1, . . . ,Mp, R1, . . . , Rp, iΠ) be a recog-
nizer P system with active membranes without polarizations and without
dissolution. Let ∆Π be defined as follows:

∆Π = {(a, h) ∈ Γ×H : there exists a path (within the dependency graph)
from (a, h) to (yes, environment)}.

Then, there exists a Turing machine that constructs the set ∆Π in polynomial
time (that is, in a time bounded by a polynomial function depending on the
total number of rules and the maximum length of the rules).

Proof. We can construct the set ∆Π from Π as follows:

• We construct the dependency graph GΠ associated with Π.

• Then we consider the following algorithm:

Input: GΠ = (VΠ, EΠ)

∆Π ← ∅

for each (a, h) ∈ VΠ do

if reachability (GΠ, (a, h), (yes, environment)) = yes then

∆Π ← ∆Π ∪ {(a, h)}

The running time of this algorithm is of the order O(|VΠ| · |VΠ|
2), hence1 it

1The Reachability Problem is the following: given a (directed or undirected) graph,
G, and two nodes a, b, determine whether or not the node b is reachable from a, that
is, whether or not there exists a path in the graph from a to b. It is easy to design an
algorithm running in polynomial time solving this problem. For example, given a (directed
or undirected) graph, G, and two nodes a, b, we consider a depth–first–search with source
a, and we check if b is in the tree of the computation forest whose root is a. The total
running time of this algorithm is O(|V |+ |E|), that is, in the worst case is quadratic in the
number of nodes. Morover, this algorithm needs to store a linear number of items (it can
be proved that there exists another polynomial time algorithm which uses O(log2(|V |))
space).
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is of the order O(|Γ|3 · |H|3). 2

Next, given a family of recognizer P systems solving a decision problem,
we will characterize the acceptance of an instance of the problem, w, using
the set ∆Π(s(w)) associated with the system Π(s(w)), that processes the
given instance w. More precisely, the instance is accepted by the system
if and only if there is an object in the initial configuration of the system
Π(s(w)) with input cod(w) such that there exists a path in the associated
dependency graph reaching the object yes in the environment.

Proposition 3.3 Let X = (IX , θX) be a decision problem. Let Π =
(Π(n))n∈N be a family of recognizer P systems with input membrane solving
X, according to Definition 2.9. Let (cod, s) be the polynomial encoding as-
sociated with that solution. Then, for each instance w of the problem X the
following assertions are equivalent:

(a) θX(w) = 1 (that is, the answer to the problem is yes for w).

(b) ∆Π(s(w))∩ ((cod(w))∗∪

p⋃

j=1

M∗
j ) 6= ∅, whereM1, . . . ,Mp are the initial

multisets of the system Π(s(w)).

Proof. Let w ∈ IX . Then w ∈ LX if and only if there exists an ac-
cepting computation of the system Π(s(w)) with input multiset cod(w).
But this condition is equivalent to the following: in the initial configura-
tion of Π(s(w)) with input multiset cod(w) there exists an object a ∈ Γ in
a membrane labelled with h such that in the dependency graph the node
(yes, environment) is reachable from (a, h).

Hence, θX(w) = 1 if and only if ∆Π(s(w)) ∩M
∗
1 6= ∅, or . . . , or ∆Π(s(w)) ∩

M∗
p 6= ∅, or ∆Π(s(w)) ∩ (cod(w))∗ 6= ∅. 2

Theorem 3.1 P = PMCAM0
−d

.

Proof. We have P ⊆ PMCAM0
−d

because the class PMCAM0
−d

is closed

under polynomial time reduction. Next, we show that PMCAM0
−d
⊆ P.

Let X ∈ PMCAM0
−d

and let Π = (Π(n))n∈N be a family of recognizer P

systems with input membrane solving X, according to Definition 2.9. Let
(cod, s) be the polynomial encoding associated with that solution.

We consider the following deterministic algorithm:
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Input: An instance w of X

- Construct the system Π(s(w)) with input multiset cod(w).

- Construct the dependency graph GΠ(s(w)) associated with

Π(s(w)).
- Construct the set ∆Π(s(w)) according to Proposition 3.2

answer ← no; j ← 1

while j ≤ p ∧ answer = no do

if ∆Π(s(w)) ∩M∗
j 6= ∅ then

answer ← yes

j ← j + 1

endwhile

if ∆Π(s(w)) ∩ (cod(w))∗ 6= ∅ then

answer ← yes

On one hand, the answer of this algorithm is yes if and only if there
exists a pair (a, h) belonging to ∆Π(s(w)) such that the symbol a appears in
the membrane labelled with h in the initial configuration (with input the
multiset cod(w)).

On the other hand, a pair (a, h) belongs to ∆Π(s(w)) if and only if there
exists a path from (a, h) to (yes, environment), that is, if and only if we
can obtain an accepting computation of Π(s(w)) with input cod(w). Hence,
the algorithm above described solves the problem X.

The cost to determine whether or not ∆Π(s(w)) ∩M∗
j 6= ∅ (or ∆Π(s(w)) ∩

(cod(w))∗ 6= ∅) is of the order O(|Γ|2 · |H|2).
Hence, the running time of this algorithm can be bounded by f(|w|) +

O(|R| · q) + O(p · |Γ|2 · |H|2), where f is the (total) cost of a polynomial
encoding from X to Π, R is the set of rules of Π(s(w)), H is the set of
labels for membranes of Π(s(w)), p is the number of (initial) membranes
of Π(s(w)), and q = max {length(r) : r ∈ R}. But from Definition 2.9
we have that all involved parameters are polynomials in |w|. That is, the
algorithm is polynomial in the size |w| of the input. 2

Now, we consider division rules for non–elementary membranes, that is,
rules of the following form [ [ ]h1

[ ]h2
]h0
→ [ [ ]h1

]h0
[ [ ]h2

]h0
, where h0, h1, h2

are labels: if the membrane with label h0 contains other membranes than
those with labels h1, h2, then such membranes and their contents are dupli-
cated and placed in both new copies of the membrane h0; all membranes and
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objects placed inside membranes h1, h2, as well as the objects from mem-
brane h0 placed outside membranes h1 and h2, are reproduced in the new
copies of membrane h0. We denote by AM0

−d,+ne the class of all recognizer
P systems with active membranes without polarization, without membrane
dissolution rules, and using division rules for elementary and non–elementary
membranes.

If Π ∈ AM0
−d,+ne, then we define the dependency graph associated with

Π as the directed graph GΠ from Definition 3.1, that is, the division rules for
non–elementary membranes do not add any node or edge to the dependency
graph.

Then, the proof of Theorem 3.1 provides the following result:

Theorem 3.2 P = PMCAM0
−d,+ne

.

Now, we study similar characterizations of P dealing with semi–uniform
solutions in the framework of recognizer P systems with active membranes
without polarizations and without dissolution.

Proposition 3.4 Let X = (IX , θX) be a decision problem. Let Π =
(Π(w))w∈IX

be a family of recognizer P systems without input membrane
solving X, according to Definition 2.8. Then, for each instance w of the
problem X the following assertions are equivalent:

(a) θX(w) = 1 (that is, the answer to the problem is yes for w).

(b) ∆Π(w) ∩ (

p⋃

j=1

M∗
j ) 6= ∅, where M1, . . . ,Mp are the initial multisets of

the system Π(w).

Proof. Let w ∈ IX . Then w ∈ LX if and only if there exists an accepting
computation of the system Π(w). But this condition is equivalent to the
following: in the initial configuration of Π(w) there exists an object a ∈ Γ
in a membrane labelled with h such that in the dependency graph the node
(yes, environment) is reachable from (a, h).

Hence, θX(w) = 1 if and only if ∆Π(w)∩M
∗
1 6= ∅, or . . . , or ∆Π(w)∩M

∗
p 6=

∅. 2

Theorem 3.3 P = PMC∗

AM0
−d

.
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Proof. We have P ⊆ PMC∗

AM0
−d

because the class PMC∗

AM0
−d

is closed

under polynomial time reduction. Next, we show that PMC∗

AM0
−d

⊆ P. For

that, let X ∈ PMC∗

AM0
−d

. Let Π = (Π(w))w∈IX
be a family of recognizer

P systems without input membrane solving X, according to Definition 2.8.
We consider the following deterministic algorithm:

Input: An instance w of X

- Construct the system Π(w).

- Construct dependency graph GΠ(w) associated with Π(w).
- Construct the set ∆Π(w) according to Proposition 3.2

answer ← no; j ← 1

while j ≤ p ∧ answer = no do

if ∆Π(w) ∩M∗
j 6= ∅ then

answer ← yes

j ← j + 1

endwhile

On one hand, the answer of this algorithm is yes if and only if there
exists a pair (a, h) belonging to ∆Π(w) such that the symbol a appears in
the membrane labelled with h in the initial configuration.

On the other hand, a pair (a, h) belongs to ∆Π(w) if and only if there
exists a path from (a, h) to (yes, environment), that is, if and only if we
can obtain an accepting computation of Π(w). Hence, the algorithm above
described solves the problem X.

The cost to determine whether or not ∆Π(w) ∩M∗
j 6= ∅ (for 1 ≤ j ≤ p)

is of the order O(|Γ|2 · |H|2).
Hence, the running time of this algorithm can be bounded by O(|R| ·q)+

O(p · |Γ|2 · |H|2), where R the set of rules of Π(w), H is the set of labels for
membranes of Π(w), p is the number of (initial) membranes of Π(w), and
q = max {length(r) : r ∈ R}. From Definition 2.8 we have that all involved
parameters are polynomials in |w|. That is, the algorithm is polynomial in
the size |w| of the input. 2

Bearing in mind that division rules for non–elementary membranes do
not provide any novelty in the dependency graph, we have:

Theorem 3.4 P = PMC∗

AM0
−d,+ne

.
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4 Solving Problems by Recognizer P Systems with

Active Membranes, without Polarizations and

with Dissolution

In this section we show that the class of decision problems solvable in poly-
nomial time in a semi–uniform way by families of recognizer P systems with
active membranes, without polarization, with membrane dissolution rules
and using division rules for elementary and non–elementary membranes,
contains the standard complexity class NP.

For that, we describe a family of such recognizer membrane systems
which solves the Subset Sum problem in linear time and in a semi–uniform
way.

The Subset Sum problem is the following one: Given a finite set A, a
weight function, w : A → N, and a constant k ∈ N, determine whether or
not there exists a subset B ⊆ A such that w(B) = k.

Proposition 4.1 The Subset Sum problem belongs to the class
PMC∗

AM0
+d,+ne

.

Proof. We will use a tuple u = (n, (w1, . . . , wn), k) to represent an instance
of the problem, where n stands for the size of A = {a1, . . . , an}, wi = w(ai),
and k is the constant given as input for the problem.

We propose here a solution to this problem based on a brute force algo-
rithm implemented in the framework of P systems with active membranes,
without polarizations, with dissolution, and using division for elementary
and non–elementary membranes.

The idea of the design is better understood if we divide the solution to
the problem into several stages:

• Generation stage: for every subset of A, a membrane is generated via
membrane division.

• Weight calculation stage: in each membrane the weight of the associa-
ted subset is calculated. This stage will take place in parallel with the
previous one.

• Checking stage: for each membrane it is checked whether or not the
weight of its associated subset is exactly k. This stage cannot start
before the previous ones are over.
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• Output stage: when the previous stage has been completed in all mem-
branes, the system sends out the answer to the environment.

For each instance u = (n, (w1, . . . , wn), k) of the Subset Sum problem we
consider the P system with active membranes, without polarization, without
input membrane Π(u) defined as follows:
• Working alphabet:

Γ(u) = {d0, . . . , d2n+1, a1, . . . , an, e1, . . . , en}
∪ {b, s, c, c, z0, . . . , z2n+k+5, yes, no}.

• Initial membrane structure: µ = [ [ [ [ . . . [ [ ]0 ]1 . . . ]k ]k+1 ]k+2 ]k+3.
• Initial Multisets: w0 = d0, wk+2 = z0 and wi = ∅, if i ∈ {1, . . . , k, k +
1, k + 3}.
• The set of evolution rules, R(u), consists of the following rules:

(a) [d2i → ai+1d2i+1]0 for i ∈ {0, . . . , n},
[d2i+1 → d2i+2]0 for i ∈ {0, . . . , n− 1}.

The goal of the counter di is to control the apparition of the object
aj only in the odd steps. The importance of these objects will be
explained in the next set of rules.

(b) [ai]0 → [ei]0 [b]0,
[ei → swi ]0 for i ∈ {1, . . . , n}.

The object ai triggers the rule for division of elementary membranes.
After the division, in one membrane is placed the object ei and in the
other the object b. The object b remains inactive whereas the object
ei evolves in the next step to as many objects s as the weight wi.

(c) [ [ ]i [ ]i ]i+1 → [ [ ]i ]i+1 [ [ ]i ]i+1 for i ∈ {1, . . . , k}.

This is the set of rules for the division of non-elementary membranes.
These three first set of rules produce a membrane structure with 2n

branches. On each of the leaves of the tree we have a membrane with
as many objects s as the weight of a possible subset, S, of A.

(d) [d2n+1]0 → b,

[s]i → c for i ∈ {1, . . . , k + 1}.

When the generation stage has finished, the object d2n+1 dissolves
the membrane with label 0. At this point, the elements s start to
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dissolve membranes. If there are enough objects s, all the membranes
with labels 1, . . . , k + 1 are dissolved. Otherwise, the branch remains
inactive.

(e) [c→ c]k+1.

It is a waiting step and the key of the computation. If in a branch the
codified weight of the subset, wS , is less than k, the membrane remains
inactive. Otherwise all the membranes of the branch are dissolved until
reaching the membrane with label k + 1. If wS = k in this membrane,
there are no objects s that dissolve it and the object c remains in the
membrane. On the contrary, if wS > k, the membrane is dissolved in
the same step in which c is produced and c goes to the membrane with
label k + 2.

(f) [zi → zi+1]k+2 for i ∈ {0, . . . , 2n + k + 4},
[c]k+1 → yes,

[yes]k+2 → yes,

[z2n+k+5]k+2 → no.

If one of the subsets of A has weight k, then an object c appears in
a membrane with label k + 1. This object dissolves the membrane
and sends an object yes to the membrane with label k + 2. In this
membrane we keep a counter zi along the computation. If an object
c has sent an object yes to this membrane, this object will dissolve
the membrane in the next step preventing that the object z2n+k+5

remains in the membrane. Otherwise, if the object c is never produced,
we get an object z2n+k+5 in the membrane with label k + 2. In the
following step this membrane is dissolved and an element no is sent to
the membrane with label k + 3.

(g) [no]k+3 → no [ ]k+3,

[yes]k+3 → yes [ ]k+3.

From above, we know that the membrane with label k + 3 is reached
by one and only one of the objects yes and no. This rules send that
object to the environment in the last step of the computation.

2
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Theorem 4.1 NP ∪ co−NP ⊆ PMC∗

AM0
+d,+ne

.

Proof. It suffices to make the following observations: the Subset Sum pro-
blem is NP–complete, belonging to the class PMC∗

AM0
+d,+ne

, and this class

is stable under polynomial-time reduction and closed under complement. 2

Remark A. Alhazov et al. in [2] showed that SAT ∈ PMC∗

AM0
+d,+ne

. Hence

the result in Theorem 4.1 can also be deduced from this remark.

5 Conclusions

A conjecture known in the membrane computing area under the name of
the P–conjecture affirms that P = PMCAM0 , where AM0 is the class of
all recognizer P systems with active membranes and without polarization.

In this paper a partial negative answer to the P–conjecture is given when
we use semi–uniform solutions and membrane division rules for elementary
and non–elementary membranes.

We have used the concept of dependency graph that initially was defined
to help to design strategies that allow to choose short computations of recog-
nizer confluent membrane systems. In this paper we work with dependency
graphs associated with a variant of recognizer P systems with active mem-
branes. In this way we are able to characterize accepting computations of
these systems through the reachability of a distinguished node of the graph
from other nodes associated with the initial configuration.

We have also shown that it is possible to solve in polynomial time and in
a uniform way through recognizer P systems with active membranes without
polarizations and without dissolution only problems which are tractable in
the standard sense. Moreover, if in this framework we consider membrane
dissolution rules, then we can solve NP–complete problems in polynomial
time, in a semi–uniform way and using division for elementary and non–
elementary membranes.
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[15] M.J. Pérez-Jiménez: An approach to computational complexity in
Membrane Computing. In: G. Mauri, Gh. Păun, M. J. Pérez-Jiménez,
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[18] M.J. Pérez-Jiménez, A. Riscos-Núñez: A linear solution for the Knap-
sack problem using active membranes. In C. Mart́ın-Vide, G. Mauri,
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Abstract

The usefulness of P systems with membrane creation for solving
NP problems has been previously proved (see [3, 4]), but, up to now,
it was an open problem whether such P systems can solve PSPACE

problems. In this paper we give an answer to this question by present-
ing a uniform family of P system with membrane creation which solve
the QSAT-problem in linear time.

1 Introduction

The power of P systems as a tool for efficiently solving NP problems was
been widely proved. Many examples have been proposed in the frame work
of P systems with active membranes with two polarizations and three po-
larizations and in the framework of P systems with Membrane Creation.

The complexity class of NP problems deals with the time needed to
solve a problem, i.e., NP is the class of problems which can be solved by
a non-deterministic one-tape Turing machine program where the number of
steps is polynomially bounded (see [1]). The key of such solutions is the
creation of an exponential amount of workspace (membranes) in polynomial
time.

When we consider the resources needed in a computation, we obviously
have to consider the time, i.e. the number of steps of our device, but in
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practice, we also need to consider the amount of memory or storage required
by the computation. If we consider a Turing machine computation, the
space is the number of distinct tape squares visited by the write-read head
of the machine. Since the number of visited squares cannot be greater than
the number of steps in the computation, we have that, if the number of
steps is polynomially bounded, then the number of visited squares is also
polynomially bounded. Therefore, any problem solvable in polynomial time
is also solvable in polynomial space.

PSPACE (respectively, NPSPACE) is the class of decision problems
that are solvable by a deterministic (respectively, non–deterministic) Turing
machine using a polynomial amount of space. These complexity classes are
closed under polynomial time reduction. Savitch’s theorem says that each
non–deterministic Turing machine using f(n) space can be simulated by a
deterministic Turing machine using only f(n)2 space (for time complexity,
such a simulation seems to require an exponential increase in time). Bearing
in mind that a Turing machine running in f(n) ≥ n time can use at most
f(n) space we have P ⊆ PSPACE and NP ⊆ NPSPACE. So, P ⊆ NP ⊆
NPSPACE = PSPACE. It is unknown whether any of these containment
are strict.

A decision problem in PSPACE such that every problem in PSPACE

is polynomial time reducible to it, is called PSPACE–complete. If a
PSPACE–complete problem belongs to P (respectively, NP), then P =
PSPACE (respectively, NP = PSPACE).

In this paper, we present a polynomial time solution to the QSAT prob-
lem, a well known PSPACE-complete problem (see L.J. Stockmeyer and
A.R. Meyer in [15]) using a family of recognizer P systems with membrane
creation. This result shows that all PSPACE problems can be solved in
polynomial time by P systems with membrane creation.

The paper is organized as follows: first recognizer P systems are briefly
described. In Section 3 P systems with membrane creation are recalled
with a short discussion about their semantics. A linear–time solution to the
QSAT problem is presented in the following section, with a short overview
of the computation. Finally, some conclusions are given in the last section.

2 Recognizer P Systems

Recognizer P systems were introduced in [14] and are the natural framework
to study and solve decision problems, since deciding whether an instance has
an affirmative or negative answer is equivalent to deciding if a string belongs
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or not to the language associated with the problem.
In the literature, recognizer P systems are associated in a natural way

with P systems with input. The data related to an instance of the decision
problem has to be provided to the P system in order to compute the appro-
priate answer. This is done by codifying each instance as a multiset placed
in an input membrane. The output of the computation (yes or no) is sent to
the environment. In this way, P systems with input and external output are
devices which can be seen as black boxes, in which the user provides the data
before the computation starts and the P system sends to the environment
the output in the last step of the computation. Another important feature
of P systems is the non-determinism. The design of a family of recognizer P
system has to consider it, because all possibilities in the non-deterministic
computations have to output the same answer. This can be summarized in
the following definitions.

Definition 2.1 A P system with input is a tuple (Π, Σ, iΠ), where: (a) Π is
a P system, with working alphabet Γ, with p membranes labelled by 1, . . . , p,
and initial multisets w1, . . . , wp associated with them; (b) Σ is an (input)
alphabet strictly contained in Γ; the initial multisets are over Γ−Σ; and (c)
iΠ is the label of a distinguished (input) membrane.

Let m be a multiset over Σ. The initial configuration of (Π, Σ, iΠ) with
input m is (µ, w1, . . . , wiΠ ∪ m, . . . , wp).

Definition 2.2 A recognizer P system is a P system with input, (Π, Σ, iΠ),
and with external output such that:

1. The working alphabet contains two distinguished elements yes, no.

2. All its computations halt.

3. If C is a computation of Π, then either the object yes or the object
no (but not both) must have been released into the environment, and
only in the last step of the computation. We say that C is an accept-
ing computation (respectively, rejecting computation) if the object yes
(respectively, no) appears in the environment associated to the corre-
sponding halting configuration of C.

Definition 2.3 Let F be a class of recognizer P systems. We say that a
decision problem X = (IX , θX) is solvable in polynomial time by a family
Π = (Π(n))n∈N, of F , and we denote this by X ∈ PMCF , if the following
is true:
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• The family Π is polynomially uniform by Turing machines, that is,
there exists a deterministic Turing machine constructing Π(n) from
n ∈ N in polynomial time.

• There exists a pair (cod, s) of polynomial-time computable functions
over IX such that:

− for each instance u ∈ IX , s(u) is a natural number and cod(u) is
an input multiset of the system Π(s(u));

− the family Π is polynomially bounded with regard to (X, cod, s),
that is, there exists a polynomial function p, such that for each
u ∈ IX every computation of Π(s(u)) with input cod(u) is halting
and, moreover, it performs at most p(|u|) steps;

− the family Π is sound with regard to (X, cod, s), that is, for each
u ∈ IX , if there exists an accepting computation of Π(s(u)) with
input cod(u), then θX(u) = 1;

− the family Π is complete with regard to (X, cod, s), that is, for
each u ∈ IX , if θX(u) = 1, then every computation of Π(s(u))
with input cod(u) is an accepting one.

In the above definition we have imposed to every P system Π(n) to be
confluent, in the following sense: every computation of a system with the
same input must always give the same answer.

It can be proved that PMCF is closed under polynomial–time reduction
and complement, see [14]. In this paper we will deal with the class MC of
recognizer P systems with membrane creation.

3 P Systems with Membrane Creation

In this section we recall the description of cellular devices (P systems) with
membrane creation.

Basically, a P system1. consists of a hierarchical membrane structure
where each membrane has associated a multiset of objects and a set of
rules expressing how these objects can evolve. The membrane structure
of a P system is a hierarchical arrangement of membranes embedded in a
skin membrane, which separates the system from its environment. A mem-
brane without any membrane inside is called elementary. Each membrane

1A layman-oriented introduction can be found in [9], a comprehensive monograph in
[8], and the latest information about P systems is available at [16].
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determines a region (the space enclosed between the membrane and the
membranes immediately inside it), which can contain a multiset of objects.
Associated with the regions there are rules that can transform and move
those objects.

There are two ways of producing new membranes in living cells: mitosis
(membrane division) and autopoiesis (membrane creation, see [6]). Both
ways of generating new membranes have given rise to different variants of
P systems: P systems with active membranes, where the new workspace is
generated by membrane division, and P systems with membrane creation,
where the new membranes are created from objects. Both models have been
proved to be universal, but up to now there is no theoretical result prov-
ing that these models simulate each other in polynomial time. P systems
with active membranes have been successfully used to design solutions to
NP-complete problems, as SAT [14], Subset Sum [11], Knapsack [12], Bin
Packing [13], and Partition [5], but as Gh. Păun pointed out in [10] “mem-
brane division was much more carefully investigated than membrane creation
as a way to obtain tractable solutions to hard problems”. The first results
in this way have recently appeared, showing that NP problems can also be
solved in this framework (see [3, 4]).

Recall that a P system with membrane creation is a construct of the form
Π = (O, H, µ, w1, . . . , wm, R), where:

1. m ≥ 1 is the initial degree of the system; O is the alphabet of objects
and H is a finite set of labels for membranes;

2. µ is a membrane structure consisting of m membranes labelled (not
necessarily in a one-to-one manner) with elements of H and w1, . . . , wm

are strings over O, describing the multisets of objects placed in the m
regions of µ;

3. R is a finite set of rules, of the following forms:

(a) [a → v]h where h ∈ H, a ∈ O, and v is a string over O de-
scribing a multiset of objects. These are object evolution rules
associated with membranes and depending only on the label of
the membrane.

(b) a[ ]h → [b]h where h ∈ H, a, b ∈ O. These are send-in communi-
cation rules. An object is introduced in the membrane possibly
modified.
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(c) [a]h → [ ]h b where h ∈ H, a, b ∈ O. These are send-out commu-
nication rules. An object is sent out of the membrane possibly
modified.

(d) [a]h → b where h ∈ H, a, b ∈ O. These are dissolution rules.
In reaction with an object, a membrane is dissolved, while the
object specified in the rule can be modified.

(e) [a → [v]h2
]h1

where h1, h2 ∈ H, a ∈ O, and v is a string over
O describing a multiset of objects. These are creation rules. In
reaction with an object, a new membrane is created. This new
membrane is placed inside of the membrane of the object which
triggers the rule and has associated an initial multiset and a label.

Rules are applied according to the following principles:

• Rules from (a) to (d) are used as usual in the framework of membrane
computing, that is, in a maximally parallel way. In one step, each ob-
ject in a membrane can only be used for one rule (non-deterministically
chosen when there are several possibilities), but any object which can
evolve by a rule of any form must do it (with the restrictions below
indicated).

• Rules of type (e) are used also in a maximally parallel way. Each
object a in a membrane labelled with h1 produces a new membrane
with label h2 placing in it the multiset of objects described by the
string v.

• If a membrane is dissolved, its content (multiset and interior mem-
branes) becomes part of the immediately external one. The skin mem-
brane is never dissolved.

• All the elements which are not involved in any of the operations to be
applied remain unchanged.

• The rules associated with the label h are used for all membranes with
this label, irrespective of whether or not the membrane is an initial
one or it was obtained by creation.

• Several rules can be applied to different objects in the same mem-
brane simultaneously. The exception are the rules of type (d) since a
membrane can be dissolved only once.

We denote by MC the class of recognizer P systems with membrane
creation.
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4 Solving QSAT in Linear Time

In this section we design a family of recognizer P systems with membrane
creation (and using dissolution rules) which solves the QSAT problem (the
quantified satisfiability problem).

Given a boolean formula ϕ(x1, . . . , xn) in conjunctive normal form, with
boolean variables x1, . . . , xn, the sentence ϕ∗ = ∃x1∀x2 . . . Qnxnϕ(x1, . . . , xn)
(where Qn is ∃ if n is odd, and Qn is ∀, otherwise) is said to be the (exis-
tential) fully quantified formula associated with ϕ(x1, . . . , xn).

We say that ϕ∗ is satisfiable if there exists a truth assignment, σ, over
{i : 1 ≤ i ≤ n ∧ i odd} such that each extension, σ∗, of σ over {1, . . . , n}
verify σ∗(ϕ(x1, . . . , xn)) = 1.

The QSAT problem is the following one: Given a boolean formula
ϕ(x1, . . . , xn) in conjunctive normal form, determine whether or not the
(existential) fully quantified formula ϕ∗ = ∃x1∀x2 . . . Qnxnϕ(x1, . . . , xn) is
satisfiable.

It is well known that QSAT is a PSPACE–complete problem [7].
Next, we provide a polynomial time solution of QSAT by a family of

recognizer P systems with membrane creation and using dissolution rules,
according to Definition 2.3. We will address the resolution via a brute
force algorithm, in the framework of recognizer P systems with membrane
creation, which consists in the following phases:

• Generation and Evaluation Stage: Using membrane creation we will
generate all possible truth assignments associated with the formula
and evaluate it on each one.

• Checking Stage: In each membrane we check whether or not the for-
mula evaluates true on the truth assignment associated with it.

• Output Stage: The system sends out to the environment the right
answer according to the previous stage.

Let us consider the pair function 〈 , 〉 defined by 〈n, m〉 = ((n + m)(n +
m+ 1)/2) +n. This function is polynomial-time computable (it is primitive
recursive and bijective from N

2 onto N). For any given boolean formula,
ϕ(x1, . . . , xn) = C1 ∧ · · · ∧Cm, in conjunctive normal form, with n variables
and m clauses, we construct a P system Π(〈n, m〉) processing the (existen-
tial) fully quantified formula ϕ∗ associated with ϕ. The family presented
here is

Π = {(Π(〈n, m〉), Σ(〈n, m〉), i(〈n, m〉)) | (n, m) ∈ N
2}.
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For each element of the family, the input alphabet is

Σ(〈n, m〉) = {xi,j , xi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

the input membrane is i(〈n, m〉) = t, and the P system

Π(〈n, m〉) = (Γ(〈n, m〉), {a, t, f, 1, . . . , m}, µ, wa, wt, R(〈n, m〉))

is define as follows:
• Working alphabet:

Γ(〈n, m〉) = Σ(〈n, m〉)
∪ {zj,c | j ∈ {0, . . . n}, c ∈ {∧,∨} }
∪ {zj,c,l | j ∈ {0, . . . , n − 1}, c ∈ {∧,∨} l ∈ {t, f}}
∪ {xi,j,l, xi,j,l | j ∈ {1, . . . , n}, i ∈ {1, . . . , m}, l ∈ {t, f}}
∪ {xi,j | j ∈ {1, . . . , n}, i ∈ {1, . . . , m}}
∪ {ri, ri,t, ri,f | i ∈ {1, . . . , m}}
∪ {d1, . . . , dm, q, t0, . . . , t4, ans0, . . . , ans5, yes, no}
∪ {yes∨, yes∗, no∨, no∨, yes∧, no∧, no∗, yes∧, yes

∧
, no∨, no∧}

∪ {Y ES, NO}.

• Initial membrane structure: µ = [ [ ]<t,∨> ]s.
• Initial multiset: ws = ∅, w<t,∨> = {z0,∧,tz0,∧,f}.
• Input membrane: [ ]<t,∨>.
• The set of evolution rules, R(〈n, m〉), consists of the following rules (recall
that λ denotes the empty string and if c is ∧ then c is ∨ and if c is ∨ then
c is ∧):
1. [zj,c → zj,c,t, zj,c,f ]<l,c>

[zj,c,l → [zj+1,c]<l,c>]<l′,c>







for
l, l′ ∈ {t, f}, c ∈ {∨,∧},
j ∈ {0, . . . , n − 1}.

The goal of these rules is to create one membrane for each truth assign-
ment to the variables of the formula. Firstly, the object zj,c evolves to two
objects, one for the assignment true (the object zj,c,t), and a second one for
the assignment false (the object zj,c,f ). In a second step these objects will
create two membranes. The new membrane with t in its label represents
the assignment xj+1 = true; on the other hand, the new membrane with f
in its label represents the assignment xj+1 = false.

2. [xi,j → xi,j,txi,j,f ]<l,c>

[xi,j → xi,j,txi,j,f ]<l,c>

[ri → ri,tri,f ]<l,c>



















for
l ∈ {t, f} i ∈ {1, . . . , m},
c ∈ {∨,∧} j ∈ {1, . . . , n}.
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These rules duplicate the objects representing the formula so it can be
evaluated on the two possible assignments, xj = true (xi,j,t, xi,j,t) and xj =
false (xi,j,f , xi,j,f ). The objects ri are also duplicated (ri,t, ri,f ) in order to
keep track of the clauses that evaluate true on the previous assignments to
the variables.
3. xi,1,t[ ]<t,c> → [ri]<t,c>,

xi,1,t[ ]<t,c> → [λ]<t,c>

xi,1,f [ ]<f,c> → [λ]<f,c>,

xi,1,f [ ]<f,c> → [ri]<f,c>



























for
i ∈ {1, . . . , m},
c ∈ {∨,∧}.

According to these rules the formula is evaluated in the two possible truth
assignments for the variable that is being analyzed. The objects xi,1,t (resp.
xi,1,f ) get into the membrane with t in its label (resp. f) being transformed
into the objects ri representing that the clause number i evaluates true on
the assignment xj+1 = true (resp. xj+1 = false). On the other hand, the
objects xi,1,t (resp. xi,1,t) get into the membrane with f in its label (resp.
t) producing no objects. This represents that these objects do not make the
clause true in the assignment xj+1 = true (resp. xj+1 = false).

4. xi,j,l[ ]<l,c> → [xi,j−1]<l,c>

xi,j,t[ ]<l,c> → [xi,j−1]<l,c>

ri,t[ ]<l,c> → [ri]<l,c>











for
l ∈ {t, f}, i ∈ {1, . . . , m},
c ∈ {∨,∧}, j ∈ {2, . . . , n}.

In order to analyze the next variable the second subscript of the objects
xi,j,l and xi,j,l are decreased when they are sent into the corresponding mem-
brane labelled with l. Moreover, following the last rule, the objects ri,l get
into the new membranes to keep track of the clauses that evaluate true on
the previous truth assignments.
5. [zn,c → d1 . . . dmq]<l,c>

}

for l ∈ {t, f} and c ∈ {∨,∧}.

At the end of the generation stage the object zn will produce the objects
d1, . . . , dm and yes0, which will take part in the checking stage.
6. [di → [t0]i]<l,c>,

ri,t[ ]i → [ri]i, [ri]i → λ

[ts → ts+1]i, [t2]i → t3











for
i ∈ {1, . . . , m},
s ∈ {0, 1}, c ∈ {∨,∧}.

Following these rules each object di creates a new membrane with label
i where the object t0 is placed; this object will act as a counter. The object
ri gets into the membrane labelled with i and dissolves it preventing the
counter, ti, from reaching the object t2. The fact that the object t2 appears
in a membrane with label i means that there is no object ri, that is, the
clause number i does not evaluate true on the truth assignment associated
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with the membrane; therefore neither does the formula evaluate true on the
associated truth assignment.
7. [q → [ans0]a]<l,c>

t3[ ]a → [t4]a, [t4]a → λ

[ansh → ansh+1]a, [ans5]a → yes

[ans5 → no]<l,c>



























for
l ∈ {t, f}, c ∈ {∨,∧},
h = 0, . . . , 4.

The object q creates a membrane with label a where the object ans0

is placed. The object ansh evolves to the object ansh+1; at the same time
the objects t3 can get into the membrane labelled with a and dissolve it
preventing the object yes from being sent out from this membrane.
8. [yes]<l,c> → yesc [no]<l,c> → noc

[yes∨]<l,∨> → yes∗, [no∨ → no∨]<l,∨>

[yes∗ → yes∧]<l,∧>, [no∨]<l,∨> → no∧

[no∨ → λ]<l,∧>, [yes∨ → λ]<l,∧>

[no∧]<l,∧> → no∗, [yes∧ → yes
∧
]<l,∧>

[no∗ → no∨]<l,∨>, [yes
∧
]<l,∧> → yes∨

[no∧ → λ]<l,∨>, [yes
∧
→ λ]<l,∨>

[yes∗]s → yes [ ]s, [no∧]s → no [ ]s































































for l ∈ {t, f}.

This set of rules controls the output stage. After the evaluation stage,
from each working membrane we obtain an object yes or no depending on
whether the truth assignment associated with this membrane satisfies or
not the formula. On the contrary to the SAT problem, in QSAT it is not
enough that one truth assignment satisfies the formula, but the final answer
is YES if an appropriate combination of truth assignments according to the
quantifiers ∃ and ∀ are founded.

4.1 An Overview of the Computation

First of all we define a polynomial encoding of the QSAT problem in the
family Π constructed in the previous section. Given a boolean formula in
conjunctive normal form, ϕ = C1∧· · ·∧Cm such that V ar(ϕ) = {x1, . . . , xn},
and being ϕ∗ the (existential) fully quantified formula associated with it, we
define s(ϕ∗) = 〈n, m〉 (recall the bijection mentioned in the previous section)
and cod(ϕ∗) = {xi,j : xj ∈ Ci} ∪ {xi,j : ¬xi,j ∈ Ci}.

Next we describe informally how the recognizer P system with membrane
creation Π(s(ϕ∗)) with input cod(ϕ∗) works.

In the initial configuration we have the input multiset cod(ϕ) and the
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objects z0,∧,t and z0,∧,f placed in the input membrane (membrane labelled
with < t,∨ >). In the first step of the computation the object z0,∧,t creates
a new membrane with label < t,∨ > which represents the assignment x1 =
true and the object z0,∧,f creates a new membrane with label < f,∨ >
which represents the assignment x1 = false. The second component of the
labels, i.e., ∧ and ∨ will be used in the output stage.

In these two new membranes the object z1,∨ is placed. At the same time
the input multiset representing the formula ϕ is duplicated following the
two first rules in group 2. In the next step, according to the rules in group
3, the formula is evaluated on the two possible truth assignments for x1.
In the same step the rules in group 4 decrease the second subscript of the
objects representing the formula (xi,j,l, xi,j,l with j ≥ 2) in order to analyze
the next variable. Moreover, at the same time, the object z1,c produces the
object z1,c,t and z1,c,f (c ∈ {∧,∨}) and the system is ready to analyze the
next variable. And so the generation and evaluation stages goes until all
the possible assignments to the variables are generated and the formula is
evaluated on each one of them. Observe that it takes two steps to generate
the possible assignments for a variable and to evaluate the formula on them;
therefore the generation and evaluation stages take 2n steps.

The checking stage starts when the object zn,c produces the objects
d1, . . . , dm and the object q. In the first step of the checking stage each
object di, for i = 1, . . . , m, creates a new membrane labelled with i where
the object t0 is placed, and the object q creates a new membrane with label
a placing the object yes0 in it.

The objects ri,t, which indicate that the clause number i evaluates true
on the truth assignment associated with the membrane, are sent into the
membranes by the last rule in group 4 so the system keeps track of the
clauses that are true. The objects ri,t get into the membrane with label i
and dissolves it in the following two steps preventing the counter t2 from
dissolving the membrane and producing the object t3 according to the last
rule in group 6. If for some i there is no object ri (this means that the
clause i does not evaluate true on the associated assignment) the object t2
will dissolve the membrane labelled with i producing the object t3 that will
get into the membrane with label a where the object ansh evolves following
the rules in 7. The object t4 dissolves the membrane with label a preventing
the production of the object ans5. Therefore the checking stage takes 6
steps.

Finally the output stage takes place according to the rules in group 8. If
some object ans5 is present in any membrane with label < l, c >, (l ∈ {t, f},
c ∈ {∧,∨}), this means that there exists at least one clauses not satisfied by
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the truth assignment associated to the membrane, and by the last rule in
group 7, we obtain no in this membrane. Otherwise, the object ans5 will be
inside the membrane with label a, it will dissolve the membrane, and send
yes to the working membrane.

At this point, in each of the 2n working membranes we have an object
yes or no depending on if the associated truth assignment satisfies or not
the formula ϕ. In the last steps we control the flow of the objects yes and
no from the working membranes to the environment. Basically, the process
is the following. If there are one object yes inside a membrane with ∨ in its
label, this object dissolves the membrane and sends out another yes. If this
does not happen, i.e., if two objects no are inside a membrane with label
∨, the membrane is dissolved and no is sent out. Analogously, if there are
one object no inside a membrane with ∧ in its label, this object dissolves
the membrane and sends out another no. Otherwise, if two objects yes are
inside a membrane with label ∨, the membrane is dissolved and yes is sent
out.

Hence, the family Π of recognizer P systems with membrane creation
using dissolution rules solves in polynomial time QSAT according to Defi-
nition 2.3. So, we have the following result.

Theorem 4.1 QSAT ∈ PMCMC

Corrolary 4.1 PSPACE ⊆ PMCMC

Proof. It suffices to make the following remarks: the QSAT problem
is PSPACE–complete, QSAT ∈ PMCMC+d

, and the complexity class
PMCMC+d

is closed under polynomial time reduction. �

5 Conclusions and Future Work

P systems are computational devices whose power has to be studied in a
deeper extent. In the last months, several paper have explored this power,
both in the framework of P systems with active membranes and P systems
with membrane creation. These papers have shown that NP-complete prob-
lems are solvable (in polynomial time) by families of recognizer of P systems
in such P system models, according to Definition 2.3. In this paper we have
shown that PSPACE–complete problems can also be solved (in polyno-
mial time) by families of recognizer P systems with membrane creation, in
a uniform way.
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Both models (active membranes and membrane creation) have been
proved to be universal, but up to now there is no theoretical result proving
that these models simulate each other in polynomial time. The specific tech-
niques for designing solutions to concrete problems (generation, evaluation,
checking, and output stages) are quite different, so the simulation of one
model in the other one is not a trivial question. This seems an interesting
open problem to be considered in the future.

Acknowledgement

This work is supported by Ministerio de Ciencia y Tecnoloǵıa of Spain, by
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Βοολεαν Χιρχυιτσ ανδ α ∆ΝΑ Αλγοριτηµ

ιν Μεµβρανε Χοµπυτινγ

Μιηαι ΙΟΝΕΣΧΥ�, Τσερεν−Ονολτ ΙΣΗ∆ΟΡϑψ

Ρεσεαρχη Γρουπ ον Ματηεµατιχαλ Λινγυιστιχσ
Ροϖιρα ι ςιργιλι Υνιϖερσιτψ
Πλ. Ιµπεριαλ Τ◊ρραχο 1
43005 Ταρραγονα, Σπαιν
Ε−µαιλ: µι≅υρϖ.νετ,

τσερενονολτ.ισηδορϕ≅εστυδιαντσ.υρϖ.εσ

Αβστραχτ

Ιν τηε πρεσεντ παπερ ωε προποσε α ωαψ το σιµυλατε Βοολεαν γατεσ
ανδ χιρχυιτσ ιν τηε φραµεωορκ οφ Π σψστεµσ ωιτη αχτιϖε µεµβρανεσ
υσινγ ινηιβιτινγ/δε−ινηιβιτινγ ρυλεσ. Τηισ νεω αππροαχη ον τηε σιµ−
υλατιον οφ Βοολεαν γατεσ ηασ τηε αδϖανταγε οφ α σελφ−εµβεδδεδ σψν−
χηρονιζατιον, αν εξτρα σψστεµ το σολϖε τηισ προβλεµ νοτ βεινγ νεεδεδ.
Μορεοϖερ, τηε νυµβερ οφ µεµβρανεσ ανδ οβϕεχτσ ωε υσε φορ τηε σιµ−
υλατιον οφ βοολεαν γατεσ ισ ονλψ τωο. ΝΠ−χοµπλετε προβλεµσ, παρτιχυ−
λαρλψ ΧΙΡΧΥΙΤ−ΣΑΤ, αρε αλσο χονσιδερεδ ηερε. Ιν αδδιτιον, ωε σιµυλατε
α �∆ΝΑ−λικε�ωαψ οφ (εξπεριµενταλλψ) σολϖινγ ΣΑΤ προβλεµ υσινγ τηε
τοολσ γιϖεν βψ πολαριζατιον, µεργινγ ανδ σεπαρατιον ιν Π σψστεµσ.

1 Ιντροδυχτιον

Π σψστεµσ αρε α χλασσ οφ διστριβυτεδ παραλλελ χοµπυτινγ δεϖιχεσ οφ α βιο−
χηεµιχαλ τψπε, ωηιχη χαν βε σεεν ασ α γενεραλ χοµπυτινγ αρχηιτεχτυρε ωηερε
ϖαριουσ τψπεσ οφ οβϕεχτσ χαν βε προχεσσεδ βψ ϖαριουσ οπερατιονσ.

�Τηε ωορκ οφ �ρστ αυτηορ ωασ συππορτεδ βψ τηε φελλοωσηιπ �Φορµαχι⌠ν δε Προφεσοραδο
Υνιϖερσιταριο∀ φροµ τηε Σπανιση Μινιστρψ οφ Εδυχατιον, Χυλτυρε ανδ Σπορτ.

ψΤηε σεχονδ αυτηορ ωασ συππορτεδ βψ τηε γραντ 2002ΧΑϑΑΛ−ΒΥΡς4 φροµ Ροϖιρα ι
ςιργιλι Υνιϖερσιτψ, Σπαιν.

410



Ιν µεµβρανε χοµπυτινγ, Π σψστεµσ ωιτη αχτιϖε µεµβρανεσ ηαϖε α σπε−
χιαλ πλαχε, βεχαυσε τηεψ προϖιδε βιολογιχαλλψ ινσπιρεδ τοολσ το σολϖε χοµπυ−
τατιοναλλψ ηαρδ προβλεµσ. Ιν [6] τηε χοµπυτατιοναλ ποωερ οφ α χλασσ οφ Π
σψστεµσ υσινγ χαταλψτιχ ανδ νον−χοοπερατιϖε ινηιβιτινγ/δε−ινηιβιτινγ ρυλεσ
ωασ ιντροδυχεδ ανδ εξπλορεδ, ανδ ιν [7] συχη α χοντρολλινγ µεχηανισµ ωασ
ινϖεστιγατεδ ιν τηε φραµεωορκ οφ Π σψστεµσ ωιτη αχτιϖε µεµβρανεσ.

Βοολεαν χιρχυιτσ αρε ωελλ−κνοων χλασσιχαλ χοµπυτινγ δεϖιχεσ, ωηιχη ιν−
χορπορατε φεατυρεσ οφ παραλλελισµ. ςαριουσ ποσσιβιλιτιεσ το σιµυλατε Βοολεαν
χιρχυιτσ βψ Π σψστεµσ ωιτη προµοτερσ/ινηιβιτορσ, µοβιλε χαταλψστσ, ανδ ωεακ
πριοριτιεσ φορ ρυλεσ ωερε χονσιδερεδ ιν [8].

Ιν τηισ παπερ, ωε προποσε α µοδελ το σιµυλατε Βοολεαν χιρχυιτσ βψ
ινηιβιτινγ/δε−ινηιβιτινγ Π σψστεµσ ωιτη αχτιϖε µεµβρανεσ (ΑΙ∆ Π Σψστεµσ).
Τηε ιδεα βεηινδ τηε σιµυλατιον οφ συχη α χιρχυιτ ισ το χονστρυχτ α γλοβαλ ΑΙ∆
Π σψστεµ φορ τηε ωηολε χιρχυιτ ηαϖινγ διστριβυτεδ συβ−ΑΙ∆ Π σψστεµσ φορ εαχη
γατε. Τηε συβ−ΑΙ∆ Π σψστεµσ ωορκ ιν α παραλλελ µαννερ προδυχινγ α υνιθυε
ουτπυτ ασ τηε ρεσυλτ οφ τηε χοµπυτατιον οφ τηε ωηολε σψστεµ. Ονε χαν σεε α
χορρεσπονδενχε βετωεεν τηε χονχεπτ οφ ινηιβιτιον (ωηιχη µεανσ βλοχκινγ τηε
εξεχυτιον οφ α ρυλε ιν α µεµβρανε) ανδ τηε τερµ σωιτχη−ο⁄ φρεθυεντλψ υσεδ
ιν τηε τηεορψ οφ χιρχυιτσ, ανδ χονϖερσελψ, βετωεεν δε−ινηιβιτιον ανδ σωιτχηινγ
ον σοµε παρτσ οφ τηε χιρχυιτσ.

Υσινγ τηισ µοδελ το σιµυλατε Βοολεαν χιρχυιτσ, ωε δο νοτ νεεδ αν εξτρα
σψστεµ το χοορδινατε τηε εντρανχε οφ τηε τωο ινπυτσ ιν αν ΑΝ∆ ορ αν ΟΡ
γατε ασ πρεσεντεδ ιν [8]. Ηερε, τηε ινπυτσ ωαιτ φορ εαχη οτηερ ανδ προδυχε
τηε ριγητ ρεσυλτ ωηεν τηε χιρχυιτ ισ σιµυλατεδ. Ωε σαψ τηατ τηε σψστεµ ηασ
α σελφ−εµβεδδεδ σψνχηρονιζατιον. Ασ α χονσεθυενχε οφ τηε αβιλιτψ οφ ΑΙ∆ Π
σψστεµσ το σιµυλατε σπεχι�χ Βοολεαν χιρχυιτσ, ωε αλσο χονσιδερ τηε Βοολεαν
ΧΙΡΧΥΙΤ−ΣΑΤ προβλεµ (ωηιχη ισ ΝΠ−χοµπλετε).

Τηε σεχονδ προποσαλ οφ τηισ παπερ ισ τηε χονστρυχτιον οφ α �∆ΝΑ−λικε�σψσ−
τεµ φορ σολϖινγ ΣΑΤ προβλεµ, φολλοωινγ τηε οριγιναλ ιδεα οφ Λιπτον πρεσεντεδ
ιν [13], τηισ τιµε, υσινγ τηε προπερτιεσ οφ µεργινγ ανδ σεπαρατιον οπερατιονσ
φροµ µεµβρανε χοµπυτινγ. Τηε µοτιϖατιον βεηινδ τηισ προποσαλ ισ το χρε−
ατε α µοδελ ασ χλοσε ασ ποσσιβλε το τηε εξπεριµενταλ ρεσυλτσ ον σολϖινγ τηε
προβλεµ µεντιονεδ αβοϖε βψ υσινγ ∆ΝΑ στρανδσ (σεε [4], [23]). Ωε ονλψ σαψ
ηερε τηατ τηε µαιν ιδεα ιν συχη α σιµυλατιον ισ το χονσιδερ τηε τεστ τυβεσ υσεδ
ιν τηε εξπεριµεντσ ασ βεινγ µεµβρανεσ, ανδ, οφ χουρσε, τηε ∆ΝΑ−στρανδσ
χονταινεδ ιν συχη α τεστ τυβε ασ βεινγ τηε οβϕεχτσ ινσιδε µεµβρανεσ. Φορ α
δεταιλεδ πρεσεντατιον οφ τηισ χονχεπτ ωε ρεφερ τηε ρεαδερ το Σεχτιον 6.

411



Ιν τηε φολλοωινγ σεχτιον ωε ωιλλ ρεχαλλ σοµε οφ τηε νοτιονσ ρεγαρδινγ Π
σψστεµσ ωιτη αχτιϖε µεµβρανεσ, βοολεαν γατεσ, χιρχυιτσ, ανδ τηε ∆ΝΑ ωαψ
οφ σολϖινγ ΣΑΤ ωε ωιλλ υσε ιν τηε νεξτ σεχτιονσ.

2 Πρελιµιναριεσ

Ωε ασσυµε τηε ρεαδερ το βε φαµιλιαρ ωιτη τηε φυνδαµενταλσ οφ φορµαλ λαν−
γυαγε τηεορψ ανδ χοµπλεξιτψ τηεορψ (ε.γ., φροµ [17, 24, 25]), ασ ωελλ ασ ωιτη
τηε βασιχσ οφ µεµβρανε χοµπυτινγ (ε.γ., φροµ [20]).

2.1 Π Σψστεµσ ωιτη Αχτιϖε Μεµβρανεσ

Ινφορµαλλψ σπεακινγ, ιν Π σψστεµσ ωιτη πολαριζατιονσ ανδ αχτιϖε µεµβρανεσ
τηε φολλοωινγ τψπεσ οφ ρυλεσ αρε υσεδ:

(α) µυλτισετ ρεωριτινγ ρυλεσ,

(β) ρυλεσ φορ ιντροδυχινγ οβϕεχτσ ιντο µεµβρανεσ,

(χ) ρυλεσ φορ σενδινγ οβϕεχτσ ουτ οφ µεµβρανεσ,

(δ) ρυλεσ φορ δισσολϖινγ µεµβρανεσ,

(ε) ρυλεσ φορ διϖιδινγ ελεµενταρψ µεµβρανεσ, ανδ

(η) ρυλεσ φορ σεπαρατινγ µεµβρανεσ, σεε [2, 19, 22, 15, 16].

Τηε ρυλεσ οφ τψπε (α0) αρε αππλιεδ ιν α παραλλελ ωαψ (αλλ οβϕεχτσ ωηιχη
χαν εϖολϖε βψ συχη ρυλεσ ηαϖε το εϖολϖε), ωηιλε τηε ρυλεσ οφ τψπεσ (β), (χ),
(δ), (ε), (γ), (η) αρε υσεδ σεθυεντιαλλψ, ιν τηε σενσε τηατ ονε µεµβρανε χαν
βε υσεδ βψ ατ µοστ ονε ρυλε οφ τηεσε τψπεσ ατ α τιµε. Ιν τοταλ, τηε ρυλεσ αρε
υσεδ ιν τηε νον−δετερµινιστιχ µαξιµαλλψ παραλλελ µαννερ: αλλ οβϕεχτσ ανδ
αλλ µεµβρανεσ ωηιχη χαν εϖολϖε, σηουλδ εϖολϖε. Ονλψ ηαλτινγ χοµπυτατιονσ
γιϖε α ρεσυλτ, ιν τηε φορµ οφ τηε νυµβερ (ορ τηε ϖεχτορ) οφ οβϕεχτσ εξπελλεδ
ιντο τηε ενϖιρονµεντ δυρινγ τηε χοµπυτατιον.

Ιν τηισ παπερ ωε ωιλλ µακε υσε ονλψ οφ σοµε οφ τηε µεντιονεδ αχτιϖε
µεµβρανεσ ρυλεσ, σο ωε δε�νε Π σψστεµσ ωιτη αχτιϖε µεµβρανεσ υσινγ ονλψ
συχη ρυλεσ.

Α Π σψστεµ ωιτη αχτιϖε µεµβρανεσ (ανδ ελεχτριχαλ χηαργεσ) ισ α χονστρυχτ

� = (Ο;Η; �;ω1; : : : ; ωµ; Ρ)

ωηερε:
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� µ � 1 (τηε ινιτιαλ δεγρεε οφ τηε σψστεµ);

� Ο ισ τηε αλπηαβετ οφ οβϕεχτσ;

� Η ισ α �νιτε σετ οφ λαβελσ φορ µεµβρανεσ;

� � ισ α µεµβρανε στρυχτυρε, χονσιστινγ οφ µ µεµβρανεσ, λαβελεδ (νοτ
νεχεσσαριλψ ιν α ονε−το−ονε µαννερ) ωιτη ελεµεντσ οφ Η;

� ω1; : : : ; ωµ αρε στρινγσ οϖερ Ο, δεσχριβινγ τηε µυλτισετσ οφ οβϕεχτσ
πλαχεδ ιν τηε µ ρεγιονσ οφ �;

� Ρ ισ α �νιτε σετ οφ δεϖελοπµενταλ ρυλεσ, οφ τηε φολλοωινγ φορµσ:

(α) [ α! ϖ]εη,

φορ η 2 Η; ε 2 φ+;�; 0γ; α 2 Ο; ϖ 2 Ο�

(οβϕεχτ εϖολυτιον ρυλεσ, ασσοχιατεδ ωιτη µεµβρανεσ ανδ δεπενδ−
ινγ ον τηε λαβελ ανδ τηε χηαργε οφ τηε µεµβρανεσ, βυτ νοτ διρεχτλψ
ινϖολϖινγ τηε µεµβρανεσ, ιν τηε σενσε τηατ τηε µεµβρανεσ αρε
νειτηερ τακινγ παρτ ιν τηε αππλιχατιον οφ τηεσε ρυλεσ νορ αρε τηεψ
µοδι�εδ βψ τηεµ);

(χ) [ α ]ε1η ! [ ]ε2η β,

φορ η 2 Η; ε1; ε2 2 φ+;�; 0γ; α; β 2 Ο

(χοµµυνιχατιον ρυλεσ; αν οβϕεχτ ισ σεντ ουτ οφ τηε µεµβρανε,
ποσσιβλψ µοδι�εδ δυρινγ τηισ προχεσσ; αλσο τηε πολαριζατιον οφ τηε
µεµβρανε χαν βε µοδι�εδ, βυτ νοτ ιτσ λαβελ);

(γ) [ ]ε1η [ ]ε2η ! [ ]ε3η ,

φορ η 2 Η, ε1; ε2; ε3 2 φ+;�; 0γ

(µεργινγ ρυλεσ φορ ελεµενταρψ µεµβρανεσ; ιν ρεαχτιον οφ τωο
µεµβρανεσ, τηεψ αρε µεργεδ ιντο α σινγλε µεµβρανε; τηε οβϕεχτσ
οφ τηε φορµερ µεµβρανεσ αρε πυτ τογετηερ ιν τηε νεω µεµβρανε);
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(η) [ ]ε1η ! [ Κ]ε2η [ :Κ]
ε3
η ,

φορ η 2 Η, ε1; ε2; ε3 2 φ+;�; 0γ, Κ � Ο

(σεπαρατιον ρυλεσ φορ ελεµενταρψ µεµβρανεσ; τηε χοντεντσ οφ
µεµβρανε η ισ σπλιτ ιντο τωο µεµβρανεσ, τηε �ρστ ονε χονταιν−
ινγ αλλ οβϕεχτσ φροµ Κ ανδ τηε σεχονδ ονε χονταινινγ αλλ οβϕεχτσ
ωηιχη αρε νοτ ιν Κ).

Τηε σετ Η οφ λαβελσ ηασ βεεν σπεχι�εδ βεχαυσε ιτ ισ αλσο ποσσιβλε το αλλοω
τηε χηανγε οφ µεµβρανε λαβελσ. Φορ ινστανχε, α σεπαρατιον ρυλε χαν βε οφ
τηε µορε γενεραλ φορµ

(η0) [ ]ε1η1 ! [ Κ]ε2η2 [ :Κ]
ε3
η3
,

φορ η1; η2; η3 2 Η, ε1; ε2; ε3 2 φ+;�; 0γ.

Τηε χηανγε οφ λαβελσ χαν αλσο βε χονσιδερεδ φορ οτηερ τψπεσ οφ ρυλεσ.

Π σψστεµσ ωιτη αχτιϖε µεµβρανεσ ωιτηουτ ελεχτριχαλ χηαργεσ ωερε αλσο
χονσιδερεδ ανδ ινϖεστιγατεδ (σεε [2, 3, 1, 12]). Λετ υσ χονσιδερ νοω σοµε
ρυλεσ οφ τψπεσ ωιτηουτ πολαριζατιονσ. Τηεψ αρε οφ τηε φολλοωινγ φορµσ (�νο
ελεχτριχαλ χηαργεσ∀ µεανσ �νευτραλ πολαριζατιον∀; ασ αβοϖε, Ο ισ τηε αλπηαβετ
οφ οβϕεχτσ ανδ Η ισ τηε σετ οφ λαβελσ οφ µεµβρανεσ):

(α0) [ α! ϖ]η, ωηερε α 2 Ο; ϖ 2 Ο
�, ανδ η 2 Η,

(β0) α[ ]η ! [ β]η, ωηερε α; β 2 Ο ανδ η 2 Η,

(χ0) [ α]η ! [ ]ηβ, ωηερε α; β 2 Ο ανδ η 2 Η,

(γ0) [ ]η[ ]η ! [ ]η, ωηερε η 2 Η,

(η0) [ ]η ! [ Κ]η[ :Κ]η, ωηερε Κ � Ο ανδ η 2 Η,

(ι0) [ [ Ο]η]η ! [ ]ηΟ, ωηερε η 2 Η.

Ωε ρεχοµµενδ τηε ρεαδερ υνφαµιλιαρ ωιτη τηεσε ρυλεσ το χονσυλτ τηε
ρεφερενχεσ µεντιονεδ αβοϖε φορ α βεττερ υνδερστανδινγ οφ τηειρ φυνχτιοναλιτψ.

Τηε συβσχριπτ 0 ινδιχατεσ τηε φαχτ τηατ ωε δο νοτ υσε πολαριζατιον φορ
µεµβρανεσ. Ωηεν τηε ρυλεσ οφ α γιϖεν τψπε (�0) αρε αβλε το χηανγε τηε
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λαβελ(σ) οφ τηε ινϖολϖεδ µεµβρανεσ, ωε δενοτε τηατ τψπε οφ ρυλεσ βψ (�00).
Φορ εξαµπλε, τηε πριµεδ ϖερσιονσ οφ µεργινγ ανδ σεπαρατιον ρυλεσ αρε οφ τηε
φολλοωινγ φορµσ:

(γ00) [ ]η1 [ ]η2 ! [ ]η3 , φορ η1; η2; η3 2 Η.

(η00) [ ]η1 ! [ Κ]η2 [ :Κ]η3 , φορ η1; η2; η3 2 Η.

Το υνδερστανδ τηε δι⁄ερενχε οφ υνιφορµ χονστρυχτιον ανδ σεµι−υνιφορµ
χονστρυχτιον οφ Π σψστεµσ, ωε ρεχαλλ σοµε νοτιονσ αβουτ σολϖινγ δεχιδαβιλιτψ
προβλεµσ ιν τηε µεµβρανε χοµπυτινγ φραµεωορκ.

Γιϖεν α δεχισιον θυεστιον Ξ, ωε σαψ τηατ ιτ χαν βε σολϖεδ ιν πολψνο−
µιαλ (λινεαρ) τιµε βψ ρεχογνιζινγ Π σψστεµσ ιν α υνιφορµ ωαψ, ιφ, ινφορµαλλψ
σπεακινγ, ωε χαν χονστρυχτ ιν πολψνοµιαλ τιµε α φαµιλψ οφ ρεχογνιζινγ Π
σψστεµσ �ν, ν 2 Ν, ασσοχιατεδ ωιτη τηε σιζεσ ν οφ ινστανχεσ Ξ(ν) οφ τηε
προβλεµ, συχη τηατ τηε σψστεµ �ν, σταρτινγ φροµ τηε χοδε οφ σοµε �ν, ωιλλ
αλωαψσ στοπ ιν α πολψνοµιαλ (λινεαρ, ρεσπεχτιϖελψ) νυµβερ οφ στεπσ, σενδινγ
ουτ τηε οβϕεχτ ψεσ ιφ τηε ινστανχε Ξ(ν) ηασ α ποσιτιϖε ανσωερ ανδ τηε οβϕεχτ
νο ιφ τηε ινστανχε Ξ(ν) ηασ α νεγατιϖε ανσωερ.

Ιν [19], τηε χοµπλεξιτψ χλασσεσ ρελατεδ το Π σψστεµσ αρε δε�νεδ ιν τηε
σεµι−υνιφορµ ωαψ: Π σψστεµσ αρε χονστρυχτεδ σταρτινγ νοτ φροµ τηε σιζε
ν, βυτ φροµ αν ινστανχε Ξ(ν). Φορ α χλεαρερ δεσχριπτιον οφ τηε δι⁄ερενχε
βετωεεν υνιφορµ ανδ σεµι−υνιφορµ χονστρυχτιονσ, τηε ρεαδερ ισ ρεφερρεδ το
[22].

2.2 Ινηιβιτινγ/∆ε−ινηιβιτινγ (ΑΙ∆) Π Σψστεµσ ωιτη Αχτιϖε
Μεµβρανεσ

Τηε βασιχ ιδεα οφ τηε ΑΙ∆ Π σψστεµσ µοδελ ισ τηατ, ωηεν α ρυλε (αχτινγ ον
τηε µεµβρανεσ ορ ον τηε οβϕεχτσ) ισ ινηιβιτεδ, τηεν ιτ χαν νοτ βε αππλιεδ
υντιλ ανοτηερ ρυλε δε−ινηιβιτσ ιτ. Τηε αππλιχατιον οφ α ρυλε χαν ινηιβιτ οτηερ
ρυλεσ (ανδ ιν παρτιχυλαρ µαψ ινηιβιτ ιτσελφ).

Α Π σψστεµ ωιτη αχτιϖε µεµβρανεσ ανδ ινηιβιτινγ/δε−ινηιβιτινγ µεχηα−
νισµ, ιν σηορτ ΑΙ∆ Π σψστεµ, ωιτηουτ ελεχτριχαλ χηαργεσ ανδ ωιτηουτ υσινγ
χαταλψστσ, ισ α χονστρυχτ

� = (Ο;Η; Ι; �; ω1; : : : ; ωµ; Ρ);

ωηερε:
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� µ � 1 ισ τηε ινιτιαλ δεγρεε οφ τηε σψστεµ;

� Ο ισ τηε αλπηαβετ οφ οβϕεχτσ;

� Η ισ α �νιτε σετ οφ λαβελσ φορ µεµβρανεσ;

� Ι ισ α �νιτε σετ οφ λαβελσ φορ ρυλεσ;

� � ισ α µεµβρανε στρυχτυρε, χονσιστινγ οφ µ µεµβρανεσ, λαβελεδ ωιτη
ελεµεντσ οφ Η;

� ω1; : : : ; ωµ αρε στρινγσ οϖερ Ο, δεσχριβινγ τηε µυλτισετσ οφ οβϕεχτσ
πλαχεδ ιν τηε µ ρεγιονσ οφ �;

� Ρ ισ α �νιτε σετ οφ δεϖελοπµενταλ ρυλεσ. Ηερε αρε σοµε εξαµπλεσ:

(β0) ρ : α[ ]η ! [ β]ηηΣι, φορ ρ 2 Ι; η 2 Η; α; β 2 Ο;Σ � Ι(χοµµυνιχατιον

ρυλεσ; αν οβϕεχτ ισ ιντροδυχεδ ιν τηε µεµβρανε δυρινγ τηισ προχεσσ);

(χ0) ρ : [ α ]η ! [ ]ηβηΣι, φορ ρ 2 Ι; η 2 Η; α; β 2 Ο;Σ � Ι(χοµµυνιχατιον

ρυλεσ; αν οβϕεχτ ισ σεντ ουτ οφ τηε µεµβρανε δυρινγ τηισ προχεσσ).

Τηε ρυλεσ ιν Ρ αρε ωριττεν ασ ρϕ : :ρ ηΣι ορ ασ ρϕ : ρ ηΣι, ωηερε ρϕ 2 Ι
ανδ ρ ισ α ρυλε οφ τψπε (α0) � (λ0) (ρεπλιχατιϖε−διστριβυτιον ρυλεσ αρε: (κ0)
ρ : α[ ]η1 [ ]η2 ! [ υ]η1 [ ϖ]η2 , φορ η1; η2 2 Η; α 2 Ο; υ; ϖ 2 Ο

� �φορ σιβλινγ
µεµβρανεσ; (λ0) ρ : [ α[ ]η1 ]η2 ! [ [ υ]η1 ]η2ϖ, φορ η1; η2 2 Η; α 2 Ο; υ; ϖ 2 Ο

�

�φορ νεστεδ µεµβρανεσ) φροµ [1, 2, 6]; Σ ισ α στρινγ τηατ ρεπρεσεντσ α συβσετ
οφ Ι.

Τηε ΑΙ∆ Π σψστεµσ ωορκσ λικε γενεραλ Π σψστεµσ ωιτη αχτιϖε µεµβρανεσ.
Τηε ονλψ δι⁄ερενχε χονσιστσ ιν τηε φαχτ, τηατ, ιν εαχη στεπ, ονλψ τηε νον−
ινηιβιτεδ ρυλεσ χαν βε υσεδ. Ωηεν α ρυλε ρϕ : ρ ηΣι ισ αππλιεδ, τηεν τηε ρυλεσ
ωηοσε λαβελσ αρε σπεχι�εδ ιν Σ αρε ινηιβιτεδ (ιφ τηεψ ωερε δε−ινηιβιτεδ) ορ
δε−ινηιβιτεδ (ιφ τηεψ ωερε ινηιβιτεδ). Νοω, σταρτινγ φροµ αν ινιτιαλ χον�γυ−
ρατιον, τηε σψστεµ εϖολϖεσ αχχορδινγ το τηε ρυλεσ ανδ οβϕεχτσ πρεσεντ ιν τηε
µεµβρανεσ, ιν α νον−δετερµινιστιχ µαξιµαλλψ παραλλελ µαννερ, ανδ αχχορδ−
ινγ το α υνιϖερσαλ χλοχκ. Τηε σψστεµ ωιλλ µακε α συχχεσσφυλ χοµπυτατιον
ιφ ανδ ονλψ ιφ ιτ ηαλτσ, µεανινγ τηερε ισ νο αππλιχαβλε ρυλε το τηε οβϕεχτσ
πρεσεντ ιν τηε ηαλτινγ χον�γυρατιον.

Τηε ρεσυλτ οφ α συχχεσσφυλ χοµπυτατιον ισ τηε νυµβερ οφ οβϕεχτσ πρεσεντ
ιν τηε ουτπυτ µεµβρανε (ορ ιν τηε ενϖιρονµεντ) ιν α ηαλτινγ χον�γυρατιον
οφ �. Ιφ τηε χοµπυτατιον νεϖερ ηαλτσ, τηεν ωε ωιλλ ηαϖε νο ουτπυτ.
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2.3 Βοολεαν Φυνχτιονσ ανδ Χιρχυιτσ

Αν ν−αρψ Βοολεαν φυνχτιον ισ α φυνχτιον

φ : φτρυε; φαλσεγν 7! φτρυε; φαλσεγ;

: (νεγατιον) ισ α υναρψ Βοολεαν φυνχτιον (τηε οτηερ υναρψ φυνχτιονσ αρε:
χονσταντ φυνχτιονσ ανδ ιδεντιτψ φυνχτιον). Ωε σαψ τηατ τηε Βοολεαν εξπρεσ−
σιον ∋ ωιτη ϖαριαβλεσ ξ1; : : : ; ξν εξπρεσσεσ τηε ν−αρψ Βοολεαν φυνχτιον φ ιφ,
φορ ανψ ν−τυπλε οφ τρυτη ϖαλυεσ τ = (τ1; � � � ; τν), φ(τ) ισ τρυε ιφ Τ � ∋, ανδ
φ(τ) ισ φαλσε ιφ Τ 2 ∋, ωηερε Τ (ξ) = τι φορ ι = 1; : : : ; ν.

Τηερε αρε τηρεε πριµαρψ βοολεαν φυνχτιονσ τηατ αρε ωιδελψ υσεδ:

(1) τηε ΝΟΤ φυνχτιον − τηισ ισ α ϕυστ α νεγατιον; τηε ουτπυτ ισ τηε οπποσιτε
οφ τηε ινπυτ. Τηε ΝΟΤ φυνχτιον τακεσ ονλψ ονε ινπυτ, σο ιτ ισ χαλλεδ α
υναρψ φυνχτιον ορ οπερατορ. Τηε ουτπυτ ισ τρυε ωηεν τηε ινπυτ ισ φαλσε, ανδ
ϖιχε−ϖερσα.

(2) τηε ΑΝ∆ φυνχτιον − τηε ουτπυτ οφ αν ΑΝ∆ φυνχτιον ισ τρυε ονλψ ιφ αλλ ιτσ
ινπυτσ αρε τρυε.

(3) τηε ΟΡ φυνχτιον − τηε ουτπυτ οφ αν ΟΡ φυνχτιον ισ τρυε ιφ ατ λεαστ ονε οφ
ιτσ ινπυτσ ισ τρυε.

Βοτη ΑΝ∆ ανδ ΟΡ χαν ηαϖε ανψ νυµβερ οφ ινπυτσ, ωιτη α µινιµυµ οφ
τωο.

Ανψ ν−αρψ Βοολεαν φυνχτιον φ χαν βε εξπρεσσεδ ασ α Βοολεαν εξπρεσσιον
∋φ ινϖολϖινγ ϖαριαβλεσ ξ1; : : : ; ξν.

Τηερε ισ α ποτεντιαλλψ µορε εχονοµιχαλ ωαψ τηαν τηεσε εξπρεσσιονσ φορ
ρεπρεσεντινγ Βοολεαν φυνχτιονσ �ναµελψ Βοολεαν χιρχυιτσ. Α Βοολεαν χιρχυιτ
ισ α γραπη Χ = (ς;Ε), ωηερε τηε νοδεσ ιν ς = φ1; : : : ; νγ αρε χαλλεδ τηε γατεσ
οφ Χ. Γραπη Χ ηασ α ρατηερ σπεχιαλ στρυχτυρε. Φιρστ, τηερε αρε νο χψχλεσ ιν
τηε γραπη, σο ωε χαν ασσυµε τηατ αλλ εδγεσ αρε οφ τηε φορµ (ι; ϕ), ωηερε ι < ϕ.
Αλλ νοδεσ ιν τηε γραπη ηαϖε ιν−δεγρεε (νυµβερ οφ ινχοµινγ εδγεσ) εθυαλ το
0, 1, ορ 2. Μορεοϖερ, εαχη γατε ι 2 ς ηασ α σορτ σ(ι) ασσοχιατεδ ωιτη ιτ,
ωηερε

σ(ι) 2 φτρυε; φαλσε;_;⊥;:γ [ φξ1; ξ2; : : : γ:

Ιφ σ(ι) 2 φτρυε; φαλσεγ [ φξ1; ξ2; : : : γ, τηεν τηε ιν δεγρεε οφ ι ισ 0, τηατ ισ, ι
µυστ νοτ ηαϖε ανψ ινχοµινγ εδγεσ. Γατεσ ωιτη νο ινχοµινγ εδγεσ αρε χαλλεδ
τηε ινπυτσ οφ Χ. Ιφ σ(ι) = :, τηεν ι ηασ ιν−δεγρεε ονε. Ιφ σ(ι) 2 φ_;⊥γ, τηεν
τηε ιν−δεγρεε οφ ι µυστ βε τωο. Φιναλλψ, νοδε ν (τηε λαργεστ νυµβερεδ γατε
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ιν τηε χιρχυιτ, ωηιχη νεχεσσαριλψ ηασ νο ουτγοινγ εδγεσ) ισ χαλλεδ τηε ουτπυτ
γατε οφ τηε χιρχυιτ.

Τηισ χονχλυδεσ ουρ δε�νιτιον οφ τηε σψνταξ οφ χιρχυιτσ. Τηε σεµαντιχσ οφ
χιρχυιτσ σπεχι�εσ α τρυτη ϖαλυε φορ εαχη αππροπριατε τρυτη ασσιγνµεντ. Ωε
λετ Ξ(Χ) βε τηε σετ οφ αλλ Βοολεαν ϖαριαβλεσ τηατ αππεαρ ιν τηε χιρχυιτ Χ
(τηατ ισ, Ξ(Χ) = φξ 2 Ξ : σ(ι) = ξ φορ σοµε γατε ι οφ Χγ). Ωε σαψ τηατ α
τρυτη ασσιγνµεντ Τ ισ αππροπριατε φορ Χ ιφ ιτ ισ δε�νεδ φορ αλλ ϖαριαβλεσ ιν
Ξ(Χ). Γιϖεν συχη α Τ , τηε τρυτη ϖαλυε οφ γατε ι 2 ς , Τ (ι), ισ δε�νεδ, βψ
ινδυχτιον ον ι, ασ φολλοωσ:

Ιφ σ(ι) = τρυε τηεν Τ (ι) = τρυε, ανδ σιµιλαρλψ ιφ σ(ι) = φαλσε. Ιφ σ(ι) 2 Ξ,
τηεν Τ (ι) = Τ (σ(ι)). Ιφ νοω σ(ι) = :, τηερε ισ α υνιθυε γατε ϕ < ι συχη
τηατ (ϕ; ι) 2 Ε. Βψ ινδυχτιον, ωε κνοω Τ (ϕ), ανδ τηεν Τ (ι) ισ τρυε ιφ
Τ (ϕ) = φαλσε, ανδ ϖιχε−ϖερσα.

Ιφ σ(ι) = _, τηεν τηερε αρε τωο εδγεσ (ϕ; ι) ανδ (ϕ0; ι) εντερινγ ι. Τ (ι) ισ
τηεν τρυε ιφ ονλψ ιφ ατ λεαστ ονε οφ Τ (ϕ), Τ (ϕ0) ισ τρυε. Ιφ σ(ι) = ⊥, τηεν Τ (ι)
ισ τρυε ιφ ονλψ ιφ βοτη Τ (ϕ) ανδ Τ (ϕ0) αρε τρυε, ωηερε (ϕ; ι) ανδ (ϕ0; ι) αρε τηε
ινχοµινγ εδγεσ. Φιναλλψ, τηε ϖαλυε οφ τηε χιρχυιτ, Τ (Χ), ισ Τ (ν), ωηερε ν ισ
τηε ουτπυτ γατε.

2.4 Βριεφ ∆εσχριπτιον οφ Σολϖινγ ΣΑΤ ιν ∆ΝΑ Χοµπυτινγ

Λιπτον�σ ∆ΝΑ−βασεδ σολυτιον οφ τηε σατισ�αβιλιτψ προβλεµ [13] υσεσ σοµε οφ
τηε βασιχ οπερατιονσ ιν ∆ΝΑ Χοµπυτινγ:

�µεργε (γιϖεν τεστ τυβεσΝ1 ανδΝ2, ωε χονσιδερ τηειρ υνιον, υνδερστοοδ
ασ α µυλτισετ),

� σεπαρατε (γιϖεν α τεστ τυβε Ν ανδ α ωορδ ω οϖερ τηε αλπηαβετ Α, Χ, Τ,
Γ, προδυχε τωο τεστ τυβεσ +(Ν;ω) ανδ �(Ν;ω), ωηερε +(Ν;ω) χονσιστσ οφ
αλλ στρανδσ ιν Ν ωηιχη χονταιν ω ασ α (χονσεχυτιϖε συβστρινγ), ωηιλε �(Ν;ω)
ισ ιτσ νεγατιον), ανδ

� δετεχτ (γιϖεν α τυβε Ν , ρετυρν τρυε ιφ Ν χονταινσ ατ λεαστ ονε ∆ΝΑ
στρανδ, οτηερωισε ρετυρν φαλσε).

Ωε βεγιν ωιτη α γραπηιχαλ δεσχριπτιον οφ τρυτη ασσιγνµεντσ. Ασσυµε τηατ
ωε αρε δεαλινγ ωιτη α προποσιτιοναλ φορµυλα χονταινινγ κ ϖαριαβλεσ. Χονσιδερ
τηε διρεχτεδ γραπη δεπιχτεδ ιν Φιγ. 1:
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Φιγυρε 1: Α γραπη ασσοχιατεδ ωιτη α τρυτη ασσιγνµεντ.

Τηερε αρε 2κ πατησ φροµ ϖιν το ϖουτ, νονε οφ τηε πατησ βεινγ Ηαµιλ−
τονιαν. Ονε χαν οβσερϖε τηατ ιν εαχη οφ τηε ϖι νοδεσ (ι 6= ουτ) τηερε αρε
τωο ινδεπενδεντ χηοιχεσ (0 ορ 1). Τηε χονστρυχτιον οφ τηε γραπη πρεϖεντσ
τηε (υνωαντεδ) ποσσιβιλιτψ οφ χηοοσινγ φορ τηε σαµε ϖαριαβλε βοτη 0 ανδ 1
ϖαλυεσ. Μορεοϖερ, τηε πατησ ανδ τηε τρυτη ασσιγνµεντσ φορ τηε ϖαριαβλεσ
ξ1; ξ2; : : : ; ξκ ηαϖε α νατυραλ ονε−το−ονε χορρεσπονδενχε.

Εαχη ϖερτεξ οφ τηε γραπη ισ ενχοδεδ βψ α ρανδοµ ολιγονυχλεοτιδε οφ
λενγτη 20 ανδ αν αρχ βετωεεν τωο ϖερτιχεσ ωιλλ βε τηε Ωατσον−Χριχκ χοµ−
πλεµεντατιον οφ τηε λαστ ηαλφ ανδ τηε �ρστ ηαλφ οφ τηε σταρτ ανδ ενδ νοδεσ,
ρεσπεχτιϖελψ. Μορε πρεχισελψ, χονσιδερ τηε ενχοδινγσ σι ανδ σϕ οφ τωο ϖερτιχεσ
συχη τηατ τηερε ισ αν εδγε ει;ϕ φροµ τηε φορµερ το τηε λαττερ. Ιφ σι = σ0ισ

00
ι ,

ωηερε σ0ι ανδ σ
00
ι ηαϖε εθυαλ λενγτη, ανδ σιµιλαρλψ, σϕ = σ

0
ϕσ
00
ϕ , τηεν τηε εδγε

ει;ϕ ισ ενχοδεδ βψ τηε Ωατσον−Χριχκ χοµπλεµεντ οφ σ
00
ι σ
0
ϕ .

Νοω, ηαϖινγ ενχοδεδ αλλ τηε ποσσιβλε τρυτη ασσιγνµεντσ ωιτη τηε ηελπ οφ
τηε οπερατιονσ µεντιονεδ αβοϖε ανδ στριχτλψ δεπενδινγ ον τηε χλαυσεσ γιϖεν
ιν τηε ΣΑΤ προβλεµ, αν αλγοριτηµ (βασεδ ον σεπαρατιον, µεργινγ, ανδ, ονλψ
ιν τηε ενδ, δετεχτιον) ωιλλ σελεχτ τηε ριγητ σολυτιον(σ) οφ τηε γιϖεν προβλεµ.
Αν εξαµπλε ισ πρεσεντεδ ιν Σεχτιον 6 ωηερε ωε χοµπαρε τηε τωο (∆ΝΑ ανδ
Π−βασεδ) ωαψσ οφ σολϖινγ α παρτιχυλαρ, σιµπλε ΣΑΤ προβλεµ.

3 Σιµυλατινγ Λογιχαλ Γατεσ

Ιν τηισ σεχτιον ωε πρεσεντ ΑΙ∆ Π σψστεµσ ωηιχη σιµυλατε λογιχαλ γατεσ. Ωε
ωιλλ χονσιδερ τηατ τηε ινπυτ φορ α γατε ισ γιϖεν ιν τηε ιννερ µεµβρανε, ωηιλε
τηε ουτπυτ ωιλλ βε χοµπυτεδ ανδ σεντ ουτ το τηε ουτερ ρεγιον.
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3.1 Σιµυλατιον οφ ΑΝ∆ Γατε

Λεµµα 3.1 Βοολεαν ΑΝ∆ γατε χαν βε σιµυλατεδ βψ ΑΙ∆ Π σψστεµσ ωιτη
ρυλεσ οφ τψπεσ (β00) ανδ (χ

0
0), υσινγ τωο µεµβρανεσ ανδ τωο οβϕεχτσ (ονλψ τηε

ινπυτ), ιν ατ µοστ φουρ στεπσ.

Προοφ. Ωε χονστρυχτ τηε ΑΙ∆ Π σψστεµ

�ΑΝ∆ = (Ο;Η; Ι; �; ω0; ωσ; Ρ);ωιτη

Ο = φ0; 1γ;

� = [ [ ]0]σ;

ω0 = ωσ = �;

Η = φ0; 1; σγ;

Ι = φρι ϕ 0 � ι � 9γ;

ανδ τηε σετ Ρ χονσιστινγ οφ τηε φολλοωινγ ρυλεσ:

ρ1 : [ 0]0 ! [ ]10,

ρ2 : [ 0]1 ! [ ]0�ηρ2ρ8ι,

ρ3 : [ 1]0 ! [ ]11ηρ2ρ4ρ5ρ6ι,

ρ4 : [ 1]1 ! [ ]0�ηρ2ρ8ι,

ρ5 : :[ 0]1 ! [ ]10ηρ5ρ7ι,

ρ6 : :[ 1]1 ! [ ]1�ηρ4ρ6ρ9ι,

ρ7 : :1[ ]1 ! [ �]0ηρ4ρ6ρ7ρ8ι,

ρ8 : :[ 0]σ ! [ ]σ0ηρ2ρ8ι,

ρ9 : :[ 1]σ ! [ ]σ1ηρ2ρ5ρ9ι.
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Ινιτιαλλψ, ωε πλαχε τηε ινπυτ ϖαλυεσ ξ1 ανδ ξ2 ιν τηε µεµβρανε ωιτη
λαβελ 0 φροµ τηε µεµβρανε στρυχτυρε. ∆επενδινγ ον τηε ϖαλυε οφ τηε ινιτιαλ
ϖαριαβλεσ ξ1 ανδ ξ2, τηε ρυλεσ ωε αππλψ φορ εαχη οφ τηε φουρ χασεσ αρε: ρ1; ρ2; ρ8
φορ 00, ρ1; ρ4; ρ8 φορ 01, ρ3; ρ5; ρ7; ρ8 φορ 10, ανδ ρ3; ρ6; ρ9 φορ 11.

Μορε πρεχισελψ, ιφ τωο σψµβολσ 1 αρε ιν µεµβρανε 0, ιν τηε �ρστ στεπ, ρυλε
ρ3 ισ αππλιεδ, α σψµβολ 1 ισ εξπελλεδ ανδ τηε µεµβρανε λαβελ ισ χηανγεδ το 1.
Ατ τηε σαµε τιµε, αχχορδινγ το τηε ινηιβιτιον/δε−ινηιβιτιον χονχεπτ, ρυλεσ
ρ2 ανδ ρ4 αρε ινηιβιτεδ, ωηιλε ρυλεσ ρ5 ανδ ρ6 αρε δε−ινηιβιτεδ ανδ ρεαδψ το
βε υσεδ. Ιν τηε σεχονδ στεπ ωε νοτιχε τηατ ονλψ ρυλε ρ6 χαν βε αππλιεδ, τηυσ,
οβϕεχτ 1, πλαχεδ ινσιδε µεµβρανε λαβελεδ 1 ισ τρανσφορµεδ, ον ιτσ ωαψ ουτ,
ιντο �. Ονε µαψ νοτιχε τηατ ρυλε ρ6, αφτερ ηαϖινγ βεεν αππλιεδ, ρεστορεσ τηε
οριγιναλ στατυσ οφ ρυλεσ ρ4 ανδ ιτσελφ, ανδ αλσο δε−ινηιβιτσ ρυλε ρ9. Ιν τηε τηιρδ
στεπ, ρυλε ρ9 περφορµσ ανδ τηε ριγητ ανσωερ 1 ισ σεντ ουτ τηε σκιν µεµβρανε,
ωηιλε ρυλεσ ρ2, ρ5, ανδ ρ9 χοµε βαχκ το τηειρ οριγιναλ στατυσ.

Ιν οτηερ ωορδσ, αφτερ τηεσε τηρεε στεπσ, ουρ σψστεµ ηασ σεντ ουτ οφ τηε
σκιν µεµβρανε τηε ριγητ ανσωερ (γιϖεν τηε ινπυτ 11) ανδ χοµεσ βαχκ το ιτσ
ινιτιαλ χον�γυρατιον, τηυσ βεινγ ρεαδψ φορ α νεω ινπυτ.

Ιν τηε χασε ωηεν τηε ινπυτ ισ 01 ορ 10, ωε χαν σταρτ βψ υσινγ ρ1 ορ ρ3.
Λετ υσ εξαµινε τηε σεχονδ χασε. Ρυλε ρ3 σενδσ 1 ουτ οφ µεµβρανε 0 ανδ
χηανγεσ ιτσ λαβελ το 1. Ατ τηε σαµε τιµε, ρυλεσ ρ2 ανδ ρ4 αρε ινηιβιτεδ, ωηιλε
ρυλεσ ρ5 ανδ ρ6 αρε δε−ινηιβιτεδ. Τηε ονλψ ρυλε ωε χαν υσε ιν τηε σεχονδ
στεπ ισ ρ5 ωηιχη εξπελσ 0 ουτ οφ µεµβρανε 1, ινηιβιτσ ιτσελφ ανδ δε−ινηιβιτσ
ρυλε ρ7. Ιν τηισ µοµεντ ωε ηαϖε τηε φολλοωινγ χον�γυρατιον οφ ουρ σψστεµ:
[ [ ]101]σ. Ωε νοω αππλψ ρυλε ρ7 ωηιχη τρανσφορµσ οβϕεχτ 1 το � ον ιτσ ωαψ
ιν τηε ιννερ µεµβρανε ανδ χηανγεσ ιτσ λαβελ φροµ 1 το 0. Ρυλε ρ7 δε−ινηιβιτσ
τηε ινηιβιτεδ ρυλε ρ4, ινηιβιτσ ρ6 ανδ ιτσελφ, ανδ δε−ινηιβιτσ ρυλε ρ8. Τηε
φουρτη στεπ ισ τηε ονε ιν ωηιχη τηε ριγητ ανσωερ 0 ισ σεντ ουτ οφ τηε σκιν
µεµβρανε, ωηιλε τηε σψστεµ γετσ βαχκ το ιτσ ινιτιαλ χον�γυρατιον.

Τηυσ, ουρ σψστεµ γιϖεσ τηε ριγητ ανσωερ, ιν φουρ στεπσ, ωηεν ωε ηαϖε
ινπυτ 01. Ιν τηε οτηερ τωο χασεσ (ωηεν ωε ηαϖε τηε ινπυτ 01 ανδ σταρτ βψ
υσινγ �ρστ τηε ρυλε ρ1, ορ τηε ινπυτ ισ 00) ουρ σψστεµ περφορµσ τηε ρυλεσ
µεντιονεδ αβοϖε, τηε δεταιλσ βεινγ λεφτ το τηε ρεαδερ. 2
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3.2 Σιµυλατιον οφ ΟΡ Γατε

Λεµµα 3.2 Α Βοολεαν ΟΡ γατε ωιτη φαν−ιν ατ µοστ 2 χαν βε σιµυλατεδ βψ
ΑΙ∆ Π σψστεµσ ωιτη ρυλεσ οφ τψπεσ (β00) ανδ (χ

0
0), υσινγ τωο µεµβρανεσ ανδ

τωο οβϕεχτσ (ονλψ τηε ινπυτ), ατ µοστ φουρ στεπσ.

Προοφ. Ωε χονστρυχτ τηε ΑΙ∆ Π σψστεµ

�ΟΡ = (Ο;Η; Ι; �; ω0; ωσ; Ρ);ωιτη

Ο = φ0; 1γ;

� = [ [ ]0]σ;

ω0 = ωσ = �;

Η = φ0; 1; σγ;

Ι = φρι ϕ 0 � ι � 9γ;

ανδ τηε φολλοωινγ σετ οφ Ρ οφ ρυλεσ:

ρ1 : [ 1]0 ! [ ]11,

ρ2 : [ 1]1 ! [ ]0�ηρ2ρ8ι,

ρ3 : [ 0]0 ! [ ]10ηρ2ρ4ρ5ρ6ι,

ρ4 : [ 0]1 ! [ ]0�ηρ2ρ8ι,

ρ5 : :[ 1]1 ! [ ]11ηρ5ρ7ι,

ρ6 : :[ 0]1 ! [ ]1�ηρ4ρ6ρ9ι,

ρ7 : :0[ ]1 ! [ �]0ηρ4ρ6ρ7ρ8ι,

ρ8 : :[ 1]σ ! [ ]σ1ηρ2ρ8ι,

ρ9 : :[ 0]σ ! [ ]σ0ηρ2ρ5ρ9ι.
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Ασ ιν τηε χασε οφ τηε ΑΝ∆ γατε, ωε πλαχε ινιτιαλ ϖαλυεσ ξ1 ανδ ξ2 ιν τηε
µεµβρανε λαβελεδ 0 φροµ τηε µεµβρανε στρυχτυρε. Τηε συχχεσσιον οφ ρυλεσ
ωε αππλψ φορ εαχη χασε ισ (ασ εξπεχτεδ δυε το τηε δυαλιτψ οφ τηε σψστεµ) τηε
φολλοωινγ: ρ3; ρ6; ρ9 φορ 00, ρ3; ρ5; ρ7; ρ8 φορ 01, ρ1; ρ4; ρ8 φορ 10, ανδ ρ1; ρ2; ρ8
φορ 11.

Ωε ονλψ γιϖε ηερε τηε δεταιλσ οφ τηε χασε ωηεν ξ1 ανδ ξ2 αρε βοτη 1. Ουρ
σψστεµ ηασ τηε φολλοωινγ ινιτιαλ χον�γυρατιον: [ [ 11]0]σ. Ασ µεντιονεδ αβοϖε,
τηε ονλψ ρυλε ωε χαν αππλψ ισ ρ1, ανδ ουρ σψστεµ εϖολϖεσ το τηε φολλοωινγ
χον�γυρατιον: [ [ 1]11]σ. Τηε νεξτ ρυλε ωε χαν αππλψ ισ ρ2 τηρουγη ωηιχη
τηε οβϕεχτ ιν µεµβρανε 1 ισ τρανσφορµεδ ιντο � ανδ τηε µεµβρανε λαβελ
χηανγεσ το 0, τηε σψστεµ εϖολϖινγ το [ [ ]01]σ. Αφτερ ηαϖινγ αππλιεδ ρυλε
ρ2, ρυλε ρ8 ισ δε−ινηιβιτεδ ωηιλε ρυλε ρ2 ισ ινηιβιτεδ. Ωε νοω χαν αππλψ ρ8,
ωηιχη σενδσ ουτ οφ τηε σκιν µεµβρανε τηε ανσωερ 1 ανδ ρεστορεσ τηε ινιτιαλ
χον�γυρατιον οφ τηε σψστεµ ινηιβιτινγ ρυλε ρ8 ανδ δε−ινηιβιτινγ ρυλε ρ2.

Ωε ηαϖε σηοων ηοω ουρ σψστεµσ εξπελσ, ιν τηρεε στεπσ, τηε ριγητ ανσωερ,
γιϖεν τηε ινπυτ 11.

Τηε δεταιλσ οφ τηε βεηαϖιορ οφ τηε σψστεµ ιν τηε οτηερ τηρεε χασεσ αρε λεφτ
το τηε ρεαδερ. 2

3.3 Σιµυλατιον οφ ΝΟΤ Γατε

Λεµµα 3.3 Α Βοολεαν (υναρψ) ΝΟΤ γατε χαν βε σιµυλατεδ βψ ΑΙ∆ Π σψσ−
τεµσ ωιτη ρυλεσ οφ τψπε (β0) ιν ονε στεπ.

Προοφ. Ωε χονστρυχτ τηε ΑΙ∆ Π σψστεµ

�ΝΟΤ = (Ο;Η; Σ; �;ωσ; Ρ);ωιτη

Ο = φ0; 1γ;

� = [ ]σ;

ωσ = ξ1ξ2;

Η = φσγ;

Σ = φρ0; ρ1γ;

Ρ = φρ0 : [ 0]σ ! [ ]σ1; ρ1 : [ 1]σ ! [ ]σ0γ:

Τηε χορρεχτ σιµυλατιον οφ τηε ΝΟΤ γατε ισ οβϖιουσ. 2
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4 Σιµυλατινγ Χιρχυιτσ

Ωε γιϖε νοω αν εξαµπλε οφ ηοω το χονστρυχτ α γλοβαλ ΑΙ∆ Π σψστεµ ωηιχη
σιµυλατεσ α Βοολεαν χιρχυιτ, δεσιγνεδ φορ εϖαλυατινγ α Βοολεαν φυνχτιον,
υσινγ τηε διστριβυτεδ συβ−ΑΙ∆ Π σψστεµσ ιν ιτ, ναµελψ ινχλυδινγ �ΑΝ∆,
�ΟΡ ανδ �ΝΟΤ χονστρυχτεδ ιν τηε πρεϖιουσ σεχτιον.

4.1 Αν Εξαµπλε

Ωε τακε ιντο χονσιδερατιον τηε σαµε εξαµπλε υσεδ ιν [8], ναµελψ ωε χονσιδερ
τηε φυνχτιον φ : φ0; 1γ4 ! φ0; 1γ γιϖεν βψ τηε φορµυλα

φ(ξ1; ξ2; ξ3; ξ4) = (ξ1 ⊥ ξ2) _ :(ξ3 ⊥ ξ4):

Τηε χορρεσπονδινγ χιρχυιτ ισ δεπιχτεδ ιν Φιγ. 2, ιτσ ασσιγνεδ µεµβρανε στρυχ−
τυρε ιν Φιγ 3:

�
�

Α
Α

ξ1 ξ2 ξ3 ξ4

χ1 χ2

χ4

χ3

Φιγυρε 2: Βοολεαν Χιρχυιτ.

Ασ σηοων ιν Φιγ. 3, τηε χιρχυιτ ηασ α τρεε ασ ιτσ υνδερλψινγ γραπη, ωιτη
τηε λεαϖεσ ασ ινπυτ γατεσ ανδ τηε ροοτ ασ ουτπυτ γατε.

Ωε σιµυλατε τηισ χιρχυιτ ωιτη τηε Π σψστεµ

�Χ = (�
(1)
ΑΝ∆;�

(2)
ΑΝ∆;�

(3)
ΝΟΤ ;�

(4)
ΟΡ)
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Φιγυρε 3: Μεµβρανε στρυχτυρε ασσοχιατεδ ωιτη χιρχυιτ φροµ Φιγ. 2.

χονστρυχτεδ φροµ τηε διστριβυτεδ συβ−ΑΙ∆ Π σψστεµσ ωηιχη ωορκ ιν παραλλελ
ιν τηε γλοβαλ Π σψστεµ, ανδ ωε οβταιν α υνιθυε ρεσυλτ ιν τηε φολλοωινγ ωαψ:

1. φορ εϖερψ γατε οφ τηε χιρχυιτ ωιτη ινπυτσ φροµ ινπυτ γατεσ, ωε ηαϖε
αν αππροπριατε Π σψστεµ σιµυλατινγ ιτ, ωιτη τηε ιννερµοστ µεµβρανε
χονταινινγ τηε ινπυτ ϖαλυεσ;

2. φορ εϖερψ γατε ωηιχη ηασ ατ λεαστ ονε ινπυτ χοµινγ ασ αν ουτπυτ οφ α
πρεϖιουσ γατε, ωε χονστρυχτ αν αππροπριατε Π σψστεµ το σιµυλατε ιτ βψ
εµβεδδινγ ιν α µεµβρανε τηε �ενϖιρονµεντσ∀ οφ τηε Π σψστεµσ ωηιχη
χοµπυτε τηε γατεσ ατ τηε πρεϖιουσ λεϖελ.

Φορ τηε παρτιχυλαρ φορµυλα

(ξ1 ⊥ ξ2) _ :(ξ3 ⊥ ξ4)

ανδ τηε χιρχυιτ δεπιχτεδ ιν Φιγυρε 2 ωε ωιλλ ηαϖε:

− �
(1)
ΑΝ∆ χοµπυτεσ τηε �ρστ ΑΝ∆ 1 γατε (ξ1 ⊥ ξ2) ωιτη ινπυτσ ξ1 ανδ ξ2.
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− �
(2)
ΑΝ∆ χοµπυτεσ τηε σεχονδ ΑΝ∆2 γατε (ξ3 ⊥ ξ4) ωιτη ινπυτσ ξ3 ανδ

ξ4; τηεσε τωο Π σψστεµσ, �
(1)
ΑΝ∆ ανδ �

(2)
ΑΝ∆, αχτ ιν παραλλελ.

− �
(3)
ΝΟΤ χοµπυτεσ τηε ΝΟΤ γατε :(ξ3⊥ξ4) ωιτη ινπυτ (ξ3⊥ξ4). Ωηιλε

�
(3)
ΝΟΤ ισ ωορκινγ, τηε ουτπυτ ϖαλυε οφ τηε �ρστ ΑΝ∆ 1 γατε περφορµσ

τηε ρυλεσ τηατ χαν βε αππλιεδ (ιν �
(4)
ΟΡ) ανδ ατ α ποιντ ωαιτσ φορ τηε

σεχονδ ινπυτ (ναµελψ, τηε ουτπυτ οφ �
(3)
ΝΟΤ ) το χοµε.

− αφτερ τηε σεχονδ ινπυτ ηασ εντερεδ τηε ιννερ µεµβρανε οφ τηε ΟΡ

γατε, τηε Π σψστεµ �
(4)
ΟΡ ωιλλ βε αβλε το χοµπλετε ιτσ τασκ. Τηε ρεσυλτ

οφ τηε χοµπυτατιον φορ τηε ΟΡ γατε (ωηιχη ισ τηε ρεσυλτ οφ τηε γλοβαλ
Π σψστεµ), ισ σεντ ιντο τηε ενϖιρονµεντ οφ τηε ωηολε σψστεµ.

Τηε ιδεα ωε ωαντ το στρεσσ ηερε ισ τηατ, ασ νοτιχεδ φροµ τηε εξπλανατιονσ
γιϖεν αβοϖε, ουρ σψστεµ ηασ α σελφ−εµβεδδεδ σψνχηρονιζατιον. Βψ τηισ ωε
µεαν τηατ ιφ ειτηερ οφ τηε γατεσ ΑΝ∆ ορ ΟΡ ρεχειϖεσ ονλψ ονε (παρτ οφ τηε)
ινπυτ φροµ αν υππερ λεϖελ οφ τηε τρεε, τηε γατε ωιλλ ωαιτ φορ τηε οτηερ παρτ
οφ τηε ινπυτ το χοµε ιν ορδερ το εξπελ τηε ουτπυτ. Ιν τηατ ωαψ, αν εξτρα
σψνχηρονιζατιον σψστεµ, ασ χονσιδερεδ ιν [8], ισ νοτ νεεδεδ ιν ΑΙ∆ Π Σψστεµσ.

Βασεδ ον τηε πρεϖιουσ εξπλανατιονσ τηε φολλοωινγ ρεσυλτ ηολδσ:

Τηεορεµ 4.1 Εϖερψ Βοολεαν χιρχυιτ � ωηοσε υνδερλψινγ γραπη στρυχτυρε ισ
α ροοτεδ τρεε, χαν βε σιµυλατεδ βψ α Π σψστεµ, ��, ιν λινεαρ τιµε. �� ισ
χονστρυχτεδ φροµ ΑΙ∆ Π σψστεµσ οφ τψπε �ΑΝ∆, �ΟΡ ανδ �ΝΟΤ , βψ ρεπρο−
δυχινγ τηε στρυχτυρε οφ τηε τρεε ασσοχιατεδ το τηε χιρχυιτ ιν τηε αρχηιτεχτυρε
οφ τηε µεµβρανε στρυχτυρε.

Προπερτψ 4.1 Ανψ Βοολεαν χιρχυιτ �, ωιτη ν γατεσ, χαν βε σιµυλατεδ υσινγ
ατ µοστ 2ν µεµβρανεσ.

Προοφ. Λετ υσ χονσιδερ τηε ωορστ χασε ιν ωηιχη ουρ χιρχυιτ χονταινσ ονλψ
ΟΡ ανδ ΑΝ∆ γατεσ. Τηεν ιτ ισ οβϖιουσ τηατ φορ τηε ινδιϖιδυαλ σιµυλατιον
οφ τηεσε γατεσ ωε υσε 2ν µεµβρανεσ (εϖερψ γατε ισ σιµυλατεδ βψ υσινγ τωο
µεµβρανεσ). Ιν φαχτ, τηισ χοινχιδεσ εξαχτλψ ωιτη τηε υππερ βουνδ στατεδ ιν
τηε προπερτψ δυε το τηε εµβεδδεδ σψνχηρονιζατιον ανδ τηε φαχτ ωε δο νοτ
νεεδ αδδιτιοναλ µεµβρανεσ ιν ορδερ το σιµυλατε ιτ. 2
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5 ΧΙΡΧΥΙΤ−ΣΑΤ Ε′ χιενχψ

Τηερε ισ αν ιντερεστινγ χοµπυτατιοναλ προβλεµ ρελατεδ το χιρχυιτσ, χαλλεδ
ΧΙΡΧΥΙΤ−ΣΑΤ. Γιϖεν α χιρχυιτ Χ, ισ τηερε α τρυτη ασσιγνµεντ Τ αππροπρι−
ατε το Χ συχη τηατ Τ (Χ) = τρυε? Ιτ ισ εασψ το αργυε τηατ ΧΙΡΧΥΙΤ−ΣΑΤ ισ
χοµπυτατιοναλλψ εθυιϖαλεντ το ΣΑΤ, ανδ τηυσ πρεσυµαβλψ ϖερψ ηαρδ.

Ωε χαν νοω αππεαλ το α ωελλ−κνοων χονστρυχτιον το ρεδυχε α
ΧΙΡΧΥΙΤ−ΣΑΤ ινστανχε το α ΧΝΦ φορµυλα. Γιϖεν α χιρχυιτ Χ, ωε ωιλλ χον−
στρυχτ α ΧΝΦ φορµυλα ∋Χ συχη τηατ τηερε ισ αν ασσιγνµεντ το τηε ινπυτσ οφ Χ
προδυχινγ αν ουτπυτ 1 ιφ ανδ ονλψ ιφ τηε φορµυλα ∋Χ ισ σατισ�αβλε. Τηε φορ−
µυλα ∋Χ ωιλλ ηαϖε ν+ ϕΧϕ ϖαριαβλεσ, ωηερε ϕΧϕ δενοτεσ τηε νυµβερ οφ γατεσ
ιν Χ; ιφ Χ αχτσ ον ινπυτσ ξ1; � � � ; ξν ανδ χονταινσ γατεσ γ1; � � � ; γϕΧϕ, τηεν
∋Χ ωιλλ ηαϖε ϖαριαβλε σετ φξ1; � � � ; ξν; γ1; � � � ; γϕΧϕγ. Φορ εαχη γατε γ 2 Χ, ωε
δε�νε α σετ οφ χλαυσεσ ασ φολλοωσ:

1. ιφ χ = ΑΝ∆(α; β), τηεν αδδ (:χ _ α); (:χ _ β); (χ _ :α _ :β);

2. ιφ χ = ΟΡ(α; β), τηεν αδδ (χ _ :α); (χ _ :β); (:χ _ α _ β);

3. ιφ χ = ΝΟΤ(α), τηεν αδδ (χ _ α); (:χ _ :α):

Τηε φορµυλα ∋Χ ισ σιµπλψ τηε χονϕυνχτιον οφ αλλ τηε χλαυσεσ οϖερ αλλ τηε
γατεσ οφ Χ.

Ωε ασσυµε βελοω τηατ Χ χονσιστσ οφ γατεσ φροµ α στανδαρδ χοµπλετε
βασισ συχη ασ ΑΝ∆, ΟΡ, ΝΟΤ ανδ τηατ εαχη γατε ηασ φαν−ιν ατ µοστ 2. Ουρ
ρεσυλτσ χαν εασιλψ βε γενεραλιζεδ το αλλοω οτηερ γατεσ (ε.γ., ωιτη α λαργερ
φαν−ιν); τηε �ναλ βουνδσ αρε ιντερεστινγ ασ λονγ ασ τηε νυµβερ οφ χλαυσεσ περ
γατε ανδ τηε µαξιµυµ φαν−ιν ιν τηε χιρχυιτ ηαϖε χονσταντ υππερ βουνδσ.
Ρεχαλλ τηατ α χιρχυιτ Χ ισ α διρεχτεδ αχψχλιχ γραπη (∆ΑΓ).

Ωε δε�νε τηε υνδερλψινγ υνδιρεχτεδ γραπη ασ ΓΧ :

∆ε�νιτιον 5.1 Γιϖεν α χιρχυιτ Χ ωιτη ινπυτσ Ξ = φξ1; � � � ; ξνγ ανδ γατεσ
Σ = φγ1; � � � ; γσγ, λετ ΓΧ = (ς;Ε) βε τηε υνδιρεχτεδ ανδ υνωειγητεδ γραπη
ωιτη ς = Ξ [ Σ ανδ Ε = φφξ; ψγ: ξ ισ αν ινπυτ το γατε ψ ορ ϖιχε ϖερσαγ.

Τηεορεµ 5.1 Φορ α χιρχυιτ Χ ωιτη γατεσ φροµ {ΑΝ∆, ΟΡ, ΝΟΤ}, τηε
ΧΙΡΧΥΙΤ−ΣΑΤ ινστανχε φορ Χ χαν βε σολϖεδ βψ αν ΑΙ∆ Π σψστεµ.
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Προοφ. Ωε ονλψ γιϖε α σκετχη οφ τηε προοφ.

Ωε κνοω τηατ α προποσιτιοναλ φορµυλα ∋Χ ιν ΧΝΦ ισ σιµπλψ τηε χονϕυνχ−
τιον οφ αλλ τηε χλαυσεσ οϖερ αλλ τηε γατεσ οφ Χ. Ιν ουρ πρεϖιουσ εξαµπλε, φορ
τηε Βοολεαν χιρχυιτ χονσιδερεδ ιν Σεχτιον 4, ∋Χ ισ:

∋Χ = (:χ1 _ ξ1) ⊥ (:χ1 _ ξ2) ⊥ (χ1 _ :ξ1 _ :ξ2)⊥

(:χ2 _ ξ3) ⊥ (:χ2 _ ξ4) ⊥ (χ2 _ :ξ3 _ :ξ4)⊥

(χ2 _ χ3) ⊥ (:χ2 _ :χ3)⊥

(:χ1 _ χ4) ⊥ (:χ3 _ χ4) ⊥ (:χ4 _ χ1 _ χ3).

Τηερε αρε αλρεαδψ κνοων αλγοριτηµσ ωηιχη σολϖε ΣΑΤ (ωριττεν ασ Βοολεαν
προποσιτιοναλ φορµυλα ιν ΧΝΦ) ωιτη Π σψστεµσ ωιτη αχτιϖε µεµβρανεσ (σεε
[1, 2, 7, 14, 15, 19]). Τηεν ουρ ∋Χ χαν βε σολϖεδ εασιλψ φολλοωινγ τηε προοφ
ιδεασ φροµ τηεσε παπερσ.

Ωε ηαϖε λεφτ τηε τεχηνιχαλ δεταιλσ οφ τηε προοφ το τηε ρεαδερ. 2

6 Α ∆ΝΑ−λικε Προποσαλ το Σολϖε ΣΑΤ

Φορ α βεττερ υνδερστανδινγ οφ τηε προποσεδ σψστεµ ωε σταρτ �ρστ ωιτη αν
εξαµπλε ανδ τηεν ωε γιϖε τηε γενεραλ δεταιλσ.

Λετ υσ βεγιν ωιτη τηε εξαµπλε προµισεδ ιν Συβσεχτιον 2.4, ωηιχη ωασ
�ρστ χονσιδερεδ ιν [13] ανδ λατερ µεντιονεδ ιν [21]. Σταρτινγ φροµ τηισ εξ−
αµπλε ωε ωιλλ µακε α χοννεχτιον βετωεεν τηε χλασσιχαλ ∆ΝΑ ωαψ οφ σολϖινγ
σατισ�αβιλιτψ ανδ τηε �∆ΝΑ−λικε�ωαψ οφ σολϖινγ ιτ ωιτη Π σψστεµσ υσινγ τηε
τοολσ οφ µεργινγ ανδ σεπαρατιον οφ τηε µεµβρανεσ, ανδ πολαριζατιονσ.

Χονσιδερ τηε προποσιτιοναλ φορµυλα

� = (ξ1 _ ξ2) ⊥ (:ξ1 _ :ξ2):

Τηυσ, ωε ηαϖε τωο ϖαριαβλεσ ωιτη τηε χορρεσπονδινγ γραπη ασ δεπιχτεδ
ιν Φιγ. 4:

Ασ µεντιονεδ ιν Σεχτιον 2.4, εαχη οφ τηε φουρ πατησ τηρουγη τηισ γραπη
χορρεσπονδσ το ονε οφ τηε φουρ τρυτη ασσιγνµεντσ φορ τηε ϖαριαβλεσ ξ1 ανδ ξ2.
Τηε χορε οφ τηε προχεδυρε οφ σολϖινγ ΣΑΤ ωιτη ∆ΝΑ στρανδσ ισ τηε οπερατιον
οφ σεπαρατιον. Λετ υσ δενοτε βψ Ν0 τηε ινιτιαλ τεστ τυβε ωηιχη χονταινσ αλλ
φουρ πατησ (στρανδσ) φροµ τηε ινιτιαλ το τηε �ναλ ϖερτεξ οφ τηε γραπη. Ιφ ωε
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Φιγυρε 4: Τηε γραπη ασσοχιατεδ ωιτη φορµυλα �.

αππλψ τηε οπερατιον σεπαρατε, φορµινγ τηε τεστ τυβε +(Ν0; α
1
1), ωε γετ τηοσε

τρυτη ασσιγνµεντσ ωηερε ξ1 ασσυµεσ τηε ϖαλυε 1 (τρυε).

Α τρυτη ασσιγνµεντ ισ δενοτεδ βψ α τωο−βιτ σεθυενχε ιν τηε νατυραλ ωαψ.
Τηυσ, 01 στανδσ φορ τηε ασσιγνµεντ ξ1 = 0, ξ2 = 1. Α σιµιλαρ νοτατιον ισ
αλσο υσεδ ιφ τηερε αρε µορε τηαν τωο ϖαριαβλεσ. Τηισ σιµπλε νοτατιον οφ βιτ
σεθυενχεσ ισ εξτενδεδ το τηε ∆ΝΑ στρανδσ ρεσυλτινγ φροµ ουρ βασιχ γραπησ.
Τηυσ, τηε στρανδ ϖινα

0
1ϖ1α

1
2ϖουτ ισ σιµπλψ δενοτεδ βψ 01.

Φολλοωινγ τηε ιδεα ιν [21], βψ Σ(Ν; ι; ϕ) ωε δενοτε τηε τεστ τυβε οφ συχη
στρανδσ ιν Ν ωηερε τηε ι−τη βιτ εθυαλσ ϕ, ϕ = 0; 1. Τηυσ, ασ ωε οβσερϖεδ
αβοϖε, Σ(Ν; ι; ϕ) ρεσυλτσ φροµ Ν βψ τηε οπερατιον σεπαρατε:

Σ(Ν; ι; ϕ) = +(Ν; αϕι ):

Τηε τυβε οφ συχη στρανδσ ιν Ν , ωηερε τηε ι−τη βιτ εθυαλσ τηε χοµπλεµεντ οφ
ϕ ισ αλσο χονσιδερεδ:

Σ�(Ν; ι; ϕ) = �(Ν; αϕι ):

Ηερε ισ τηε αλγοριτηµ οφ σολϖινγ ΣΑΤ φορ τηε προποσιτιοναλ φορµυλα �:

(1) ινπυτ(Ν0)

(2) Ν1 = Σ(Ν0; 1; 1)

(3) Ν 0
1 = Σ

�(Ν0; 1; 1)
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(4) Ν2 = Σ(Ν
0
1; 2; 1)

(5) µεργε(Ν1; Ν2) = Ν3

(6) Ν4 = Σ(Ν3; 1; 0)

(7) Ν 0
4 = Σ

�(Ν3; 1; 0)

(8) Ν5 = Σ(Ν
0
4; 2; 0)

(9) µεργε(Ν4; Ν5) = Ν6

(10) δετεχτ(Ν6)

Τηε προγραµ ισ βασεδ ον εξηαυστιϖε σεαρχη. Τηε ινιτιαλ τυβε ατ στεπ (1)
χονταινσ αλλ ποσσιβλε τρυτη−ασσιγνµεντσ. Τηε τεστ τυβε ατ στεπ (5) χονταινσ
τηε ασσιγνµεντσ σατισφψινγ τηε �ρστ χλαυσε οφ τηε προποσιτιοναλ φορµυλα �.
(Ειτηερ ξ1 ορ ξ2 µυστ ασσυµε τηε ϖαλυε 1. Ατ στεπ (2) ωε ηαϖε τηοσε ασ−
σιγνµεντσ φορ ωηιχη ξ1 ισ 1. Οφ τηε ρεµαινινγ ονεσ ωε στιλλ τακε, ατ στεπ
(4), τηοσε φορ ωηιχη ξ2 ισ 1.) Τηε ασσιγνµεντσ ιν τηισ τυβε, Ν3, αρε �λτερεδ
φυρτηερ το ψιελδ ατ στεπ (9) τηοσε ασσιγνµεντσ τηατ αλσο σατισφψ τηε σεχονδ
χλαυσε οφ τηε προποσιτιοναλ φορµυλα �.

Λετ υσ νοω χονσιδερ τηε σαµε προποσιτιοναλ φορµυλα � ανδ σολϖε ιτ υσινγ
τηε νεω τεχηνιθυε ωε προποσε ηερε, ναµελψ Π σψστεµσ, εϖεντυαλλψ υσινγ
πολαριζατιονσ ανδ σεπαρατιον/µεργινγ ρυλεσ φολλοωινγ χλοσελψ τηε πρινχιπλε οφ
σεπαρατιον/µεργινγ ασ αβοϖε.

Ωε σταρτ ουρ χοµπυτατιον ηαϖινγ ιν ονε µεµβρανε, λαβελεδ (1; 1), αλλ
τρυτη ασσιγνµεντσ πλυσ τηε ινστανχεσ οφ τηε γιϖεν προβλεµ (�) ενχοδεδ ασ
φολλοωσ:

− τρυτη ασσιγνµεντσ

00 � α01;1; α
0
1;2, 01 � α02;1; α

1
2;2

10 � α13;1; α
0
3;2, 11 � α14;1; α

1
4;2

Μορε πρεχισελψ, α01;2 σαψσ τηατ �ρστ ποσιτιον − (1) ιν τηε συβσχριπτ ιν−
διχατεσ τηε τρυτη−ασσιγνµεντ, τηε σεχονδ ποσιτιον − (2) ινδιχατεσ τηε
πλαχε ιν τηε ασσιγνµεντ οφ τηε ϖαλυε ινδιχατεδ βψ τηε συπερσχριπτ − (0).
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− χλαυσεσ

� (ξ1 _ ξ2) � ξ
1
1;1; ξ

1
1;2,

� (:ξ1 _ :ξ2) � ξ
0
2;1; ξ

0
2;2.

Ηερε, βψ ξ11;2 ωε υνδερστανδ τηατ ιν τηε �ρστ ινστανχε οφ τηε φορµυλα �
(1), ϖαριαβλε ξ2 (2) ισ νοτ νεγατεδ (1).

Ιν τηε γιϖεν εξαµπλε, ονε χαν ιµαγινε 12 οβϕεχτσ (γιϖεν βψ τηε συµ
οφ τηε 4 τρυτη ασσιγνµεντσ (8 οβϕεχτσ) ανδ 4 ϖαριαβλεσ οφ τηε προποσιτιοναλ
φορµυλα) οφ τωο τψπεσ, α ανδ ξ, �οατινγ ιν τηε µεµβρανε λαβελεδ (1; 1), βυτ,
ατ ανψ τιµε, πιχκινγ ανψ οφ τηεσε οβϕεχτσ ωε χαν πρεχισελψ στατε ωηιχη ισ ιτσ
ϖαλυε ανδ ποσιτιον/ϖαλυε ιν τηε σετ οφ στρινγ οφ τρυτη ασσιγνµεντσ/χλαυσεσ.
Ιν οτηερ ωορδσ, α µορε χλεαρ ιµαγε ισ τηατ οφ σοµε �στρινγσ� οφ τωο τψπεσ
�οατινγ ινσιδε τηατ χελλ (µεµβρανε), αν ιµαγε ϖερψ χλοσε το τηε ονε οφ τηε
ινιτιαλ τεστ τυβε Ν0 ηαϖινγ αλλ τρυτη ασσιγνµεντσ ενχοδεδ ασ ωε πρεϖιουσλψ
σαω.

Τηισ λαστ ιµαγε ισ αλσο ϖερψ χλοσε το τηε βιολογιχαλ ιµαγε οφ ∆ΝΑ ιν
αν ευκαρψοτιχ χελλ ενχλοσεδ ιν τηε νυχλεαρ ενϖελοπε τηρουγη ιννερ νυχλεαρ
µεµβρανε ανδ ουτερ νυχλεαρ µεµβρανε.

Χοµινγ βαχκ το ουρ εξαµπλε, ωε νοω ωαντ το σεπαρατε τηε µεµβρανε
λαβελεδ (1; 1) ηαϖινγ τηε πολαριζατιον 1 ιντο τωο µεµβρανεσ �ονε χονταιν−
ινγ τηε τρυτη ασσιγνµεντσ ωηιχη ηαϖε 1 ον τηε �ρστ ποσιτιον (10 ανδ 11,
ενχοδεδ ασ α13;1; α

0
3;2, ανδ α

1
4;1; α

1
4;2, ρεσπεχτιϖελψ), τηε ϖαριαβλε ωηιχη ισ ον

τηε �ρστ ποσιτιον ον τηε �ρστ χλαυσε (ναµελψ ξ11;1) ανδ τηε ϖαριαβλεσ φροµ τηε

οτηερ χλαυσε (ξ02;1, ανδ ξ
0
2;2), ωηιλε τηε σεχονδ χονταινσ τηε ρεστ οφ τηε τρυτη

ασσιγνµεντσ (00 ανδ 01) πλυσ τηε σεχονδ ϖαριαβλε οφ τηε �ρστ χλαυσε (ξ11;2).
Τηισ στεπ σιµυλατεσ τηε στεπσ (2) ανδ (3) φροµ τηε ∆ΝΑ ϖαριαντ οφ τηε εξ−
αµπλε. (Φιγ. ?? σηοωσ ηοω τηε εξαµπλε ισ προχεσσεδ βψ τηε τωο τεχηνιθυεσ
ιν παραλλελ.)

Τηισ ισ δονε βψ αππλψινγ ρυλε ρ1:

ρ1 : [ ]
1
1;1 ! [ Ξ1;1]

0
1;1[ Ξ1;2]

1
1;2, ωηερε

� Ξ1;1 = φ11; 10;:ξ1;:ξ2; ξ1γ,

� Ξ1;2 = :Ξ1;1 = φξ2γ.
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(1) ινπυτ(Ν0)

(1Π ) ινπυτ µεµβρανε λαβελεδ 1; 1

(2) Ν1 = Σ(Ν0; 1; 1)

(3) Ν 0
1 = Σ

�(Ν0; 1; 1)

(2Π ) σεπαρατιον οφ µεµβρανε λαβελεδ 1; 1

(4) Ν2 = Σ(Ν
0
1; 2; 1)

(3Π ) σεπαρατιον οφ µεµβρανε λαβελεδ 1; 2

(5) µεργε(Ν1; Ν2) = Ν3

(4Π ) µεργε βετωεεν µεµβρανεσ 1; 1 ανδ 1; 2 το µεµβρανε 2; 1

(6) Ν4 = Σ(Ν3; 1; 0)

(7) Ν 0
4 = Σ

�(Ν3; 1; 0)

(5Π ) σεπαρατιον οφ µεµβρανε 2; 1

(8) Ν5 = Σ(Ν
0
4; 2; 0)

(6Π ) σεπαρατιον οφ µεµβρανε 2; 2

(9) µεργε(Ν4; Ν5) = Ν6

(7Π ) µεργε βετωεεν µεµβρανεσ 2; 1 ανδ 2; 2 το µεµβρανε 3; 1

(10) δετεχτ(Ν6)

(8Π ) δετεχτ ιφ τηερε ισ ατ λεαστ ονε σολυτιον

(Ωε ρεµινδ τηε ρεαδερ τηατ ιν σηοωινγ ουρ προχεδυρε ωε σταρτ φροµ αν
εξαµπλε ανδ ονλψ αφτερ ιτ ωε δε�νε τηε γενεραλ φραµεωορκ).

Ωε χοντινυε τηε χοµπυτατιον βψ σεπαρατινγ τηε µεµβρανε λαβελεδ (1; 2)
ωιτη πολαριζατιον 1 ιντο τωο µεµβρανεσ λαβελεδ (1; 2) ανδ (1; 3) ωιτη πο−
λαριζατιονσ 0 ανδ 1, ρεσπεχτιϖελψ. Τηε �ρστ µεµβρανε ωιλλ χονταιν τηε τρυτη
ασσιγνµεντσ τηατ ηαϖε 0 ον τηε �ρστ ποσιτιον ανδ 1 ον τηε σεχονδ ποσιτιον
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(σο, ονλψ 01) πλυσ τηε ϖαριαβλε ξ2 φροµ τηε �ρστ χλαυσε. Τηε σεχονδ µεµβρανε
ισ τηε νεγατιον οφ τηε αβοϖε ονε, τηυσ χονταινινγ ονλψ τηε τρυτη ασσιγνµεντ
00.

Α σχηεµατιχ ωαψ οφ σολϖινγ τηε προβλεµ (βψ ρ1 ωε µεαν τηε αππλιχατιον
οφ τηε γενεραλ ρυλε ρ1, ετχ.) ισ δεπιχτεδ ιν Φιγ. 5:
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Φιγυρε 5: Σχηεµατιχ ρεπρεσεντατιον οφ σολϖινγ �.

Ιν τηε νεξτ στεπ, µεµβρανεσ λαβελεδ (1; 1) ανδ (1; 2) ωιλλ µεργε ανδ φορµ
µεµβρανε (2; 1). Τηε ρυλε οφ µεργινγ ισ γιϖεν βελοω:

� [ ]01;1[ ]
0
1;2 ! [ ]12;1.

Μεµβρανε λαβελεδ (2; 1) χονταινσ στρινγσ 10, 11, 01 πλυσ ϖαριαβλεσ ξ1, ξ2,
:ξ1, ανδ :ξ2.

Ιν τηισ πηασε οφ τηε χοµπυτατιον, ουρ προχεδυρε ηασ χοµπυτεδ τηε �ρστ
χλαυσε οφ τηε φορµυλα ανδ χοντινυεσ ωιτη τηε σεχονδ ονε.

Φροµ τηε µεµβρανε λαβελεδ (2; 1) ωε σεπαρατε, υσινγ τηε ρυλε ρ1 (απ−
πλιχαβλε το µεµβρανε (2; 1)), τηοσε τρυτη ασσιγνµεντσ ωηιχη βεγιν ωιτη 0
φροµ τηοσε τηατ δο νοτ βεγιν ωιτη 0. Τηυσ, τηε µεµβρανε λαβελεδ 2; 1 (ωιτη
πολαριζατιον 0) ωιλλ χονταιν τηε τρυτη ασσιγνµεντ 01 ανδ τηε ϖαριαβλεσ ξ1, ξ2,
ανδ :ξ1, ωηιλε µεµβρανε λαβελεδ (2; 2) ωιλλ χονταιν τηε ρεστ οφ τηε οβϕεχτσ
(ναµελψ, τηε τρυτη ασσιγνµεντσ 10 ανδ 11 πλυσ τηε ϖαριαβλε :ξ2).
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Ιν τηισ στεπ ωε σεπαρατε τηε σεχονδ µεµβρανε προδυχεδ ιν τηε πρεϖιουσ
στεπ ιντο τωο µεµβρανεσ: ονε (ωιτη πολαριζατιον 0) χονταινινγ τηε τρυτη−
ασσιγνµεντσ τηατ ηαϖε 0 ον τηε σεχονδ ποσιτιον (σο ονλψ 10) ανδ ϖαριαβλε
:ξ2, ανδ τηε οτηερ ονε χονταινινγ ονλψ τηε στρινγ 11. Ωε νοω µεργε τηε τωο
λαστ µεµβρανεσ ηαϖινγ πολαριζατιον 0 ((2; 1), ανδ (2; 2)), τηυσ χοµπλετινγ
τηε σεϖεντη στεπ οφ τηε χοµπυτατιον.

Ονε χαν νοτιχε τηατ τηε ανσωερ το ουρ παρτιχυλαρ προβλεµ �οατσ ιντο
τηε µεµβρανε λαβελεδ (3; 1) (προδυχεδ βψ τηε υνιον οφ µεµβρανεσ λαβελεδ
(2; 1) ανδ (2; 2)). Σο, νοω, ωε αρε ιν τηε σταγε οφ δετεχτινγ τηε ρεσυλτ οφ ουρ
προβλεµ.

Φορ δετεχτιον, ωε ωιλλ υσε τηε φολλοωινγ ρυλεσ:

ρ4 : [ α
κ
ι;ϕ ]

1
3;1 ! [ ]13;11

(ωηερε ακι;ϕ 2 φα
0
2;1; α

1
2;2; α

1
3;1; α

0
3;2γ ισ νον−δετερµινιστιχαλλψ χηοσεν),

ρ5 : [ ]
1
1;4[ ]

1
2;4 ! [ ]12;4,

ρ6 : [ 1]
0
0;0 ! [ ]10;0ψεσ.

Ιν τηε λαστ στεπ οφ τηε χοµπυτατιον, ωηιχη ισ δονε τηρουγη ρυλε ρ6, τηε
χορρεχτ ανσωερ ψεσ ισ σεντ το τηε ενϖιρονµεντ, µεανινγ τηατ ουρ προβλεµ
ηασ ατ λεαστ ονε σολυτιον.

Τηε εξαµπλε ωε χονσιδερεδ ηερε ηασ, ασ ωε ηαϖε σεεν, ατ λεαστ ονε σολυ−
τιον το τηε γιϖεν προβλεµ. Ιν τηε γενεραλ χασε, ιφ τηε τηερε ισ νο σολυτιον το
τηε γιϖεν προβλεµ, τηε σψστεµ ωιλλ εξπελ το τηε ενϖιρονµεντ τηε ανσωερ νο.

Τηε προβλεµ ωιτη τηισ σολυτιον ισ τηατ ωε �ρστ ηαϖε το προδυχε 2ν τρυτη
ασσιγνµεντσ φορ ϖαριαβλεσ. Ιν µεµβρανε χοµπυτινγ, τηισ χαν βε δονε ιν ϖαρ−
ιουσ ωαψσ �σεε, ε.γ., [16], [1], [15] �βψ υσινγ µεµβρανε διϖισιον, σεπαρατιον,
ετχ. Ηοωεϖερ, τηε ρεσπεχτιϖε τρυτη ασσιγνµεντσ αρε οβταινεδ ιν 2ν σεπαρατε
µεµβρανεσ. Βψ µεργινγ οπερατιονσ, ωε χουλδ πυτ τογετηερ τηεσε τρυτη ασ−
σιγνµεντσ ιν α σινγλε µεµβρανε, βυτ, ιν ορδερ νοτ το �µιξ�τηεµ, ωε ηαϖε
το ενχοδε τηεµ σεπαρατελψ. Τηισ, ηοωεϖερ, ασσυµεσ υσινγ αν εξπονεντιαλ
νυµβερ οφ οβϕεχτσ, ανδ τηυσ τηε σψστεµ ιτσελφ ηασ εξπονεντιαλ σιζε. Φορ τηε
µοµεντ, ωε δο νοτ κνοω ηοω το οϖερχοµε τηισ δι′ χυλτψ.
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7 Φιναλ Ρεµαρκσ

Ιν τηισ παπερ ωε ηαϖε ιντροδυχεδ α νεω ωαψ οφ σιµυλατινγ Βοολεαν γατεσ
ανδ χιρχυιτσ, ασ αν ανσωερ το α θυεστιον φορµυλατεδ ιν [6]: σιµυλατε Βοολεαν
χιρχυιτσ ωιτη Π σψστεµσ υσινγ τηε ινηιβιτινγ/δε−ινηιβιτινγ χοντρολλινγ µεχη−
ανισµ οφ χοµπυτατιον, ασ ιντροδυχεδ ανδ ινϖεστιγατεδ ιν [6, 7]. Τηισ ιδεα ισ
ϖερψ αττραχτιϖε βεχαυσε απαρτ φροµ υσινγ λεσσ βιολογιχαλ ρεσουρχεσ (ονλψ τωο
οβϕεχτσ ανδ τωο τψπεσ οφ ρυλεσ φορ τηε σιµυλατιον οφ Βοολεαν γατεσ) τηαν τηε
πρεϖιουσ σιµυλατιονσ, ωε αλσο προποσεδ α σψστεµ ωηιχη ηασ α σελφ−εµβεδδεδ
σψνχηρονιζατιον οφ τηε οβϕεχτσ ιν τηε χιρχυιτ ωιτηουτ ηαϖινγ το χοορδινατε
τηε χοµπυτατιον λικε ιν οτηερ σψστεµσ.

Ωε ηαϖε αλσο προποσεδ αν αππροαχη το σολϖινγ τηε ΣΑΤ προβλεµ σιµυλατ−
ινγ, ιν Π σψστεµσ ωιτη αχτιϖε µεµβρανεσ, τηε ωαψ τηισ προβλεµ ισ ε⁄εχτιϖελψ
σολϖεδ ιν λαβορατοριεσ υσινγ ∆ΝΑ στρανδσ. Τεχηνιχαλ δεταιλσ οφ τηισ προ−
ποσαλ στιλλ ρεµαιν το βε �ξεδ, βυτ ωε ηοπε τηατ τηισ ισ α στεπ αηεαδ ιν ουρ
ωαψ το τηε λαβορατορψ. Ιν αδδρεσσινγ τηε προβλεµ µεντιονεδ αβοϖε ωε ηαϖε
υσεδ πολαριζεδ/νον−πολαριζεδ Π σψστεµσ, ωηιλε µεµβρανεσ αρε χαπαβλε οφ
µεργε/σεπαρατε, χηανγινγ ορ νοτ−χηανγινγ τηειρ λαβελσ. Ωε φουνδ ϖερψ νατ−
υραλ το χοµπαρε (ανδ στυδψ τηε χοµπυτατιοναλ βριδγε βετωεεν τηε) τωο νο−
τιονσ φροµ Νατυραλ Χοµπυτινγ βοτη ηαϖινγ τηε τοολσ οφ µεργινγ/σεπαρατιον
αλρεαδψ δε�νεδ. Αχτυαλλψ, συχη αν αττεµπτ ωασ αλρεαδψ δονε ιν [11], βυτ
υσινγ δι⁄ερεντ προτοχολσ οφ ∆ΝΑ χοµπυτινγ ανδ δι⁄ερεντ οπερατιονσ ωιτη
µεµβρανεσ ιν Π σψστεµσ.

Ιν τηε ενδ ωε ινϖιτε τηε ρεαδερ το ινϖεστιγατε, υσινγ τηε νεω τοολσ
(υνιφορµλψ ωαψ οφ σολϖινγ ΣΑΤ, βυτ φολλοωινγ Λιπτον�σ αλγοριτηµ) πρεσεντεδ
αβοϖε, οτηερ ΝΠ−ηαρδ προβλεµσ, ορ το τρψ το σολϖε τηε προποσεδ προβλεµ
υσινγ Π σψστεµσ ωιτη δι⁄ερεντ φεατυρεσ.
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Abstract

We consider the modelling of the behaviour of membrane systems
using Petri nets. First, a systematic, structural, link is established be-
tween a basic class of membrane systems and Petri nets. To capture
the compartmentisation of membrane systems, localities are proposed
as an extension of Petri nets. This leads to a locally maximal concur-
rency semantics for Petri nets. We indicate how processes for these
nets could be defined which should be of use in order to describe what
is actually going on during a computation of a membrane system.

1 Introduction

In the past 7 years membrane systems, also known as P systems, have re-
ceived a lot of attention and in the process became a prominent new compu-
tational model [16, 17, 18, 24]. They are inspired by the compartmentisation
of living cells and its effect on their functioning. A key structural notion is
that of a membrane by which a system is divided into compartments where
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chemical reactions can take place. These reactions transform multisets of
objects present in the compartments into new objects, possibly transferring
objects to neighbouring compartments, including the environment. Conse-
quently, the behavioural aspects of membrane systems are based on sets of
reaction rules defined for each compartment. A distinguishing feature of
membrane systems is that the system is assumed to evolve in a synchronous
fashion, meaning that there is a global clock common for all the compart-
ments. Within each time unit, the system is transformed by the rules which
are applied in a maximally concurrent fashion (this means that no further
rules in any compartment could have been applied in the same time unit).
These transformations are applied starting from an initial distribution of
objects. Depending on the exact formalisation of the model, the notion of a
successful (or halting) computation is defined together with its output, e.g.,
the number of objects sent to the environment.

The above describes the functionality of the basic membrane system
model, according to [16, 18]. In addition, many different extensions and
modifications of that basic model have been proposed and studied, such as
priorities and catalysts. Moreover, those studies have been mostly focussed
on the computational power of the models considered, including various
aspects of complexity.

Given the existing body of results on the possible outcomes of com-
putations of membrane systems, we feel that we are now in a position to
also investigate and describe what is actually going on during a computa-
tion. The situation may be compared to that in the field of the semantics
of programming languages based on input-output relations where the op-
erational semantics was added to deal with the correctness of potentially
non-terminating and concurrent programs. In this paper we propose to
undertake this endeavour using the Petri net model (see, e.g., [20]). The
reason is that they have local transformation rules and support the mod-
elling of causality and concurrency in a direct and explicit way. In a nutshell,
a Petri net is a bipartite directed graph consisting of two kinds of nodes,
called places and transitions. Places together with their markings indicate
the local availability of resources and thus can be used to represent objects
in specific compartments, whereas transitions are actions which can occur
depending on local conditions related to the availability of resources and
thus can be used to represent reaction rules associated with specific com-
partments. When a transition occurs it consumes resources from its input
places and produces items in its output places thus mimicking the effect of
a reaction rule.

The basic idea of modelling a membrane system using a Petri net can be
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Figure 1: A membrane system (a), and the corresponding Petri net (b).

explained through an example shown in Figure 1(a). The system depicted
there consists of two nested membranes (the inner membrane m1 and the
outer membrane m2), two rules (rule r associated with the compartment c1
inside the inner membrane, and rule r′ associated with the compartment c2
surrounded by m2, i.e., in-between the two membranes), and three symbols
denoting molecules (a, b, and c). Initially, the compartment c1 contains two
copies of both a and b, and c2 contains two copies of b and a single copy of
c. To model this membrane system using a Petri net, we introduce a sepa-
rate place (x, j) for each kind of molecule x and compartment cj . As usual,
places are drawn as circles with the number of the currently associated re-
sources represented as tokens (small black dots). For each rule r associated
with a compartment ci we introduce a separate transition tri , drawn as a
rectangle. Transitions are connected to places by weighted directed arcs,
and if no weight is shown it is by default equal to 1. If the transformation
described by a rule r of compartment ci consumes k copies of molecule x
from compartment cj , then we introduce a k weighted arc from place (x, j)
to transition tri , and similarly for molecules produced by transformations.
Finally, assuming that initially compartment cj contained n copies of mole-
cule x, we introduce n tokens into place (x, j). The resulting Petri net is
depicted in Figure 1(b). As argued later on, Petri nets derived in this way
can be used to describe issues related to concurrency in the behaviour of the
original membrane systems.

Applying Petri nets to model membrane systems is by no means an
original idea. Since multiset calculus is basic for membrane systems and also
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for computing the token distribution in Petri nets [2], some connections have
already been established. Some authors have in fact already proposed to
interpret reaction rules of membrane systems using Petri net transitions, e.g.,
[4, 19]. Our aim is to demonstrate that a relationship between Petri nets and
membrane systems can be established at the system level. We achieve this
by defining a class of Petri nets suitable for the study of behavioural aspects
of membrane systems and other systems exhibiting a mix of synchronous
and asynchronous execution rules. This latter feature is motivated by the
observation that the assumed strict global synchronicity of the membrane
systems is not always reasonable from the biological point of view as already
observed in [16]. In fact, [8] proposes to drop this assumption completely
and considers fully asynchronous and sequential membrane systems; also the
membrane systems of [4] are sequential, whereas [3] advocates that reactions
are assigned their own execution times and uses a form of local synchronicity.

We intend to demonstrate that Petri nets obtained from membrane sys-
tems in the way described above provide a suitable model to capture and in-
vestigate the behavioural properties of membrane systems. In this sense the
paper is more directed towards the computations taking place in membrane
systems. After recalling the definition of membrane systems, we introduce
a general class of Petri nets which can be used to define their formal con-
currency semantics. This concurrency semantics will be built upon a well
established technique of unfolding Petri nets, leading to processes which for-
malise concurrent execution histories. The paper deliberately avoids going
into full technical details of the formal presentation, aiming instead at con-
veying the basic ideas of our proposal. Most of the formalities and proofs
are delegated to the companion paper [13].

In this paper, a multiset (over a set X) is a function m : X → N. By
N

X we denote the set of multisets over X. For two multisets m and m
′

over X, we denote m ≤ m
′ if m(x) ≤ m

′(x) for all x ∈ X. Moreover, a
subset of X may be viewed through its characteristic function as a multiset
over X, and for a multiset m we denote x ∈ m if m(x) ≥ 1. The sum of

two multisets m and m
′ over X is given by (m + m

′)(x)
df

= m(x) + m
′(x),

the difference by (m − m
′)(x)

df

= max{0,m(x) − m
′(x)}, as a total function

extending set difference. The multiplication of m by a natural number n is
given by (n · m)(x)

df

= n · m(x). Moreover, any finite sum m1 + · · · + mk will
also be denoted as

∑
i∈{1,...,k} mi.
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2 Basic Membrane Systems

For the purposes of this paper, it suffices to consider the most basic definition
of membrane systems [17, 18]. Throughout the paper a membrane system

(of degree m ≥ 1) is a construct

Π
df

= (V, µ, w0
1, . . . , w

0
m, R1, . . . , Rm)

where:

• V is a finite alphabet consisting of (names of) objects;

• µ is a membrane structure given by a rooted tree with m nodes, rep-
resenting the membranes, as illustrated in Figure 2 — without loss of
generality, we assume that the nodes are given as the integers 1, . . . ,m,
and (i, j) ∈ µ will mean that there is an edge from i (parent) to j

(child) in the tree of µ;

• each w0
i is a multiset of objects initially associated with membrane i;

• each Ri is a finite set of evolution rules r associated with membrane i,
of the form:

lhsr → rhsr

where lhsr — the left hand side of r — is a non-empty multiset over
V , and rhsr — the right hand side of r — is a non-empty multiset
over

V ∪ {aout | a ∈ V } ∪ {ainj
| a ∈ V and (i, j) ∈ µ} .

Symbols ainj
represent objects a that will be sent to a child node j and aout

stands for an a that will be sent out to the parent node. Without loss of
generality,1 we additionally assume that no evolution rule r associated with
the root of the membrane structure uses any aout in rhsr.

A membrane system Π as above evolves from configuration to configu-
ration as a consequence of the application of (multisets of) evolution rules

in each membrane. Formally, a configuration is a tuple C
df

= (w1, . . . , wm)
where each wi is a multiset of object names; we define a vector multi-rule
~R as an element of N

R1 × · · · × N
Rm . Given a vector multi-rule ~R =

(R̂1, . . . , R̂m), we use as additional notation lhsi =
∑

r∈Ri
R̂i(r) · lhs

r for

1Since the environment can always be modelled by adding a new root to the membrane

structure.
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Figure 2: A membrane structure (a); and the corresponding compartments
(b).

the multiset of all objects in the left hand sides of the rules in R̂i and, simi-
larly, rhsi =

∑
r∈Ri

R̂i(r) · rhs
r is the multiset of all — possibly indexed —

objects in the right hand sides.
Given two configurations, C = (w1, . . . , wm) and C ′ = (w′

1, . . . , w
′
m), C

can evolve into C ′ if there exists a vector multi-rule ~R = (R̂1, . . . , R̂m) such
that for every 1 ≤ i ≤ m, the following hold

(i) lhsi ≤ wi;

(ii) there is no rule r in Ri such that lhsr + lhsi ≤ wi; and

(iii) for each object a ∈ V ,

w′
i(a) = wi(a)−lhsi(a)+rhsi(a)+rhsparent(i)(aini

)+
∑

(i,j)∈µ

rhsj(aout) ,

where parent(i) is the father membrane of i unless i is the root in which
case parent(i) is undefined and rhsparent(i)(aini

) is omitted. Note that
any j in the last term must be a child membrane of i.

By (i), the configuration C has in each membrane i enough occurrences of
objects for the application of the multiset of evolution rules R̂i. Maximal
concurrency is captured by (ii) according to which in none of the membranes
an additional evolution rule can be applied. Observe that some of the R̂i’s
in ~R may be empty i.e., no evolution rules associated with the corresponding
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membranes i can be used. Finally, (iii) describes the effect of the application
of the rules in ~R.

By C
~R

=⇒ C ′ we denote that C evolves into C ′ due to the application of
~R. Note that the evolution of C is non-deterministic in the sense that there
may be different vector multi-rules applicable to C as described above. A
(finite) computation of Π is now a (finite) sequence of evolutions starting

from the initial configuration C0
df

= (w0
1, . . . , w

0
m).

3 Petri Nets

We first recall the key notions of the standard Petri net model. A PT-net

is a tuple N
df

= (P, T,W,M0) such that P and T are finite disjoint sets;
W : (T × P ) ∪ (P × T ) → N is a multiset; and M0 is a multiset of places.
The elements of P and T are respectively the places and transitions, W is
the weight function of N , and M0 is the initial marking. In diagrams, places
are drawn as circles, and transitions as rectangles. If W (x, y) ≥ 1 for some
(x, y) ∈ (T × P ) ∪ (P × T ), then (x, y) is an arc leading from x to y. As
usual, arcs are annotated with their weight if this is 2 or more. We assume
that, for every t ∈ T , there are places p and q such that W (p, t) ≥ 1 and
W (t, q) ≥ 1.

Places represent local states, while markings are global states of systems
represented by PT-nets. Transitions represent actions which may occur
at a given marking and then lead to a new marking (the weight function
specifies what resources are consumed and produced during the execution
of such actions).

Figure 3 shows a PT-net model of a simple one-producer / two-consumers
concurrent system, where the producer is represented by the initial token in
place p and the consumers by the two tokens in place r. Using transition
a, the producer repeatedly produces new items (tokens) and adds them to
place q (intuitively, a buffer between the producer and the two consumers)
from where they can be taken by one of the two consumers, and then used

by executing transition u. Rather than producing a new item, the producer
may at any time cancel the production cycle by executing transition c.

The pre- and post-multiset of a transition t ∈ T are multisets of places
given, for all p ∈ P , by:

preN (t)(p)
df

= W (p, t) and postN (t)(p)
df

= W (t, p) .
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Figure 3: PT-net of the one-producer / two-consumers system.

Both notations extend to multisets of transitions U :

preN (U)
df

=
∑

t∈U

U(t) · preN (t) and postN (U)
df

=
∑

t∈U

U(t) · postN (t) .

A step is a multiset of transitions, U : T → N. It is enabled at a marking
M if M ≥ preN (U). We denote this by M [U〉. Thus, in order for U to be
enabled at M , for each place p, the number of tokens in p under M should
at least be equal to the total number of tokens that are needed as an input
to U , respecting the weights of the input arcs. Moreover, U is a maximal

step at M if M [U〉 and there is no transition t such that M [U + {t}〉.
If U is enabled at M , then it can be executed leading to the marking

M ′ df

= M − preN (U) + postN (U). This means that the execution of U
‘consumes’ from each place p exactly W (p, t) tokens for each occurrence of a
transition t ∈ U that has p as an input place, and ‘produces’ in each place p
exactly W (t, p) tokens for each occurrence of a transition t ∈ U with p as an
output place. If the execution of U leads from M to M ′ we write M [U〉M ′.
Whenever U is a maximal step at M , we will also write M [U〉maxM

′.
A finite sequence σ = U1 . . . Un of non-empty steps is a step sequence

from the initial marking M0 if there are markings M1 . . .Mn of N satisfying
Mi−1[Ui〉Mi for every i ≤ n. Such a σ is also called a step sequence from
M0 to Mn, and Mn itself is called a reachable marking.

In the same way, we can define step sequences consisting of maximal
steps, and markings reachable through such step sequences. Together, they
define the maximal concurrency semantics of the PT-net N as considered,
for instance, in [5].

The example PT-net in Figure 3 admits an infinite number of step se-
quences. For example, σ = {a}{t, a}{u, t} models the following scenario:
(i) the producer produces an item which is then deposited into the buffer;
(ii) the producer produces another item and, at the same time, one of the
consumers takes the previously produced item from the buffer; and (iii) the
consumer who retrieved the first item produced uses it and, at the same
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time, the second consumer removes the second item produced from the
buffer. In Figure 4 we show how this scenario changes the current marking
(global state) of the PT-net. As far as the maximal concurrency semantics
is concerned, σ = {a}{t, a}{u, t} is not allowed: though the first two steps
executed are maximal, {u, t} is not since, for instance, the step {a, u, t} is
enabled after the execution of {a}{t, a}, and σ′ = {a}{t, a}{a, u, t} rather
than σ is part of the maximal concurrency semantics of the PT-net in Fig-
ure 3.
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Figure 4: Executing the PT-net according to {a}{t, a}{u, t}.

447



3.1 Petri Nets with Localities

In order to represent the compartmentisation of membrane systems we now
introduce a novel extension of the basic net model of PT-nets, by adding the
notion of located transitions and locally maximally concurrent executions of
co-located transitions. In the proposed way of specifying locality for the
transitions in a PT-net, each transition belongs to a fixed unique locality.
The exact mechanism for achieving this is to introduce a partition of the set
of all transitions, using a locality mapping L. Intuitively, two transitions for
which L returns the same value will be co-located.

A PT-net with localities (or PTL-net) is a tuple NL
df

= (P, T,W,M0,L),

where und(NL)
df

= (P, T,W,M0) is the underlying PT-net and L : T → N

is a location mapping for the transition set T . In the diagrams of PTL-
nets, transitions are shaded rectangles with the locality being shown in the
middle. Note that L is merely a labelling of transitions, it is not meant as
a renaming (as used later for occurrence nets).

The two execution semantics already defined for PT-nets carry over to
PTL-nets, after assuming that all the notations concerning the places and
transitions of a PTL-net are as in the underlying PT-net, together with the
notions of marking, (maximal) step and the result of executing a step.

3.2 Membrane Systems as Petri Nets

In this section, we make our proposal on how membrane systems can be
interpreted by Petri nets more precise. Given the definitions of membrane
systems and Petri nets with localities, the construction sketched in the in-
troduction can be implemented as follows.

Let Π = (V, µ, w0
1, . . . , w

0
m, R1, . . . , Rm) be a membrane system of degree

m. Then the corresponding PTL-net is NLΠ
df

= (P, T,W,M0,L) where the
various components are defined thus:

• P
df

= V × {1, . . . ,m};

• T
df

= T1 ∪ . . . ∪ Tm where each Ti contains a distinct transition tri for
every evolution rule r ∈ Ri;
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• for every place p = (a, j) ∈ P and every transition t = tri ∈ T ,

W (p, t)
df

=

{
lhsr(a) if i = j

0 otherwise

W (t, p)
df

=






rhsr(a) if i = j

rhsr(aout) if (j, i) ∈ µ

rhsr(ainj
) if (i, j) ∈ µ

0 otherwise

• for every place p = (a, j) ∈ P , its initial marking is M0(p)
df

= wj(a).

• for every transition t = tri ∈ T , its locality is L(t)
df

= i.

To capture the very tight correspondence between the membrane system
Π and the PTL-net NLΠ, we introduce a straightforward bijection between
configurations of Π and markings of NLΠ, based on the correspondence of
object locations and places.

Let C = (w1, . . . , wm) be a configuration of Π. Then the corresponding

marking φ(C) of NLΠ is given by φ(C)(a, i)
df

= wi(a), for every place (a, i) of
NLΠ. Similarly, for any vector multi-rule ~R = (R̂1, . . . , R̂m) of Π, we define

a multiset ψ(~R) of transitions of NLΠ such that ψ(~R)(tri )
df

= R̂i(r) for every
tri ∈ T . It is clear that φ is a bijection from the configurations of Π to the
markings of NLΠ, and that ψ is a bijection from vector multi-rules of Π to
steps of NLΠ.

It should be clear that not every PTL-net can be obtained from a mem-
brane system using the transformation described above. For example, in
any net NLΠ, two transitions sharing an input place will always have the
same locality assigned by L.

We now can formulate a fundamental property concerning the relation-
ship between the dynamics of the membrane system Π and that of the
corresponding PTL-net:

C
~R

=⇒ C ′ if and only if φ(C) [ψ(~R)〉max φ(C ′) .

Since the initial configuration of Π corresponds through φ to the initial
marking of NLΠ, the above immediately implies that the computations of Π
coincide with the maximal concurrency semantics of the PTL net NLΠ.

The reader might by now have observed that the membrane structure
of Π is used in the definitions of the static structure of the PTL-net NLΠ

(i.e., in the definitions of places, transitions and the weight function), but as
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far as maximal concurrency semantics is concerned, the locality information
for transitions in the form of the mapping L of NLΠ is not relevant (the
structure of Petri nets explicitly supports the locality aspects of the resources
consumed and produced by transitions). However, it allows us to define local
synchronicity presented next.

3.3 Locally Maximal Concurrency Semantics of PTL-Nets

Consider the PTL-model of the producer/consumer example as depicted in
Figure 5. It conveys, in particular, the information that transitions a and c

are assigned one locality, whereas transitions t and u are assigned another
locality. This reflects the view that the producer operates away from the
two consumers.

v p r

s

q
1

c

1a 2 t 2 u

Figure 5: PTL-net of the one-producer / two-consumers system.

To define a right semantical model reflecting this distribution of com-
puting agents, we need to change the enabling condition for steps. Now,
intuitively, only those steps are allowed to occur which are maximally con-
current within the localities given by L.

In a PTL-net NL = (P, T,W,M0,L), a step U : T → N is locally max-

enabled at a marking M if it is enabled at M in und(NL) and, in addition,
there is no transition t such that L(t) ∈ L(U) and U+{t} is still enabled at
M in und(NL). Thus a step which is locally max-enabled at a marking is
not necessarily a maximal step at that marking. The induced notions of a
locally maximal step sequence and marking reachability are then defined as
usual using the just defined notion of enabledness.

We now can look at the impact the various definitions of enabledness
have on the set of legal behaviours of a Petri net. Looking at the PT-net
N in Figure 3 and PTL-net NL in Figure 5, we can observe the follow-
ing. First of all, the step sequence {a}{t, a}{u, t}, which was possible for
N , is a legal behaviour of NL under the locally maximal concurrency se-
mantics as are many others, like {a}{a}{a} and {a}{a}{t, t}. (Recall here
that {a}{t, a}{u, t} was disallowed by the maximal concurrency semantics.)
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However, there are also step sequences of N which are not part of the locally
maximal concurrency semantics of NL; e.g., σ = {a}{t, a}{t} since after ex-
ecuting {a}{t, a} it is possible to execute step {u, t} which is strictly greater
than {t} and transitions t and u are co-located.

Coming back to the example shown in Figure 1(b), we have the fol-
lowing step sequences in the maximal concurrency semantics: the empty
sequence, {tr1, t

r
1, t

r′

2 } and {tr1, t
r
1, t

r′

2 }{t
r′

2 }. The locally maximal concurrency
semantics, on the other hand, yields several additional step sequences, like
{tr1, t

r
1}{t

r′

2 , t
r′

2 } and {tr
′

2 }{t
r
1, t

r
1}{t

r′

2 }. Note further that it does not allow
{tr1, t

r
1}{t

r′

2 } which, in turn, is allowed by the standard step sequence seman-
tics.

To summarise, PT-nets admit both standard and maximal concurrency
semantics, while for PTL-nets we have in addition locally maximal concur-
rency semantics. In particular, this means that we cannot identify the exact
semantical model just by looking at a net’s structure; we always need to
specify which execution semantics is being used.

4 Causality and Concurrency

All three variants of step sequence semantics of a Petri net considered in
this paper provide important insights into the concurrency aspects of the
underlying systems. They are, however, still sequential in nature in the
sense that steps occur ordered thus obscuring the true causal relationships
between the occurrences of transitions. On the other hand, information on
causal relationship is often of high importance for system analysis and/or
design. Petri nets can easily support a formal approach where this informa-
tion is readily available as was recognised a long time ago, see [15] where it
was proposed to unfold behaviours into structures allowing an explicit rep-
resentation of causality, conflict and concurrency. A well-established way of
developing such a semantics for the standard PT-nets is based on a class of
acyclic Petri nets, called occurrence nets [21]. What one essentially tries to
achieve is to trace the changes of markings due to transitions being executed
along some legal behaviour of the original PT-net, and in doing so record
which resources were consumed and produced.

In this section, we first explain the main ideas behind the causality se-
mantics based on standard step sequences of PT-nets. After that, we show
how this approach could be adapted to work for the locally maximal concur-
rency semantics of PTL-nets. Note that the maximal concurrency semantics
of a PT-net coincides with the locally maximal concurrency semantics of this
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Figure 6: Constructing an occurrence net corresponding to {a}{t, a}{u, t}.

PT-net after extending it to a PTL-net with all transitions mapped to the
same locality; hence we will only consider explicitly the locally maximal
concurrency semantics.

4.1 Causal Behaviours of PT-Nets

Looking at the sequence σ = {a}{t, a}{u, t} of executions in Figure 4, it
is not immediate that transition u could have occurred before the second
occurrence of transition a or, in other words, that the former is not causally
dependent on the latter.

452



Figure 6 illustrates the idea in which we unfold the scenario represented
by σ. The initial stage shows just the initial marking which includes two
separate (labelled) conditions (this is how places are called in occurrence
nets) to represent the two initial tokens in place r. Executing step {a} con-
sumes the p-condition, creates an a-event (this is how transitions are called
in occurrence nets), as well as two new conditions: a p-condition and a q-
condition. An important point is to notice that we create a fresh p-condition
rather than a loop back to the initial one since we want to distinguish be-
tween different occurrences of the same token; as a result the occurrence
net being constructed will be an acyclic graph. Another important point is
that the environment of the generated a-event corresponds exactly to the
environment of transition a; namely, it consumes a p-token and creates a
p-token and a q-token. After that, executing step {t, a} consists in consum-
ing three conditions and creating two events and three fresh conditions, and
similarly for the last step {u, t}. And, as a final result, we obtain an acyclic
net labelled with places and transitions of the original PT-net; it is called a
process of the original PT-net. The process net has a default initial marking
consisting of a token in each of the conditions without an incoming arc.

It is now possible to look both at the structure of the process net and
the executions which are possible from its default initial marking, making
some important observations relating to:

• Causality. The causality relationships among the executed transitions
can be read-off by following directed paths between the events; for
example in Figure 6, the lower t-event is caused by both a-events,
while the upper one is caused only by the leftmost a-event.

• Concurrency. Events for which there is no directed path from one to
another can be thought of as concurrent.

• Reachability. Any maximal set of conditions for which there is no
directed path from one condition to another corresponds to a reachable
marking of the original PT-net.

• Representation. The step sequence on the basis of which the process
was created can be executed from the initial default marking in the
occurrence net. So the original behaviour has been retained. In Fig-
ure 6, there are 13 different step sequences generated by the process
net defined by σ = {a}{t, a}{u, t}, including σ itself.

• Soundness. Any step sequence which can be executed from the default
initial marking to the default final marking (consisting of tokens placed
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in each of the conditions without an outgoing arc) of the process net
is also a legal step sequence of the original PT-net. Processes provide
a highly compressed representation of step sequence behaviours of the
original PT-net (this feature has been exploited to a significant degree
in the development of efficient model checking algorithms for PT-nets).

The above advantages of the process nets of the standard PT-nets lead
us to consider a similar treatment for the PTL-net model and their locally
maximal concurrency semantics.

4.2 Causal Behaviours of PTL-Nets

As a first attempt, we simply adopt the unfolding strategy as in the PT-net
case. We only ensure that the step sequence consists of (locally) maximal
steps. Moreover, we preserve the localities of the transitions in the events
created while constructing the occurrence net. Figure 7 shows the result for
the PTL-net of Figure 5 and the step sequence {a}{t, a} which is allowed
in the maximal and thus also in the locally maximal concurrency semantics
(both the occurrence net and its default initial marking are depicted). Al-
though this is straightforward, we still need an argument that the resulting
process is what one would want to take for further analyses. In particular,
one would want to retain the soundness of the previous construction. In
the case of our example, we can execute the occurrence net and conclude
that under the maximal rule it admits the original sequence, whereas un-
der the locally maximal rule it admits two more step sequences, {a}{a}{t}
and {a}{t}{a}. And, clearly, both are legal step sequences of the original
PTL-net in the locally maximal concurrency semantics.
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Figure 7: Process net corresponding to the step sequence {a}{t, a} (a); and
its default initial marking (b).

In general, however, it would be too hasty to accept the standard un-
folding routine as satisfactory. Consider, for example, the PTL-net in Fig-
ure 8(a) and its step sequence {t, u, v}{w, z} consisting of locally maximal

454



steps. Proceeding as in the previous case, we obtain an occurrence net shown
in Figure 8(b). And the problem is that it has an execution from the de-
fault initial marking (using only locally maximal steps) which corresponds
to {u, v}{t, z}{w}. This step sequence, however, is not a locally maximal
step sequence of the original PTL-net as in the second step it is possible to
add transition x which is co-located with transition z.
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Figure 8: PTL-net (a); an occurrence net constructed from step sequence
{t, u, v}{w, z} (b); and a barbed process (c).

An intuitive reason why the standard construction fails to work for the
PTL-net in Figure 8(a) is that such an unfolding ‘forgets’ that transition
x was enabled at a stage where transition w was selected. Then, delaying
the execution of the w-event, creates a situation where the executed step
(though locally maximal within the occurrence net since the knowledge of
the enabledness of x is lost) does not correspond to a locally maximal step
within the PTL-net.

Our approach to cope with this problem in [13] is to equip occurrence nets
generated by PTL-nets with additional barb-events, represented by darkly
shaded rectangles. Barb-events are not labelled with transition names and
are not meant to be executed; rather, they are used in the calculation of
the enabled sets of events. Such occurrence nets are called barbed processes.
Rather than providing a full formal definition of how barb-events are added
during the unfolding procedure, which we give in the companion paper [13],
we only mention here that it is based on checking that transitions have not
been included in the executed scenario since another co-located transition
was selected. Figure 8(c) illustrates the modified construction for the net in
Figure 8(a,b).

After executing {u, v}, it is now impossible to select {t, z} since there
is a record in the form of the barb-event that such a step would not be
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maximal in the locality to which transition {z} belongs. The only way of
continuing is to execute {t} and after that {z, w}, generating a legal step
sequence {u, v}{t}{z, w}.

5 Summary and Conclusions

In this paper we have proposed an approach to the modelling of the be-
haviour of membrane systems through a class of Petri nets with localities
(PTL-nets).

We gave first a formal translation for a basic class of membrane systems,
and argued that the structure of the (maximally concurrent) computations
of such membrane systems is faithfully reflected by the maximal concurrency
semantics of the corresponding PTL-nets. This corresponds to the situation
whereby all the rules are governed by a single global clock which corresponds
to the case of maximally concurrent executions, as investigated in [5]. Hence
the results on the reachability of certain markings (or, equivalently, config-
urations in membrane systems) developed there could form the basis of an
investigation, e.g., whether a particular combination of molecules in certain
compartments can happen in the legal evolutions of a membrane system.

After that we moved to a less centralised view of concurrent executions,
as already advocated e.g., in [8], and defined a locally maximal concurrency
semantics for PTL-nets. However, in case of individual localities for all
transitions, we are not exactly dealing with the asynchronous or sequen-
tial systems, proposed by [8]. Since we maintain the requirement of locally
maximal concurrency executions, the resulting systems exhibit maximal au-

toconcurrency.
In the model of PTL-nets there are no additional requirements on the

relationship between transitions and their localities; in particular, as al-
ready mentioned, transitions with shared input places do not have to be
co-located. Moreover, the flow of resources among the localities does not
necessarily follow a tree-like structure. In fact, PTL-nets with their lo-
cally maximal concurrency semantics constitute a very general framework
in which membrane systems and even conglomerates of membrane systems
(organisms) can be expressed and studied.

An important feature characterising the proposed basic PTL-net model
is its robustness, in the sense of being easily extendable to handle salient
features of more sophisticated membrane systems. Examples of such fea-
tures are: (i) priorities among rules which can be dealt with using Petri
nets with priorities, e.g., as in [1]; (ii) catalysts governing the enabling of
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the reaction rules purely by their presence which can be dealt with using
Petri nets with read arcs, e.g., as in [23]; (iii) substances forbidding certain
reactions which can be dealt with using Petri nets with inhibitor arcs, e.g.,
as in [12]; and (iv) dissolution of membranes which can be dealt with us-
ing Petri nets with transfer arcs; e.g., as in [22, 6]. We could also consider
membrane systems with rules having variable discrete durations, by suitably
exploiting the locally maximal concurrency semantics of PTL-nets. Further
investigation is also needed into the relationship between various P systems
and a wide variety of restricted/extended Petri nets, such as [9, 10].

We finally outlined how a causality based semantics of PTL-nets could be
defined and used to analyse the intricate details of concurrent computations
of membrane systems. The proposed semantics is based on the unfolding
of PTL-nets with the novel feature of barb-events needed to reflect choices
in the locally maximal executions. Among the potential benefits of the
proposed unfolding-based semantics is the efficient model checking approach
to the verification of properties of concurrent systems modelled as Petri
nets [7, 14, 11].

Summarising, we have developed a new systematic link between Petri
nets and membrane systems which (hopefully) is useful for both areas. We
see this formalisation only as a beginning of the research into the represen-
tation of the behaviour of membrane systems through concurrent processes.

Clearly, one could simply use the basic model of PT-nets and simulate
by ‘brute force’ the behaviour of membrane systems. In general, however, a
biologist’s interest will be in how a system functions and not just in what is
delivered at the end. From the modelling point of view it is therefore more
convenient to include localities as a direct interpretation of ‘where is what’.
This also provides the possibility to introduce a notion of local synchronicity
as opposed to a global clock governing the evolution of a system. The process
semantics of PT-nets provides an additional formal tool to study how a
system functions rather than what it computes. Whereas step sequences
can be viewed as ordered by a clock, processes can be used to represent
causalities. Moreover using (infinite) processes, also ongoing (potentially
infinite) system behaviour can be investigated, which is also interesting from
a biological point of view.

For PT-nets the notion of locality inspired by membrane systems is a
new interesting feature. The process semantics for PTL-nets working under
the (locally) maximal concurrency semantics still has to be developed. In
this paper we have briefly indicated how the technical problems could be
solved. In addition, a proper notion of causality (order relation) based on
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processes (see the semantical scheme of [12]) and relevant for the biologically
motivated membrane systems has to be identified as well.
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Abstract

In this paper an interpretation of Păun’s systems in the area of
accounting is described. It is shown that some special P-systems may
be models for well known fundamental notions of accounting theory.

1 Introduction

Păun’s systems may be seen as (sets of) trees with vertices in a given set
V labelled by pairs of the form (m, R) where m : A →Nat is a multiset
over a given set A and R is a set of rules. These rules describe the way of
transformation of multisets assigned to the vertices of the tree and the tree

itself. Interpreting the tree as the infrastructure of a dynamic system, the
multisets as the resources of it and the rules as a description of the dynamics
of the system one can say that the rules may change the resources and

the infrastructure of the system. The set Rules(A, V ) of rules over A and
V consists of structure preserving rules describing the production and the
transfer of some objects (the resources) and two kinds of rules (dissolving-
and splitting-rules) changing the structure (the tree). The evolution of such
a system may be seen as a partially ordered multiset1 of occurrences of the
rules. Details can be found e.g. in [2].

1In the original definition of P-systems a region may contain not a multiset, but a set

of rules. However in the real world of existing economic systems the economic entities
often have at their disposal many identical procedures (e.g. many identical machines) and
in this paper we can’t ignore this fact.
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2 A Model of Accounting System

Economic entities are set apart from the environment by some abstract
conditions; the so called ”balance equation” being expressions of the form

∑

p∈assetsParts(A)

value(p) =
∑

s∈FinSources(A)

value(s)

saying that ”the (sum of) assets equals the (sum of) liabilities”. Balance
equations may be added and multiplied by numbers (e.g. by any denom-
ination of a currency). By an economic entity we mean any pair of the
form (E, R) with E being a balance equation and R being a nonvoid set of
(parametrized) procedures. It is a counterpart of the notion of a region in
a Păun’s system. The balance equation corresponds to the contents of the
region (the left side of the equation) and membrane (the equality itself).
We also have an additional information about ”the origin” of the contents
of the region (the right side of the equation). The set R of procedures cor-
responds exactly to the set of rules of the region. The tree-ordering2 of the
regions corresponds to the ”to be a part of” relation and is determined by
the standard condition

(E1, R1) � (E2, R2) ⇔ ∃E3
E2 = E1 + E3

The economic processes compared e.g. with computations in a computer are
very ”slow” and one can define a kind of ”simultaneousness”. This is not a
”true” equivalence but in every day life one can treat as simultaneous events
which occur on the same day, week or even year and assign to every event a
moment in time. Such a function called a registration has to be an injection
Accounting systems describe all events always by some numbers understood
as a common measure (money) for all goods transferred in the system. This
measure assigns to any multiset v : sorts of goods → numbers a number
value(v). By an account one can understand any named pair of the form
acc = (w1, w2) with w1 and w2 being lists called debt and credit over an ”al-
phabet” A consisting of sequences of the form a=(description( a), value( a)).
The elements of the set A are interpreted as multisets of goods labelled by
their ”prices”. The form of the first part of such a pair, i.e. the descrip-
tion-part is fixed by the appropriate legal regulations of a state, the second
part of such a ”letter” is defined by the market. Now by a transaction we
mean any sequence t = (r1, ..., rm; r1, ..., rn) of pairs of the form (a, acc)

2This order is a tree because the balance equations may be added iff they concern
disjoint sets of goods.
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with a ∈ A and acc being the name of an account. We identify the eco-
nomic events with their registration and assume that any economic event
has to be recorded on at least two accounts on opposite sides of them. If
for i ≦ m, j ≦ m we have ri = (ai, acci) and rj = (aj , accj) then we record
the transaction t = (r1, ...rm; r1, ..., rn) on the debt-sides of accounts acc1,

.., accm and on the credit-sides of the accounts acc1, .., accn. Every regis-
tration of a letter ai (aj) on the debt (credit) side of the account acci (accj)
determines a registration-time of this transaction on the account acci(accj).
To every transaction we associate a sequence t(r1), ..., t(rm), t(r1), ..., t(rn)
of the moments of registrations of the transaction t = (r1, .., rm; r1, ..., rn)
on the accounts acc1, ..., accm, acc1, ..., accn. Such transactions correspond
to the so called antiport transport rules which are the only rules in a Păun’s
system being a model of an accounting system.

By an accounting system one can understand any description of a ho-
momorphism of production, delivering and receiving goods (we call all such
processes performance processes) processes into economic ones. That only
means that some, ”noneconomic” aspects of performance have to be forgot-
ten. The economic processes are concurrent that means some events may be
incomparable. Unfortunately the fundamental assumption of any account-
ing system is an assigning to every economic event the unique period of
time in which this event has occurred. These periods are linearly ordered
isomorphic to the natural numbers. The equivalence classes of the kernel of
such an assigning are called simultaneous events. The strict linear ordering
of these events on both (debit and credit) sides of an account is connected
with the linear way of registration and has nothing in common with order
of appearance of those ”simultaneous” events. This linear extension may be
carried out in many ways, and in general there exists no widely accepted
method of doing it. In some situations the existence of such a method may
be of great importance3. The whole description of performance processes is
a composition of the forgetting-homomorphism mentioned above and the ex-
tension of the identity on the set of simultaneous events to a linear ordering.
The first part of this composition is precisely described by the correspond-
ing law-regulation, the second one creates sometimes possibilities of corrupt
practices4.

3For example the operation of remittance into an account and the operation of with-
drawing money from this account may be done on the same day. So in the sense of the
”same-day-equivalence” they are simultaneous. However if the account was empty the
remittance should be done as the first operation.

4Let us note that the same two events α and β may occur on an account, say A, in the
order ”first α next β and on another account, say B, as ”first β then α”. This property
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3 Concluding Remarks

The classic, time-free membrane systems are good tools for the modelling of
causality and conflict relations in various hierarchical systems. Hierarchical
systems in which a time registration is needed can be seen as aggregates con-
taining Păun’s systems, a kind of (at least partially ordered) time and some
rules of event-registration. Accounting systems satisfy these requirements
because the registration of economic events is relatively precise described by
various law regulations. One can therefore anticipate that this fact serves a
motive for a developing of the timed membrane systems and, on the other
hand, timed membrane systems become an inspiration for a formal and rel-
atively easy description of many accounting issues .
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Abstract

We propose a quantum version of P systems with unit rules and
energy assigned to membranes. Differently from the classical version,
the new quantum P systems do not need to use priorities over rules to
be computationally complete.

We also propose a quantum version of register machines as a tool
to study the computational power of quantum models of computation.

1 Introduction

P systems (also called membrane systems) have been introduced in [21]
as a new class of distributed and parallel computing devices, inspired by
the structure and functioning of living cells. The basic model consists of
a hierarchical structure composed by several membranes, embedded into a
main membrane called the skin. Membranes divide the Euclidean space into
regions, that contain some objects (represented by symbols of an alphabet)
and evolution rules. Using these rules, the objects may evolve and/or move
from a region to a neighboring one. A computation starts from an initial
configuration of the system and terminates when no evolution rule can be
applied. Usually, the result of a computation is the multiset of objects
contained in an output membrane or emitted from the skin of the system.

Recently, the P systems community has shown some interest in the search
for quantum P systems. In this paper, starting from the ideas exposed
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in [17], we propose a quantum version of P systems with unit rules and
energy assigned to membranes which have recently appeared in the literature
[10]. The proposed quantum P systems are sequential; moreover, at every
computation step only one rule can be applied (and hence they are in some
sense deterministic). Differently from the classical version, the amount of
energy assigned to a membrane is not a property of the membrane itself, but
is instead represented by the energy level of a quantum harmonic oscillator
which is contained in the region enclosed by the membrane. Another notable
difference between the classical and the quantum version of our P systems
is that in the quantum version only one rule is assigned to each membrane.
As a consequence, we obtain computational completeness without the need
to assign priorities to rules, as it is done in the classical case.

In what follows we assume the reader is already familiar with the basic
notions and the terminology underlying P systems. For a systematic intro-
duction, we refer the reader to [22]. The latest information about P systems
can be found in [25].

This is by no means the first time that energy is considered in P systems.
We recall in particular [1, 9, 24, 14, 18, 19, 17].

The paper is organized as follows. In section 2 some preliminaries are
given: in particular, we recall register machines (section 2.1), classical P sys-
tems with unit rules and energy assigned to membranes [10], together with
their computational capabilities (section 2.2), and some notions of quantum
computing (section 2.3). In section 3 we define the quantum version of such
P systems, and in section 4 we establish their computational completeness.
In section 5 we introduce a quantum version of register machines, as a tool
to study present and future quantum computational models. Conclusions
are given in section 6.

2 Preliminaries

2.1 Register Machines

A deterministic n–register machine is a construct M = (n, P, l0, lh), where n
is the number of registers, P is a finite set of instructions injectively labelled
with a given set lab(M), l0 is the label of the first instruction to be executed,
and lh is the label of the last instruction of P . Registers contain non-
negative integer values. Without loss of generality, we can assume lab(M) =
{1, 2, . . . ,m}, l0 = 1 and lh = m. The instructions of P have the following
forms:

466



• j : (INC(r), k), with j, k ∈ lab(M)

This instruction increments the value contained in register r, and then
jumps to instruction k.

• j : (DEC(r), k, l), with j, k, l ∈ lab(M)

If the value contained in register r is positive then decrement it and
jump to instruction k. If the value of r is zero then jump to instruction
l (without altering the contents of the register).

• m : Halt

Stop the machine. Note that this instruction can only be assigned to
the final label m.

Register machines provide a simple universal computational model. In-
deed, the results proved in [11] (based on the results established in [20]) as
well as in [12] and [13] immediately lead to the following proposition.

Proposition 1. For any partial recursive function f : Nα → Nβ there
exists a deterministic (max{α, β} + 2)–register machine M computing f in
such a way that, when starting with (n1, . . . , nα) ∈ Nα in registers 1 to α,
M has computed f(n1, . . . , nα) = (r1, . . . , rβ) if it halts in the final label lh
with registers 1 to β containing r1 to rβ, and all other registers being empty;
if the final label cannot be reached, then f(n1, . . . , nα) remains undefined.

2.2 P Systems with Unit Rules and Energy Assigned to

Membranes

A P system with unit rules and energy assigned to membranes [10] of degree
d+ 1 is a construct Π of the form:

Π = (A,µ, e0, . . . , ed, w0, . . . , wd, R0, . . . , Rd)

where:

• A is an alphabet of objects;

• µ is a membrane structure, with the membranes labelled by numbers
0, . . . , d in a one-to-one manner;

• e0, . . . , ed are the initial energy values assigned to the membranes
0, . . . , d. In what follows we assume that e0, . . . , ed are non-negative
integers;
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• w0, . . . , wd are multisets over A associated with the regions 0, . . . , d of
µ;

• R0, . . . , Rd are finite sets of unit rules associated with the membranes
0, . . . , d. Each rule has the form (α : a,∆e, b), where α ∈ {in, out},
a, b ∈ A, and |∆e| is the amount of energy that — for ∆e ≥ 0 — is
added to or — for ∆e < 0 — is subtracted from ei (the energy assigned
to membrane i) by the application of the rule.

By writing (αi : a,∆e, b) instead of (α : a,∆e, b) ∈ Ri, we can specify
only one set of rules R with

R = {(αi : a,∆e, b) : (α : a,∆e, b) ∈ Ri, 0 ≤ i ≤ d}

The initial configuration of Π consists of e0, . . . , ed and w0, . . . , wd. The
transition from a configuration to another one is performed by non-determi-
nistically choosing one rule from some Ri and applying it (observe that here
we consider a sequential model of applying the rules instead of choosing rules
in a maximally parallel way, as it is often required in P systems). Applying
(ini : a,∆e, b) means that an object a (being in the membrane immediately
outside of i) is changed into b while entering membrane i, thereby changing
the energy value ei of membrane i by ∆e. On the other hand, the application
of a rule (outi : a,∆e, b) changes object a into b while leaving membrane i,
and changes the energy value ei by ∆e. The rules can be applied only if
the amount ei of energy assigned to membrane i fulfills the requirement
ei + ∆e ≥ 0. Moreover, we use some sort of local priorities: if there are two
or more applicable rules in membrane i, then one of the rules with max |∆e|
has to be used.

A sequence of transitions is called a computation; it is successful if and
only if it halts. The result of a successful computation is considered to be the
distribution of energies among the membranes (a non-halting computation
does not produce a result). If we consider the energy distribution of the
membrane structure as the input to be analysed, we obtain a model for
accepting sets of (vectors of) non-negative integers.

The following result, proved in [10], establishes computational complete-
ness for this model of P systems.

Proposition 2. Every partial recursive function f : Nα → Nβ can be
computed by a P system with unit rules and energy assigned to membranes
with (at most) max{α, β} + 3 membranes.
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It is interesting to note that the proof of this proposition is obtained by
simulating register machines. In the simulation, a P system is defined which
contains one subsystem for each register of the simulated machine. The
contents of the register is expressed as the energy value ei assigned to the i-
th subsystem. A single object is present in the system at every computation
step, which stores the label of the instruction of P currently simulated.
Increment instructions are simulated in two steps by using the rules (ini :
pj , 1, p̃j) and (outi : p̃j , 0, pk). Decrement instructions are also simulated
in two steps, by using the rules (ini : pj , 0, p̃j) and (outi : p̃j ,−1, pk) or
(outi : p̃j , 0, pl). The use of priorities associated to these last rules is crucial
to correctly simulate a decrement instruction. For the details of the proof
we refer the reader to [10].

On the other hand, by omitting the priority feature we do not get sys-
tems with universal computational power. Precisely, in [10] it is proved that
P systems with unit rules and energy assigned to membranes without pri-
orities and with an arbitrary number of membranes characterize the family
PsMAT λ of Parikh sets generated by context–free matrix grammars (with
λ-rules).

2.3 Quantum Computers

From an abstract point of view, a quantum computer can be considered as
made up of interacting parts. The elementary units (memory cells) that
compose these parts are two–levels quantum systems called qubits. A qubit
is typically implemented using the energy levels of a two–levels atom, or the
two spin states of a spin–1

2
atomic nucleus, or a polarization photon. The

mathematical description — independent of the practical realization — of a
single qubit is based on the two–dimensional complex Hilbert space C

2. The
boolean truth values 0 and 1 are represented in this framework by the unit
vectors of the canonical orthonormal basis, called the computational basis
of C

2:

|0〉 =

[
1
0

]
|1〉 =

[
0
1

]

Qubits are thus the quantum extension of the classical notion of bit, but
whereas bits can only take two different values, 0 and 1, qubits are not
confined to their two basis (also pure) states, |0〉 and |1〉, but can also
exist in states which are coherent superpositions such as ψ = c0 |0〉 + c1 |1〉,
where c0 and c1 are complex numbers satisfying the condition |c0|2 + |c1|2 =
1. Performing a measurement of the state alters it. Indeed, performing
a measurement on a qubit in the above superposition will return 0 with
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probability |c0|2 and 1 with probability |c1|2; the state of the qubit after the
measurement (post–measurement state) will be |0〉 or |1〉, depending on the
outcome.

A quantum register of size n (also called an n–register) is mathematically
described by the Hilbert space ⊗n

C
2 = C

2 ⊗ . . .⊗ C
2

︸ ︷︷ ︸
n times

, representing a set of

n qubits labelled by the index i ∈ {1, . . . , n}. An n–configuration (also
pattern) is a vector |x1〉⊗ . . .⊗|xn〉 ∈ ⊗n

C
2, usually written as |x1, . . . , xn〉,

considered as a quantum realization of the boolean tuple (x1, . . . , xn). Let us
recall that the dimension of ⊗n

C
2 is 2n and that {|x1, . . . , xn〉 : xi ∈ {0, 1}}

is an orthonormal basis of this space called the n–register computational
basis.

Computations are performed as follows. Each qubit of a given n–register
is prepared in some particular pure state (|0〉 or |1〉) in order to realize
the required n–configuration |x1, . . . , xn〉, quantum realization of an in-
put boolean tuple of length n. Then, a linear operator G : ⊗n

C
2 →

⊗n
C

2 is applied to the n–register. The application of G has the effect
of transforming the n–configuration |x1, . . . , xn〉 into a new n–configuration
G(|x1, . . . , xn〉) = |y1, . . . , yn〉, which is the quantum realization of the out-
put tuple of the computer. We interpret such modification as a computation
step performed by the quantum computer. The action of the operator G
on a superposition Φ =

∑
ci1...in |xi1 , . . . , xin〉, expressed as a linear com-

bination of the elements of the n–register basis, is obtained by linearity:
G(Φ) =

∑
ci1...inG(|xi1 , . . . , xin〉). We recall that linear operators which act

on n–registers can be represented as order 2n square matrices of complex
entries. Usually (but not in this paper) such operators, as well as the cor-
responding matrices, are required to be unitary. In particular, this implies
that the implemented operations are logically reversible (an operation is
logically reversible if its inputs can always be deduced from its outputs).

All these notions can be easily extended to quantum systems which have
d > 2 pure states. In this setting, the d–valued versions of qubits are
usually called qudits [15]. As it happens with qubits, a qudit is typically
implemented using the energy levels of an atom or a nuclear spin. The
mathematical description — independent of the practical realization — of a
single qudit is based on the d–dimensional complex Hilbert space C

d. In par-

ticular, the pure states |0〉 ,
∣∣∣ 1

d−1

〉
,
∣∣∣ 2

d−1

〉
, . . . ,

∣∣∣d−2

d−1

〉
, |1〉 are represented by

the unit vectors of the canonical orthonormal basis, called the computational
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basis of C
d:

|0〉 =




1
0
...
0
0



,

∣∣∣∣
1

d− 1

〉
=




0
1
...
0
0



, · · · ,

∣∣∣∣
d− 2

d− 1

〉
=




0
0
...
1
0



, |1〉 =




0
0
...
0
1




As before, a quantum register of size n can be defined as a collection
of n qudits. It is mathematically described by the Hilbert space ⊗n

C
d.

An n–configuration is now a vector |x1〉 ⊗ . . . ⊗ |xn〉 ∈ ⊗n
C

d, simply writ-

ten as |x1, . . . , xn〉, for xi running on Ld =
{

0, 1

d−1
, 2

d−1
, . . . , d−2

d−1
, 1

}
. An

n–configuration can be viewed as the quantum realization of the “classi-
cal” tuple (x1, . . . , xn) ∈ Ln

d . The dimension of ⊗n
C

d is dn and the set
{|x1, . . . , xn〉 : xi ∈ Ld} of all n–configurations is an orthonormal basis of
this space, called the n–register computational basis. Notice that the set
Ld can also be interpreted as a set of truth values, where 0 denotes fal-
sity, 1 denotes truth and the other elements indicate different degrees of
indefiniteness.

Let us now consider the set Ed =
{
ε0, ε 1

d−1

, ε 2

d−1

, . . . , ε d−2

d−1

, ε1

}
⊆ R of

real values; we can think to such quantities as energy values. To each element
v ∈ Ld (and hence to each object |v〉 ∈ A) we associate the energy level εv;
moreover, let us assume that the values of Ed are all positive, equispaced,
and ordered according to the corresponding objects: 0 < ε0 < ε 1

d−1

< · · · <
ε d−2

d−1

< ε1. If we denote by ∆ε the gap between two adjacent energy levels

then the following linear relation holds:

εk = ε0 + ∆ε (d− 1) k ∀ k ∈ Ld (1)

Notice that it is not required that ε0 = ∆ε. As explained in [17], the values
εk can be thought of as the energy eigenvalues of the infinite dimensional
quantum harmonic oscillator truncated at the (d − 1)-th excited level (see
Figure 1),

whose Hamiltonian on C
d is:

H =




ε0 0 . . . 0
0 ε0 + ∆ε . . . 0
...

...
. . .

...
0 0 . . . ε0 + (d− 1)∆ε


 (2)
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Figure 1: Energy levels of the infinite dimensional (on the left) and of the
truncated (on the right) quantum harmonic oscillator

The unit vector |H = εk〉 =
∣∣∣ k
d−1

〉
, for k ∈ {0, 1, . . . , d − 1}, is the

eigenvector of the state of energy ε0+k∆ε. To modify the state of a qudit we
can use creation and annihilation operators on the Hilbert space C

d, which
are defined respectively as:

a† =




0 0 · · · 0 0
1 0 · · · 0 0

0
√

2 · · · 0 0
...

...
. . .

...
...

0 0 · · ·
√
d− 1 0




a =




0 1 0 · · · 0

0 0
√

2 · · · 0
...

...
...

. . .
...

0 0 0 · · ·
√
d− 1

0 0 0 · · · 0




It is easily verified that the action of a† on the vectors of the canonical
orthonormal basis of C

d is the following:

a†
∣∣∣∣
k

d− 1

〉
=

√
k + 1

∣∣∣∣
k + 1

d− 1

〉
for k ∈ {0, 1, . . . , d− 2}

a† |1〉 = 0

whereas the action of a is:

a

∣∣∣∣
k

d− 1

〉
=

√
k

∣∣∣∣
k − 1

d− 1

〉
for k ∈ {1, 2, . . . , d− 1}

a |0〉 = 0
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Using a† and a we can also introduce the following operators:

N = a†a =




0 0 0 · · · 0
0 1 0 · · · 0
0 0 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · d− 1




aa† =




1 0 · · · 0 0
0 2 · · · 0 0
...

...
. . .

...
...

0 0 · · · d− 1 0
0 0 · · · 0 0




The eigenvalues of the self–adjoint operator N are 0, 1, 2, . . . , d− 1, and the

eigenvector corresponding to the generic eigenvalue k is |N = k〉 =
∣∣∣ k
d−1

〉
.

This corresponds to the notation adopted in [15], where the qudit base states
are denoted by |0〉 , |1〉 , . . . , |d− 1〉, and it is assumed that a qudit can be in
a superposition of the d base states:

c0 |0〉 + c1 |1〉 + . . .+ cd−1 |d− 1〉
with ci ∈ C for i ∈ {0, 1, . . . , d− 1}, and |c0|2 + |c1|2 + . . .+ |cd−1|2 = 1.

One possible physical interpretation of N is that it describes the number
of particles of physical systems consisting of a maximum number of d − 1
particles. In order to add a particle to the k particles state |N = k〉 (thus
making it switch to the “next” state |N = k + 1〉) we apply the creation op-
erator a†, while to remove a particle from this system (thus making it switch
to the “previous” state |N = k − 1〉) we apply the annihilation operator a.
Since the maximum number of particles that can be simultaneously in the
system is d− 1, the application of the creation operator to a full d− 1 parti-
cles system does not have any effect on the system, and returns as a result
the null vector. Analogously, the application of the annihilation operator
to an empty particle system does not affect the system and returns the null
vector as a result.

Another physical interpretation of operators a† and a, by operator N ,
follows from the possibility of expressing the Hamiltonian (2) as follows:

H = ε0 Id + ∆εN = ε0 Id + ∆ε a†a

In this case a† (resp., a) realizes the transition from the eigenstate of energy
εk = ε0 +k∆ε to the “next” (resp., “previous”) eigenstate of energy εk+1 =
ε0 + (k + 1) ∆ε (resp., εk−1 = ε0 + (k − 1) ∆ε) for any 0 ≤ k < d− 1 (resp.,
0 < k ≤ d − 1), while it collapses the last excited (resp., ground) state of
energy ε0 + (d− 1) ∆ε (resp., ε0) to the null vector.

The collection of all linear operators on C
d is a d2–dimensional linear

space whose canonical basis is:

{Ex,y = |y〉 〈x| : x, y ∈ Ld}
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Since Ex,y |x〉 = |y〉 and Ex,y |z〉 = 0 for every z ∈ Ld such that z 6=
x, this operator transforms the unit vector |x〉 into the unit vector |y〉,
collapsing all the other vectors of the canonical orthonormal basis of C

d

to the null vector. Each of the operators Ex,y can be expressed, using the
whole algebraic structure of the associative algebra of operators, as a suitable
composition of creation and annihilation operators, as explained in [17].

3 Quantum P Systems with Unit Rules and

Energy Assigned to Membranes

Let us now define a quantum version of P systems with unit rules and
energy assigned to membranes. All the elements of the model (multisets,
the membrane hierarchy, configurations, and computations) are defined just
like the corresponding elements of the classical P system, but for objects
and rules.

The objects of A are represented as pure states of a quantum system. If
the alphabet contains d ≥ 2 elements, then without loss of generality we can

put A =
{
|0〉 ,

∣∣∣ 1

d−1

〉
,
∣∣∣ 2

d−1

〉
, . . . ,

∣∣∣d−2

d−1

〉
, |1〉

}
, that is, A = {|a〉 : a ∈ Ld}.

As stated above, the quantum system will also be able to assume as a state
any superposition of the kind:

c0 |0〉 + c 1

d−1

∣∣∣∣
1

d− 1

〉
+ . . .+ c d−2

d−1

∣∣∣∣
d− 2

d− 1

〉
+ c1 |1〉

with c0, c 1

d−1

, . . . , c d−2

d−1

, c1 ∈ C such that
∑d−1

i=0

∣∣c i
d−1

∣∣2 = 1. A multiset is

simply a collection of quantum systems, each in its own state.
The membrane structure is defined just like in the classical case. In order

to represent the energy values assigned to membranes we must use quantum
systems which can exist in an infinite (countable) number of states. Hence
we assume that every membrane of the quantum P system has an associated
infinite dimensional quantum harmonic oscillator whose state represents the
energy value assigned to the membrane. To modify the state of such har-
monic oscillator we can use the infinite dimensional version of creation (a†)
and annihilation (a) operators described above, which are commonly used
in quantum mechanics. The actions of a† and a on the state of an infinite
dimensional harmonic oscillator are analogous to the actions on the states of
truncated harmonic oscillators; the only difference is that in the former case
there is no state with maximum energy, and hence the creation operator
never produces the null vector. Also in this case it is possible to express
operators Ex,y = |y〉 〈x| as appropriate compositions of a† and a.
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The initial configuration of a quantum P system with unit rules and
energy assigned to membranes of degree d+1 consists of e0, . . . , ed, the initial
energy values assigned to the membranes, and w0, . . . , wd, the multisets of
objects initially present in the regions 0, . . . , d determined by the membrane
structure.

Rules are defined as (n, d)–functions, that is, functions of the kind f :
An → An. Such functions are not necessarily bijections on An: they can
be arbitrary mappings. This means that the linear operators which realize
such functions are not necessarily unitary. To write these linear operators we
use an extension of the Conditional Quantum Control technique introduced
in [2]. Such operators are sums of “local” operators, each being a tensor
product of suitable compositions of the operators a† and a. An equiva-
lent formulation is possible, using spin–rising (J+) and spin–lowering (J−)
operators, following the lines illustrated in [17].

The quantum realization of a “controlled behavior” can be obtained by
making use of the operators EX,X = |X〉 〈X|, for X ∈ Ld. For simplicity,
let us first consider the case of a (2, 2)–function, that is, a two–input/two–
output boolean function. For a reason that will be clear in a moment, we call
control qubit and target qubit the first and the second input, respectively. If
we want to realize a linear operator performing the condition: “if the control
qubit is |1〉 then the operator O1 is applied to the target qubit (and the
control qubit is left unchanged)”, then we can build the operator E1,1 ⊗O1,
where E1,1 = |1〉 〈1| checks for the condition “the control qubit is |1〉” and
O1 is the operator which acts on the target qubit |x2〉. Note that if the
control qubit is |0〉 then the operator E1,1 ⊗O1 produces the null vector of
C

2 ⊗ C
2. Similarly, E0,0 ⊗O0, with E0,0 = |0〉 〈0|, realizes the condition “if

the control qubit is |0〉 then the operator O0 is applied to the target qubit
|x2〉 (and the control qubit is left unchanged)”.

The same applies to (n, d)–functions, where the first k qudits are used
as control qudits and the remaining n− k are used as target qudits. We can
thus realize any controlled behavior of the kind: “if the control qudits are
in the (basis) states X = |x1, x2, . . . , xk〉, then apply the operator OX to
target qudits” (and leave the control qudits unaltered). The global operator
that describes the behavior of the (n, d)–function has thus the form:

|0〉 〈0|⊗O0 + |1〉 〈1|⊗O1 + . . .+ |dk −1〉〈dk −1|⊗Odk−1 =

dk−1∑

X=0

|X〉 〈X|⊗OX

where EX,X = |X〉 〈X| is the orthogonal projection of the Hilbert space
⊗k

C
d which selects the X-th control configuration, and collapses to the null
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vector all the other configurations.
We can now precisely describe how rules are defined in our model of

quantum P systems. As in the classical case, rules are associated to mem-
branes rather than to the regions enclosed by them. Each rule of Ri is an
operator of the form

|y〉 〈x| ⊗O, with x, y ∈ Ld (3)

where O is a linear operator which can be expressed by an appropriate
composition of operators a† and a. The part |y〉 〈x| is the guard of the rule:
it makes the rule “active” (that is, the rule produces an effect) if and only if a
quantum system in the basis state |x〉 is present. The semantics of rule (3) is
the following: If an object in state |x〉 is present in the region immediately
outside membrane i, then the state of the object is changed to |y〉 and
the operator O is applied to the state of the infinite dimensional harmonic
oscillator associated with the membrane. Notice that the application of
O can result in the null vector, so that the rule has no effect even if its
guard is satisfied; this fact is equivalent to the condition ei + ∆e ≥ 0 on
the energy of membrane i required in the classical case. Differently from
the classical case, no local priorities are assigned to the rules. If two or
more rules are associated to membrane i, then they are summed. This
means that, indeed, we can think to each membrane as having only one rule
with many guards. When an object is present, the inactive parts of the
rule (those for which the guard is not satisfied) produce the null operator
as a result. If the region in which the object occurs contains two or more
membranes, then all their rules are applied to the object. Observe that
the object which activates the rules never crosses the membranes. This
means that the objects specified in the initial configuration can change their
state but never move to a different region. Notwithstanding, transmission of
information between different membranes is possible, since different objects
may modify in different ways the energy state of the harmonic oscillators
associated with the membranes.

The application of one or more rules determines a transition between two
configurations. A halting configuration is a configuration in which no rule
can be applied. A sequence of transitions is a computation. A computation
is successful if and only if it halts, that is, reaches a halting configuration.
The result of a successful computation is considered to be the distribution of
energies among the membranes in the halting configuration. A non-halting
computation does not produce a result. Just like in the classical case, if
we consider the energy distribution of the membrane structure as the input
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to be analyzed, we obtain a model for accepting sets of (vectors of) non-
negative integers.

4 Computational Completeness

In this section we prove that quantum P systems with unit rules and energy
assigned to membranes are computationally complete, that is, they are able
to compute any partial recursive function f : Nα → Nβ. As in the classical
case, the proof is obtained by simulating register machines.

Theorem 1. Every partial recursive function f : Nα → Nβ can be computed
by a quantum P system with unit rules and energy assigned to membranes
with (at most) max{α, β} + 3 membranes.

Proof. Let M = (n, P, 1,m) be a deterministic n–register machine that com-
putes f . Let m be the number of instructions of P . The initial instruction
of P has the label 1, and the halting instruction has the label m. Observe
that, according to Proposition 1, n = max{α, β} + 2 is enough.

The input values x1, . . . , xα are expected to be in the first α registers, and
the output values are expected to be in registers 1 to β at the end of a suc-
cessful computation. Moreover, without loss of generality, we may assume
that at the beginning of a computation all the registers except (eventually)
the registers 1 to α contain zero.

We construct the quantum P system

Π = (A,µ, e0, . . . , en, w0, . . . , wn, R0, . . . , Rn)

where:

• A = {|j〉 : j ∈ Lm}

• µ = [0[1]1 · · · [α]α · · · [n]n]0

• ei =





|εxi
〉 for 1 ≤ i ≤ α

|ε0〉 for α+ 1 ≤ i ≤ n

0 (the null vector) for i = 0

• w0 = |0〉

• wi = ∅ for 1 ≤ i ≤ n

• R0 = ∅
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• Ri =
∑m

j=1
Oij for 1 ≤ i ≤ n

where the Oij ’s are local operators which simulate instructions of the
kind j : (INC(i), k) and j : (DEC(i), k, l) (one local operator for each
increment or decrement operation which affects register i). The details
on how the Oij ’s are defined are given below.

The value contained in register i, 1 ≤ i ≤ n, is represented by the energy
value ei = |εxi

〉 of the infinite dimensional quantum harmonic oscillator
associated with membrane i. Figure 2 depicts a typical configuration of Π.

R 1

|εx1 >

1

R 2

|ε x2 >

2

R n

n

0

|εx >n

| j >

Figure 2: A configuration of the simulating P system

The skin contains one object of the kind |j〉, j ∈ Lm, which mimics the
program counter of machine M . Precisely, if the program counter of M has

the value k ∈ {1, 2, . . . ,m} then the object present in region 0 is
∣∣∣ k−1

m−1

〉
. In

order to avoid cumbersome notation, in what follows we denote by |pk〉 the

state
∣∣∣ k−1

m−1

〉
of the quantum system which mimics the program counter.

The sets of rules Ri depend upon the instructions of P . Precisely, the
simulation works as follows.

1. Increment instructions j : (INC(i), k) are simulated by a guarded rule
of the kind |pk〉 〈pj | ⊗ a† ∈ Ri.

If the object |pj〉 is present in region 0, then the rule transforms it into
object |pk〉 and increments the energy level of the harmonic oscillator
contained in membrane i.

2. Decrement instructions j : (DEC(i), k, l) are simulated by a guarded
rule of the kind:

|pl〉 〈pj | ⊗ |ε0〉 〈ε0| + |pk〉 〈pj | ⊗ a ∈ Ri
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In fact, let us assume that the object |pj〉 is present in region 0 (if |pj〉
is not present then the above rule produces the null operator), and let
us denote by O the above rule. The harmonic oscillator may be in the
base state |ε0〉 or in a base state |εx〉 with x a positive integer.

If the state of the harmonic oscillator is |ε0〉 then the rule produces:

O( |pj〉 ⊗ |ε0〉) =

= (|pl〉 〈pj | ⊗ |ε0〉 〈ε0|)(|pj〉 ⊗ |ε0〉) + (|pk〉 〈pj | ⊗ a)(|pj〉 ⊗ |ε0〉) =

= |pl〉 ⊗ |ε0〉 + |pk〉 ⊗ 0 = |pl〉 ⊗ |ε0〉

that is, the state of the oscillator is unaltered and the program counter
is set to |pl〉.
If the state of the harmonic oscillator is |εx〉, for a positive integer x,
then the rule produces:

O( |pj〉 ⊗ |εx〉) =

= (|pl〉 〈pj | ⊗ |ε0〉 〈ε0|)(|pj〉 ⊗ |εx〉) + (|pk〉 〈pj | ⊗ a)(|pj〉 ⊗ |εx〉) =

= |pl〉 ⊗ 0 + |pk〉 ⊗ a |εx〉 = |pk〉 ⊗ |εx−1〉

that is, the energy level of the harmonic oscillator is decremented and
the program counter is set to |pk〉.

The set Ri of rules is obtained by summing all the operators which affect
(increment or decrement) register i. The Halt instruction is simply simulated
by doing nothing with the object |pm〉 when it appears in region 0.

It is apparent from the description given above that after the simulation
of each instruction each energy value ei equals the value contained in register
i, with 1 ≤ i ≤ m. Hence, when the halting symbol |pm〉 appears in region
0, the energy values e1, . . . , eβ equal the output of the program P .

Let us conclude this section by observing that, in order to obtain com-
putational completeness, it is not necessary that the objects cross the mem-
branes. This fact avoids one of the problems raised in [17]: the existence of a
“magic” quantum transportation mechanism which is able to move objects
according to the target contained in the rule (and working against the so
called “tunnel effect”). In quantum P systems with unit rules and energy
assigned to membranes, the only problem is to keep the object |pj〉 localised
in region 0, so that it never enters into the other regions. In other words, the
major problem of this kind of quantum P systems is to oppose the tunnel
effect.

479



5 Quantum Register Machines

The P system illustrated in Figure 2, which has been used to prove Theorem
1, suggests to define also a quantum version of register machines.

A quantum n–register machine is defined exactly as in the classical case,
as a four–tuple M = (n, P, l0, lh). For simplicity, also the instructions of P
are denoted in the usual way:

j : (INC(i), k) and j : (DEC(i), k, l)

This time, however, these instructions are appropriate linear operators
acting on the Hilbert space whose vectors describe the (global) state of M .

The structure of the machine resembles the P system which has been
used to prove Theorem 1. Each register of the machine is an infinite di-
mensional quantum harmonic oscillator, capable to assume the base states
|ε0〉 , |ε1〉 , |ε2〉 , . . ., corresponding to its energy levels. The program counter
of the machine is instead realized through a quantum system capable to
assume m different base states, from the set {|x〉 : x ∈ Lm}.

A configuration of M is given by the value of the program counter and
the values contained in the registers. From a mathematical point of view, a
configuration ofM is a (base) vector of the Hilbert space C

m⊗(⊗nH), where
H is the Hilbert space associated with every quantum harmonic oscillator.
Notice that here we are just interested in simulating a classical machine
behavior, and hence we do not care about superpositions of states. A tran-
sition between two configurations is obtained by executing one instruction
of P (the one pointed at by the program counter).

The instruction j : (INC(r), k) is defined as operator

OINC
j,r,k = |pk〉 〈pj | ⊗

(
⊗r−1

I
)
⊗ a† ⊗

(
⊗n−r

I
)

with I the identity operator on H, whereas the instruction j : (DEC(r), k, l)
is defined as the operator

ODEC
j,r,k,l = |pl〉 〈pj | ⊗

(
⊗r−1

I
)
⊗ |ε0〉 〈ε0| ⊗

(
⊗n−r

I
)
+

|pk〉 〈pj | ⊗
(
⊗r−1

I
)
⊗ a⊗

(
⊗n−r

I
)

Hence the program P can be formally defined as the sum OP of all these
operators:

OP =
∑

j,r,k

OINC
j,r,k +

∑

j,r,k,l

ODEC
j,r,k,l
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Thus OP is the global operator which describes a computation step of M .
The Halt instruction is simply executed by doing nothing when the program
counter assumes the value |pm〉. For such value, OP becomes the null oper-
ator. Hence M halts after T execution steps if T = min{t ∈ N : O t

P = 0}.
From the definition of the system, it is apparent that any classical deter-

ministic n–register machine can be simulated by a corresponding quantum
n–register machine: the simulation proceeds exactly as described in the
proof of Theorem 1. As a consequence, also quantum n–register machines
are computationally complete.

It should also be evident that the proof of Theorem 1 can be modified
to show that quantum P systems are able to simulate quantum register
machines. Indeed, the notable difference between the quantum P systems
described above and quantum register machines is that in the latter model
we modify the values contained in registers using global operators (if a given
register need not be modified then the identity operator is applied to its
state) whereas in the former model we operate locally, on a smaller Hilbert
space. Hence, as it happens in classical P systems, membranes are used to
divide the site where the computation occurs into independent local areas.
The effect of each rule is local, in the sense that the rule affects only the state
of one subsystem. Due to the simulations mentioned above, we can order
these computational models with respect to their computational power, as
follows:

deterministic
register
machines

≤
quantum
register
machines

≤
quantum P systems
with unit rules and
energy assigned to
membranes

Quantum register machines can thus be used as a tool to study the
computational power of other quantum models of computation, just like it
happens in the classical case.

6 Conclusions and Directions for Future Research

In this paper we have introduced a quantum version of P systems with unit
rules and energy assigned to membranes. Objects are represented as pure
states in a finite Hilbert space, whereas rules are defined as generic functions
which map the alphabet into itself. Such functions are implemented using
a generalization of the Conditional Quantum Control technique, and may
yield non-unitary operators. Energy values are associated to membranes by
incorporating an infinite dimensional quantum harmonic oscillator in every
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membrane. For the application of rules leading from one configuration of the
system to the next configuration we consider a sequential model, instead of
the usual model of maximal parallelism. The input of a computation is given
by the distribution of energy values carried by the membranes. Analogously,
the result of a successful computation is the distribution of energy values at
the end of the computation.

In this paper we have proved that such quantum model of computation is
computationally complete, that is, it is able to compute any partial recursive
function f : Nα → Nβ . This result has been obtained by simulating classical
deterministic register machines. We have also proposed quantum register
machines as a tool to study the computational power of present and future
quantum computational models.

It is currently an open problem, as well as an interesting direction for
future research, to precisely assess the computational power of quantum P
systems and quantum register machines. Concerning the power of quantum
P systems we note that, in analogy with other models of quantum computers,
there is the possibility to initialize the system with a multiset of objects
whose state is a superposition of classical (pure) states. As a result, the
computation will transform such input multiset to an output multiset which
is obtained by linearity as a superposition of the results of the computation
on every single classical state. As usual, when we measure the state of the
systems which occur into the output multiset we will obtain a pure state
as a result, according to the probability distribution which is induced by
the coefficients of the superposition. An interesting question, not afforded
in this paper, is whether the measurement of the state of an object into a
region should have only local effects, or instead make the global configuration
of the P system collapse to a classical state. Another interesting aspect of
quantum P systems to be investigated is their behavior when some quantum
systems in the initial configuration are in an entangled state.
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(2002).

[2] A. Barenco, D. Deutsch, A. Ekert, R. Jozsa: Conditional Quantum
Control and Logic Gates: Physical Review Letters 74 (1995), 4083–
4086.

482



[3] P. Benioff: Quantum Mechanical Hamiltonian Models of Discrete
Processes. Journal of Mathematical Physics 22 (1981), 495–507.

[4] P. Benioff: Quantum Mechanical Hamiltonian Models of Computers.
Annals of the New York Academy of Science 480 (1986), 475–486.

[5] D. Deutsch: Quantum Theory, the Church–Turing Principle, and the
Universal Quantum Computer. Proceedings of the Royal Society of Lon-
don A 400 (1985), 97–117.

[6] R. P. Feynman: Simulating Physics with Computers. International
Journal of Theoretical Physics 21 (6–7) (1982), 467–488.

[7] R. P. Feynman: Quantum Mechanical Computers. Optics News 11

(1985), 11–20.

[8] R. Freund: Sequential P-systems. Romanian Journal of Information
Science and Technology 4 (1–2) (2001), 77–88.

[9] R. Freund: Energy-controlled P systems. In: Gh. Păun, G. Rozen-
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Editing Distances Between Membrane

Structures∗
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Abstract

In this work we propose an efficient solution to calculate the mi-
nimum editing distance between membrane structures of arbitrary P
systems. We use a new model of tree automata based on multisets
of states and symbols linked to the finite control. This new model
accepts a set of trees with symmetries between their internal nodes
(mirrored trees). Once we have calculated the editing distance between
an arbitrary tree and an arbitrary multiset tree automaton, we can
translate the classical operations of insertion, deletion and substitution
into rule applications of membrane dissolving and membrane creation.

1 Introduction

One of the main components of P systems is the membrane structure. This
structure evolves during the computation time due to the application of rules
associated to the membranes. The membrane structure can be represented
by a tree in which the internal nodes denote regions which have inner regions
inside. The root of the tree is always associated to the skin membrane of
the P system.

The relation between regions and trees has been recently strengthened by
Freund et al. [7]. These authors have established that any recursively enu-
merable set of trees can be generated by a P system with active membranes
and string objects. So, P systems can be viewed as tree generators.

∗Work supported by the Spanish CICYT under contract TIC2003-09319-C03-02.
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In this work we use multiset tree automata to accept and handle the tree
structures defined by P systems [16]. This model is an extension of classical
tree automata [8] in which the states and symbols of the finite control form
multisets. Multiset theory has been linked to parallel processing as showed
in [2].

The main aspect we will solve in this work is the one related to editing
structural configurations of P systems. Recently, Csuhaj-Varjú et al. [4]
have proposed editing distances between configurations of P systems. Here,
we restrict our solution only to the structural configuration of P systems,
that is the membrane structure underlying any P system configuration. The
multiset tree automata model that we propose in this work will be useful
to calculate so. Here we can take advantage of a previous work on editing
distances between trees and tree automata [10].

The structure of this work is as follows: First we introduce basic defi-
nitions and notation about multisets, tree languages and automata and P
systems. In section 3, we introduce the model of multiset tree automata,
we define the relation of mirroring between trees and we establish some re-
sults between tree automata, multiset tree automata and mirroring trees.
In section 4, we use previous results about editing distances between trees
and tree automata in order to solve the minimum editing distance between
membrane structures. Finally, we establish some conclusions and give some
guidelines for future works.

2 Notation and Definitions

In the sequel we will provide some concepts from formal language theory,
membrane systems and multiset processing. We suggest the following books
to the reader [15], [12] and [2].

Multisets

First, we will provide some definitions from multiset theory as exposed in
[17].

Definition 2.1 Let D be a set. A multiset over D is a pair 〈D, f〉 where
f : D −→ N is a function.

Definition 2.2 Suppose that A = 〈D, f〉 and B = 〈D, g〉 are two multisets.
The removal of multiset B from A, denoted by A ⊖ B, is the multiset C =
〈D, h〉 where for all a ∈ D h(a) = max(f(a) − g(a), 0).
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Definition 2.3 Let A = 〈D, f〉 be a multiset; we will say that A is empty
if for all a ∈ D, f(a) = 0.

Definition 2.4 Let A = 〈D, f〉 and B = 〈D, g〉 be two multisets. Their
sum, denoted by A ⊕ B, is the multiset C = 〈D, h〉, where for all a ∈ D

h(a) = f(a) + g(a).

Definition 2.5 Let A = 〈D, f〉 and B = 〈D, g〉 be two multisets. We will
say that A = B if for all a ∈ D f(a) = g(a).

The number of elements that a multiset contains can be finite. In such
case, the multiset will be finite too. The size of any multiset M , denoted
by |M | will be the number of elements that it contains. We are specially
interested in the class of multisets that we call bounded multisets. They are
multisets that hold the property that the sum of all the elements is bounded
by a constant n. Formally, we will denote by Mn(D) the set of all multisets
〈D, f〉 such that

∑

a∈D f(a) = n.
A concept that is quite useful to work with sets and multisets is the

Parikh mapping. Formally, a Parikh mapping can be viewed as the ap-
plication Ψ : D∗ → N

n where D = {d1, d2, · · · , dn} and D∗ is the set
of strings defined by D. Given an element x ∈ D∗ we define Ψ(x) =
(#d1

(x), · · · , #dn
(x)) where #dj

(x) denotes the number of occurrences of
dj in x.

Later, we will use tuples of symbols and states as strings and we will
apply the Parikh mapping as defined above.

Tree Automata and Tree Languages

Now, we will introduce some concepts from tree languages and automata as
exposed in [3, 8]. First, a ranked alphabet is the pair (V, r) where V is an
alphabet and r is a finite relation in V × N. We denote by Vn the subset
{σ ∈ V : (σ, n) ∈ r}. Given (V, r) we define maxarity(V ) as the maximum
integer n such that(σ, n) ∈ r.

For every ranked alphabet (V, r), the set of trees over V , is denoted by
V T and defined inductively as follows:

a ∈ V T for every a ∈ V0

σ(t1, ..., tn) ∈ V T whenever σ ∈ Vn and t1, ..., tn ∈ V T , (n > 0)

and let a tree language over V be defined as a subset of V T .
Given the tuple l =< 1, 2, ..., k > we will denote the set of permutations

of l by perm(l). Let t = σ(t1, ..., tn) be a tree over V T , we will denote the
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set of permutations of t at first level by perm1(t). Formally, perm1(t) =
{σ(ti1 , ..., tin) :< i1, i2, ..., in >∈ perm(< 1, 2, ..., n >)}.

Let N
∗ be the set of finite strings of natural numbers, separated by dots,

formed using the product as the composition rule and the empty word λ as
the identity. Let the prefix relation ≤ in N

∗ be defined by the condition that
u ≤ v if and only if u · w = v for some w ∈ N

∗ (u, v ∈ N
∗). A finite subset

D of N
∗ is called a tree domain if:

u ≤ v where v ∈ D implies u ∈ D, and

u · i ∈ D whenever u · j ∈ D (1 ≤ i ≤ j)

Each tree domain D could be seen as an unlabelled tree whose nodes
correspond to the elements of D where the hierarchy relation is the prefix
order. Thus, each tree t over V can be seen as an application t : D → V .
The set D is called the domain of the tree t, and denoted by dom(t). The
elements of the tree domain dom(t) are called positions or nodes of the tree
t. We denote by t(x) the label of a given node x in dom(t).

Let the level of x ∈ dom(t) be denoted by level(x). Intuitively, the level
of a node measures its distance from the root of the tree. Then, we can
define the depth of a tree t as depth(t) = max{level(x) : x ∈ dom(t)}. In
the same way, for any tree t, we denote the size of the tree by |t| and the
set of subtrees of t (denoted with Sub(t)) as follows:

Sub(a) = {a} for all a ∈ V0

Sub(t) = {t} ∪
⋃

i=1,...,n

Sub(ti) for t = σ(t1, ..., tn) (n > 0)

For any set of trees T , Sub(T ) =
⋃

t∈T Sub(t). Given a tree t =
σ(t1, . . . , tn), the root of t will be denoted as root(t) and defined as root(t) =
σ. If t = a then root(t) = a. The successors of a tree t = σ(t1, . . . , tn) will
be defined as Ht =< root(t1), . . . , root(tn) >.

Definition 2.6 A finite deterministic tree automaton is defined by the tuple
A = (Q, V, δ, F ): where Q is a finite set of states; V is a ranked alphabet,
Q ∩ V = ∅; F ⊆ Q is a set of final states and δ =

⋃

i:Vi 6=∅ δi is a set of
transition functions defined as follows:

δn : (Vn × (Q ∪ V0)
n) → Q n > 0

δ0(a) = a ∀a ∈ V0
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Given the state q ∈ Q, we define the ancestors of the state q, denoted
by Anc(q), as the set of strings

Anc(q) = {p1 · · · pn : pi ∈ Q ∪ V0 ∧ δn(σ, p1, ..., pn) = q ∈ δ}

From now on, we will refer to finite deterministic tree automata simply
as tree automata. We suggest [3, 8] for other definitions on tree automata.

The transition function δ is extended to a function δ : V T → Q ∪ V0 on
trees as follows:

δ(a) = a for any a ∈ V0

δ(t) = δn(σ, δ(t1), . . . , δ(tn)) for t = σ(t1, . . . , tn) (n > 0)

Note that the symbol δ denotes both the set of transition functions of
the automaton and the extension of these functions to operate on trees. In
addition, you can observe that the tree automaton A cannot accept any tree
of depth zero.

Given a finite set of trees T , let the subtree automaton for T be defined
as ABT = (Q, V, δ, F ), where:

Q = Sub(T )

F = T

δn(σ, u1, . . . , un) = σ(u1, . . . , un) σ(u1, . . . , un) ∈ Q

δ0(a) = a a ∈ V0

P Systems

Finally, we will introduce basic concepts from the theory of membrane sys-
tems taken from [12]. A general P system of degree m is a construct

Π = (V, T, C, µ, w1, · · · , wm, (R1, ρ1), · · · , (Rm, ρm), i0),

where:

• V is an alphabet (the objects)

• T ⊆ V (the output alphabet)

• C ⊆ V , C ∩ T = ∅ (the catalysts)

• µ is a membrane structure consisting of m membranes
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• wi, 1 ≤ i ≤ m is a string representing a multiset over V associated
with the region i

• Ri, 1 ≤ i ≤ m is a finite set of evolution rules over V associated with
the ith region and ρi is a partial order relation over Ri specifying a
priority.

An evolution rule is a pair (u, v) (or u → v) where u is a string over
V and v = v′ or v = v′δ where v′ is a string over

{ahere, aout, ainj
| a ∈ V, 1 ≤ j ≤ m}

and δ is an special symbol not in V (it defines the membrane dissolving
action).

• i0 is a number between 1 and m and it specifies the output membrane
of Π (in the case that it equals to ∞ the output is read outside the
system).

The language generated by Π in external mode (i0 = ∞) is denoted by
L(Π) and it is defined as the set of strings that can be defined by collecting
the objects that leave the system by arranging the leaving order (if several
objects leave the system at the same time then permutations are allowed).
The set of numbers that represent the objects in the output membrane i0
will be denote by N(Π). Obviously, both sets L(Π) and N(Π) are defined
only for halting computations.

Some kinds of P systems which have been proposed focus on the creation,
division and modification of membrane structures. There have been several
works in which these operations have been proposed (see, for example, [1,
11, 12, 13]).

In the following, we enumerate some kinds of rules which are able to
modify the membrane structure:

1. 2-division: [ha]h → [h′b]h′ [h′′c]h′′

2. Creation: a → [hb]h

3. Dissolving: [ha]h → b

The power of P systems with the previous operations and other ones
(e.g. exocytosis, endocytosis, etc.) has been widely studied in the previously
related works and other ones.
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3 Multiset Tree Automata and Mirrored Trees

We will extend some definitions of tree automata and tree languages over
multisets. We will introduce the concept of multiset tree automata and
then we will characterize the set of trees that they accept, as exposed in
[16]. Observe that our approach is different from Csuhaj-Varjú et al. [5]
and from Kudlek et al. [9] where the authors consider the case that bags
of objects are analyzed by an abstract machine. Here, we do not consider
bags of (sub)trees but we introduce bags of states and symbols in the finite
control of the automata.

Given any tree automaton A = (Q, V, δ, F ) and δn(σ, p1, p2, . . . , pn) ∈ δ,
we can associate to δn the multiset 〈Q ∪ V0, f〉 ∈ Mn(Q ∪ V0) where f is
defined by Ψ(p1p2 . . . pn). The multiset defined in such way will be denoted
by MΨ(δn). Alternatively, we can define MΨ(δn) as MΨ(p1) ⊕ MΨ(p2) ⊕
· · · ⊕ MΨ(pn) where ∀1 ≤ i ≤ n MΨ(pi) ∈ M1(Q ∪ V0). Observe that
if δn(σ, p1, p2, . . . , pn) ∈ δ, δ′n(σ, p′

1
, p′

2
, . . . , p′n) ∈ δ and MΨ(δn) = MΨ(δ′n)

then δn and δ′n are defined over the same set of states and symbols but in
different order (that is the multiset induced by 〈p1p2 · · · pn〉 equals to the
one induced by 〈p′

1
p′
2
. . . p′n〉).

Now, we can define a multiset tree automaton that performs a bottom-up
parsing as in the tree automaton case.

Definition 3.1 A multiset tree automaton is defined by the tuple MA =
(Q, V, δ, F ), where Q is a finite set of states, V is a ranked alphabet with
maxarity(V ) = n, Q ∩ V = ∅, F ⊆ Q is a set of final states and δ is a set
of transition functions defined as follows:

δ =
⋃

1 ≤ i ≤ n

i : Vi 6= ∅

δi

δi : (Vi ×Mi(Q ∪ V0)) → P(M1(Q)) i = 1, . . . , n

δ0(a) = MΨ(a) ∈ M1(Q ∪ V0) ∀a ∈ V0

We can take notice that every tree automaton A defines a multiset tree
automaton MA as follows

Definition 3.2 Let A = (Q, V, δ, F ) be a tree automaton. The multiset tree
automaton induced by A is defined by the tuple MA = (Q, V, δ′, F ) where
each δ′ is defined as follows: MΨ(r) ∈ δ′n(σ, M) if δn(σ, p1, p2, ..., pn) = r

and MΨ(δn) = M .
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Observe that, in the general case, the multiset tree automaton induced
by A is non deterministic.

As in the case of tree automata, δ′ could also be extended to operate on
trees. Here, the automaton carries out a bottom-up parsing where the tuples
of states and/or symbols are transformed by using the Parikh mapping Ψ
to obtain the multisets in Mn(Q ∪ V0). If the analysis is completed and δ′

returns a multiset with at least one final state, the input tree is accepted.
So, δ′ can be extended as follows

δ′(a) = MΨ(a) for any a ∈ V0

δ′(t) = {M ∈ δ′
n
(σ,M1⊕· · ·⊕Mn) : Mi ∈ δ′(ti) 1 ≤ i ≤ n} for t = σ(t1, . . . , tn)

(n > 0)

Formally, every multiset tree automaton MA accepts the following lan-
guage

L(MA) = {t ∈ V T : MΨ(q) ∈ δ′(t), q ∈ F}

Another extension which will be useful is the one related to the ancestors
of every state. So, we define AncΨ(q) = {M : MΨ(q) ∈ δn(σ, M)}. The fol-
lowing two results characterize the relation between the languages accepted
by tree automata and the multiset tree automata induced by them.

Theorem 3.1 (Sempere and López, [16]) Let A = (Q, V, δ, F ) be a tree
automaton, MA = (Q, V, δ′, F ) be the multiset tree automaton induced by A

and t = σ(t1, . . . , tn) ∈ V T . If δ(t) = q then MΨ(q) ∈ δ′(t).

Corollary 3.1 (Sempere and López, [16]) Let A = (Q, V, δ, F ) be a tree
automaton and MA = (Q, V, δ′, F ) be the multiset tree automaton induced
by A. If t ∈ L(A) then t ∈ L(MA).

Mirrored Equivalent Trees

We will introduce the concept of mirroring in tree structures as was exposed
in [16]. Informally speaking, two trees will be related by mirroring if some
permutations at the structural level are hold. For example, the trees of Fi-
gure 1 have identical subtrees except that some internal nodes have changed
their order.

We propose a definition that relates all the trees with this mirroring
property. For any other concepts used in this section, we refer to the previous
section 2 on tree automata.
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Definition 3.3 Let (V, r) be a ranked alphabet and t and s be two trees from
V T . We will say that t and s are mirror equivalent, denoted by t ⊲⊳ s, if one
of the following conditions holds:

1. t = s = a ∈ V0

2. t ∈ perm1(s)

3. t = σ(t1, . . . , tn), s = σ(s1, . . . , sn) and there exists < s1, s2, . . . , sk >∈
perm(< s1, s2, ..., sn >) such that ti ⊲⊳ si ∀1 ≤ i ≤ n

The following results characterize the set of trees accepted by a multiset
tree automaton induced by a tree automaton.

Theorem 3.2 (Sempere and López, [16]) Let A = (Q, V, δ, F ) be a tree
automaton, t = σ(t1, . . . , tn) ∈ V T and s = σ(s1, . . . , sn) ∈ V T . Let MA =
(Q, V, δ′, F ) be the multiset tree automaton induced by A. If t ⊲⊳ s then
δ′(t) = δ′(s).

Note that the converse result of last theorem is not generally true. For
instance, consider the trees: t = σ(a) and s = σ(a, σ(a)) and the tree
automaton with the following transition function:

δ1(σ, a) = q1 ∈ F δ2(σ, a, q1) = q1 ∈ F

it is easy to see that δ′(t) = δ′(s) but t is not mirror equivalent to s.

Corollary 3.2 (Sempere and López, [16]) Let A = (Q, V, δ, F ) be a tree
automaton, MA = (Q, V, δ′, F ) the multiset tree automaton induced by A

and t ∈ V T . If t ∈ L(MA) then, for any s ∈ V T such that t ⊲⊳ s, s ∈
L(MA).

The last results were useful to propose an algorithm to determine
whether two trees are mirror equivalent or not [16]. So, given two trees
s and t, we can establish in time O((min{|t|, |s|})2) if t ⊲⊳ s.
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trees

4 Solving the Membrane Structure Recognition

Problem

Recently, in [7], a way to generate trees by membrane systems has been
proposed. Initially, any membrane structure can be represented by a tree
taking the membrane structure as a hierarchical order between regions. Fre-
und et al. [7] have taken advantage of a variant of P systems with active
membranes and string objects. Active membranes have an electrical charge
(polarization) together with a set of rules that allow the membrane to change
polarizations, move objects (strings), dissolving the membrane, 2-dividing
the membrane, etc. They have proved that any recursively enumerable tree
language can be generated by a P system.

A way to recognize two identical membrane structures by taking advan-
tage of tree representations was proposed in [16]. For example, let us see
Figure 2, in which we represent a membrane structure with different trees.

Obviously, the initial order of a membrane structure can be fixed. Any-
way, whenever the system evolves (membrane dissolving, division, creation,
etc.) this order can be at least somehow ambiguous. Furthermore, the initial
order of a P system is only a naming convention given that the membrane
structure of any P system can be renamed without changing its behavior due
to the parallelism ingredient (observe that if this mechanism was sequential
then the ordering could be important for the final output).
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The representation by trees could be essential for the analysis of the
dynamic behavior of P systems. Whenever we work with trees to represent
the membrane structure of a given P system, we can find a mirroring effect.
Again, look at Figure 2: the three different trees proposed for the membrane
structure have a mirroring property, that is, some subtrees at a given level
of the tree have been permuted.

The method that we propose to establish if two membrane structures µ

and µ′ are identical is based on the algorithm proposed in [16]. First, we
represent µ and µ′ by t and s respectively. Then, we apply the proposed
algorithm and, if t ⊲⊳ s we can affirm that µ and µ′ are identical.

5 Editing Distances Between Membrane Struc-

tures

The study of relations between membrane structures is proposed in the
sequel. Here, the main problem can be established as follows

”Let µ and µ′ be two membrane structures corresponding to arbitrary P
systems. What is the minimum set of membrane rule applications needed to
transform one into the other ?”

The solution of the last problem can be approached by using multiset tree
automata and editing distances between trees and tree automata. A previous
work [10], considered the case of tree automata. Here, we will extend the
previous results to multiset tree automata as described in previous sections.

First, we will describe the method employed in [10], in order to give the
main components of the editing distance calculation.

Given a tree automata A = (Q, V, δ, F ) and a tree t, the distance between
t and A can be established as the minimum in the set {D(t, q) : q ∈ F},
where D(t, q) is the minimum distance of the tree t to the state q. The
distance D(t, q) evaluates the number of operations needed to reduce the
tree t to the state q according to the function δ in automata A. Some ope-
rations involved in the distance refer to operations for trees as Insertion,
Deletion and Substitution. We consider the costs for these operations as
exposed in [10]. Observe that these costs are usually defined by taking into
account the sizes of the trees. So, the bigger tree involved in the operation,
the bigger cost to handle it:

• Insertion

∀a ∈ V I(a) = 1

I(σ(t1, t2, . . . , tk)) = 1 +
∑

∀j I(tj)
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• Deletion

∀a ∈ V B(a) = 1

B(σ(t1, t2, . . . , tk)) = 1 +
∑

∀j B(tj)

• Substitution

∀a ∈ V S(a, a) = 0

∀a, b ∈ V S(a, b) = 1

S(σ(t1, t2, . . . , tk), a) = B(σ(t1, t2, . . . , tk)) + I(a)

S(a, σ(t1, t2, . . . , tk)) = B(a) + I(σ(t1, t2, . . . , tk))

So, the distance of every (sub)tree to a tree automaton will involve every
ancestor of each state of the automata together with the substructures of the
tree. If we have to reduce the structure σ(s1, s2, · · · , sn) to the state q such
that Anc(q) contains < p1, . . . , pm >, we will have to modify substructures
si or we will have to insert states pj at the minimum cost.

The edition cost of every tree to every state of the automaton can be
calculated by considering the set of ancestors of the state and the set of suc-
cessors of the tree. Then we can apply a dynamic programming scheme that
takes into account previous calculations which can be stored in a distance
matrix. For additional details of this method we refer the reader to [10].

The main components used to calculate the distance of a tree t to a
multiset tree automaton MA are the same as in the tree automata case
with the following remarks:

1. The successors of any node in the tree are considered as a multiset
instead of a sequence.

2. The ancestors of every state in the automaton form a multiset.

3. The editing costs for trees and states are the same as in the tree
automata.

4. The calculation of the edit distance is performed by using a edition ma-
trix which can be obtained by using a dynamic programming strategy
with some differences which will be explained later.

We propose Algorithm 1 which obtains the distance from a tree t to
a multiset tree automaton MA. Note that the target of the algorithm is to
force the automaton to accept the tree. Therefore the set of edit operations
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is not fully needed. The algorithm use edit operations for substitution (re-
duction) of a tree to a state of the automaton, deletion of a (sub)tree and
insertion of a state. Intuitively, the substitution of a tree by a state of the
automaton could be seen as the substitution of the tree by the nearest tree
that could be reduced to the state.

Algorithm 1 Algorithm to obtain the minimum distance from a tree
t to the nearest tree in L(MA).

Input:

A multiset tree automaton A = (Q, V, δ, F ).
A tree t.

Output:

Edit distance from t to the automaton A.
Method:

/* initialization */
∀t′ ∈ Sub(t) B[t′] = |t′| end∀
∀a ∈ V0 I[a] = 1 end∀
∀q ∈ Q

I[q] = min{|t′| : δ(t′) = q}
∀t′ ∈ Sub(t)

D[t′, q] = ∞
end∀

end∀
∀a, b ∈ V0

D[a, b] =

{

1 if a 6= b

0 otherwise

D[a, q] = 1 + I[q] : q ∈ Q

end∀
/* iteration */
∀t′ = σ(t′

1
, . . . , t′n) ∈ Sub(t) /* postorder traverse */

∀δ(σ, M) = MΨ(p)
D[t′, p] = min(D[t′, p], MMC(t′, δ(σ, M)))

end∀
end∀
Return(min{D[t′, q] : q ∈ F})

EndMethod:

The error-correcting analysis method is shown in Algorithm 1. First
the cost of the basic operations are obtained (i.e. insertion cost of a state
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and deletion of a subtree). Each of the calculations carried out are stored
in a distance matrix indexed by the set of subtrees and the set of states of
the automaton. This matrix is first initialized and the basic distances are
stored. Distances between symbols in V0 and between any symbol and any
state of the automaton are also considered.

Note that the key problem of the algorithm is to find, for any subtree
t′ = σ(t1, . . . , tn) of t and any transition δ(σ, M) = MΨ(p), with M ∈
AncΨ(p)), the matching of minimum cost between each ti and the states and
symbols in M . This problem can be reduced to the minimum cost maximum
matching or maximum bipartite matching problem [14]. It is known that this
problem can be solved in polynomial time by reducing it to the minimum
cost maximum flow (MCMF) problem (see also [14]). This scheme is similar
to the one proposed in [18] where the author considers distances between
unordered trees.

Briefly, MCMF looks for obtaining, for a given graph G = (V, E) in
which functions capacity and cost are defined among the edges, the best
way (with lower cost) to send the maximum flow between two nodes of the
graph. The flow has to take into account the capacity constraint. The cost
function measures the penalization of each unit of flow. Several solutions
have been implemented to solve this problem and their complexities depend
on the number of nodes n and the number of edges of the graph m. A
proper algorithm for our purposes could be the one by Edmons and Karp
[6] because its complexity depends only on the number of nodes of the graph
(O(n3)).

Given a tree t = σ(t1, . . . , tn) and a transition MΨ(p) ∈ δ(σ, M), the
minimum cost matching between ti and the states in M can be obtained by
the subroutine MMC. First, this subroutine builds the directed graph from
the parameters and set the proper capacities and costs functions among the
edges. Then, a general solution could be run in order to solve the matching.
The subroutine is shown in Algorithm 2.

Intuitively, each successor tree and each state (namely nodes ti and qj

respectively) have their own nodes in the graph. Each node in one set is
connected with all the nodes in the other. These connections model the
reduction (substitution) of each tree to each state. Therefore, the capacity
of these edges is set to 1 (these edges can be used only once) and the cost is
set to the distance between each tree and each state. Note that this distance
is always available due to the postorder traverse of the tree.

The set of edit operations we consider also takes into account the inser-
tion of a state. The node iq and the connections between this node and the
nodes qj model the insertion operation. Thus, the cost of these edges is set
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to the insertion cost of the state. Note that the number of insertions of each
state is bounded by the number of occurrences of the state in M , therefore,
the capacities of these edges is set to this value.

In the same way, in order to model the deletion of trees, the node dt

and the connections with the successor trees are considered in the graph.
Each tree can be deleted only once, therefore the capacity of these edges is
set to 1. Obviously, the cost of these edges is set to the cost of deleting the
corresponding tree.

The construction of the graph also considers a source node s. This node
is connected to the tree nodes, with connectivity 1 and cost 0 (these edges
must be selected without cost). The node s is also connected to the node iq

and the cost of this edge is set to 0. Note that the number of state insertions
is bounded by the number of states, therefore, the capacity of this edge is
set to |M |. The cost of this connection is set to 0.

Finally, the graph construction considers a sink node ss. This node
is connected with the state nodes qj with cost 0. Note that the edition
process aims to fit the set of successors with the multiset of ancestors, thus,
the capacity of the edges must be set to the number of occurrences of each
state. The node dt is also connected with the node ss with cost 0. This edge
models the tree deletions, therefore, the capacity of the connection must be
set to the number of trees that can be deleted.

Example 5.1 Let us consider the tree

t = σ(σ(b, σ(a, σ(a, b), a)), σ(a, σ(a, a)))

and the automaton defined by the following transition functions with q3 ∈ F :
δ(σ, aq1a) = q1 δ(σ, bq2) = q2 δ(σ, aa) = q1

δ(σ, b) = q2 δ(σ, q1q2) = q3

First, the insertion and deletion costs are obtained.

Deletion costs:
t1 t2 t3 t4 t5 t6
3 6 8 3 5 14

Insertion costs:
q1 q2 q3

3 2 6
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Algorithm 2 MMC Subroutine to obtain the Maximum Matching
of Minimum Cost.

Input:

A multiset tree automaton transition δ(σ, M) = MΨ(p).
A tree t = σ(t1, . . . , tn).

Output:

Minimum cost of the maximum match between {t1, . . . , tn}
and M .

Method:

/* construction of the graph */
Let G = (V, E) where:

V = {t1, . . . , tn} ∪ M ∪ {s, ss, iq, dt}
(ti, qj) ∈ E, ∀qj ∈ M ; i : 1..n
(ti, dt) ∈ E, i : 1..n
(iq, qj) ∈ E, ∀qj ∈ M

(s, ti) ∈ E, i : 1..n
(qj , ss) ∈ E, ∀qj ∈ M

(s, iq), (dt, ss) ∈ E

/* set capacities of each edge */
c(ti, qj) = 1, ∀qj ∈ M ; i : 1..n
c(ti, dt) = 1, i : 1..n
c(iq, qj) = #qj

(M), i : 1..n
c(s, ti) = 1, i : 1..n
c(qj , ss) = #qj

(M), ∀qj ∈ M

c(s, iq) = |M |, c(dt, ss) = n

/* set cost of each edge */
d(ti, qj) = D[ti, qj ], ∀qj ∈ M ; i : 1..n
d(ti, dt) = B[ti], i : 1..n
d(iq, qj) = I[qj ], ∀qj ∈ M

d(s, ti) = 0, i : 1..n
d(qj , ss) = 0, ∀qj ∈ M

d(s, iq) = 0
d(dt, ss) = 0

Return(MinCostMaxF low(G))
EndMethod:

Then, the editing process considers the first postorder subtree σ(a, b) and the
first transition δ(σ, aq1a) = q1. The process starts with the construction of
the graph shown in Figure 3.

Solid lines in Figure 3 show the minimum cost matching. The distance
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Figure 3: Underlying graph to obtain the distance of the first postorder
subtree to the first transition of the automaton. Edge labels show the ca-
pacity/cost. Solid lines show the best matching.

is stored in the matrix of distances. Note that this cost is improved when
the third transition is considered. The following table shows an intermediate
state of the matrix.

DA t1 t2 t3 t4 t5 t6

q1 1 1 3

q2 1 3 3

q3 7 5

t 2

q1

q2

dt

iq

1/D[a ,q  ]=32

as

1/0

1/0

1/0
ss

1/0

a

2/0

3/0

1/0

1/1

1/1

Figure 4: Underlying graph to obtain the distance of the first postorder
subtree to the first transition of the automaton. Solid lines show the best
matching.

We now show the distance of the third postorder subtree to the state q3.
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The underlying graph is shown in Figure 4. The best matching is shown in
solid lines. �

Observe that the minimum editing distance that we have calculated can
be established in terms of operations which have a translation into membrane
rules. Let us consider that µ is the membrane structure which is accepted by
the multiset tree automaton MA and µ′ is represented by a tree t. We have
the following correspondences between edition operations and membrane
rules:

1. Insertion of state q

Let us suppose that the insertion is produced to match the ancestors
of a state p. The minimum tree that can be reduced to q is tj . The
operations needed to achieve this goal in the membrane structure are
membrane creation at region p in order to obtain membrane structure
tj .

2. Reduction of tree ti to state q

Let us suppose that the tree which can be reduced to q with a minimal
cost is tj , according with the δ function of the automaton. The ope-
rations needed to make this reduction are the ones involved to trans-
form ti to tj at a region k. These operations consider again membrane
creation and dissolving depending on the operations involved in the
minimum distance from ti to tj .

3. Substitution of a by b

The region a is dissolved and created with a new label.

4. Deletion of tree ti

Let us suppose that ti is a membrane structure at region k. The
deletion consists of several membrane dissolving of structure ti.

6 Conclusions and Future Work

We have proposed a method to calculate the minimum number of membrane
rules needed to transform a membrane structure into a different one. The
number of rules needed, if so, establishes an editing distance between P
systems by taking into account only membrane modifications. This measure
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can provide new definitions about structural confluence in P systems, that
is structural agreement during evolution.

Observe that we have worked with simplified version of P systems. That
is, the objects inside any region do not influence the editing distance. A
future research will consider how the objects can be taken into account to
calculate the editing distance.
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F. Sancho Caparrini (Eds.): Proceedings of the Second Brainstorming
Week on Membrane Computing. TR 01/04 of RGNC, Sevilla University
(2004), 37–44.
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We continue the discussion, initiated in [2], of the interconnections be-
tween membrane computing, cf. [3], and Gandy’s mechanisms, cf. [1].

Both membrane computing approach and Gandy’s mechanism approach
to computing devices concern hierarchically organized systems, where the
hierarchical organization of a given system is determined by the nesting
relation of the less complex parts of the system in the more complex parts
of the system.

In membrane computing approach the nesting relation which determines
the hierarchical organization of a given membrane system is modeled by the
tree whose nodes are membranes of the system, where membranes corre-
spond to the parts of the system and for all two different membranes of the
system there is no common membrane which is nested simultaneously in
both of them.

In Gandy’s mechanism approach the nesting relation which determines
hierarchical organization of a given system is modeled by the restriction
of the membership relation ∈ to the union WTC(x) ∪ L for that hereditary
finite set x which is a model of the whole system, where WTC(x) is the weak
transitive closure of x and L is a set of urelements, see Appendix. In this
case urelements are elementary (indecomposable) parts and the elements of
WTC(x) are composite parts, where for two different composite parts there
may exist a common composite part which is nested in both of them.

Thus the considered approaches are different because of the shape of
models used in them.

We introduce and discuss a notion of a relational membrane system
which is a generalization of models used in the considered approaches and
which includes the case of a fuzzy nesting relation appearing in practice.

Let D = {N, [0, 1]}, where N is the set of natural numbers with 0 and
[0, 1] is the closed unit interval.
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For a set D ∈ D we define a [finite] D-relational membrane system S to
be given by a function ES : US × US → D, a distinguished proper subset
OS of [a finite] US and a distinguished element rS ∈ US −OS such that the
following conditions hold:

i) ES(m, a) = 0 for all m ∈ US and a ∈ OS ,

ii) the underlying graph GS of S with the set VS of vertices given by

VS = US − OS

and the set ES of edges given by

ES = {(m, m′) ∈ VS × VS | ES(m′, m) > 0}

is a rooted graph with the root rS , i.e., GS is an acyclic graph and
for every m ∈ VS there exist a natural number n > 0 and a route
m1 . . . mn in GS whose first element m1 is rS and the last element mn

is m, where a route in a directed graph G is meant to be a finite string
v1 . . . vn with n > 0 of vertices of G such that if n > 1, then (vi, vi+1)
is an edge of G for all i with 1 ≤ i < n.

The sets US , OS , US −OS are called the universe of S, the set of objects

of S, the set of membranes of S, respectively, the function ES is called the
immediate nesting relation of S, and rS is called the root or the skin of S.

The immediate nesting relation ES of a D-relational membrane system S

is interpreted in the following way:

— for D = N the value ES(x, y) means that exactly ES(x, y) copies of
part x are immediately nested in part y,

— for D = [0, 1] the value ES(x, y) means that with certainty degree
ES(x, y) part x is immediately nested in part y.

Thus [0, 1]-relational membrane systems are fuzzy relational membrane
systems.

If S is a finite N -relational membrane system whose underlying graph
GS is a tree, i.e., for every m ∈ VS there exist a unique route in GS whose
first element is rS and the last element is m, and the following condition
holds:

iii) ES(m, m′) ≤ 1 for all m, m′ ∈ US − OS ,
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then S is a usual membrane system whose set of membranes is US − OS ,
the set of objects is OS , GS corresponds to the membrane structure of S

in Păun’s sense, and for all m ∈ US − OS and a ∈ OS the value ES(a, m)
means that exactly ES(a, m) copies of a are contained in the region of m.

For every hereditary finite set x with urelements in L the character-
istic function of the restriction of the membership relation ∈ to the set
WTC(x) ∪ L is the immediate nesting relation of that N -relational mem-
brane system whose universe is WTC(x) ∪ L and the set of objects is L.

For every finite N -relational membrane system S satisfying the condition

iv) ES(x, y) ≤ 1 for all x, y ∈ US ,

one constructs a hereditary finite set hf(S) over US such that S is isomorphic
to that N -relational membrane system S′ whose universe is
WTC(hf(S)) ∪ OS and the immediate nesting relation ES′ of S′ is the
characteristic function of the restriction of the membership relation ∈ to
WTC(hf(S)) ∪ OS .

The set hf(S) is defined inductively by

hf(S) = {a ∈ OS | ES(a, rS) > 0} ∪ {rS}

∪ {hf(S(m)) | ES(m, rS) > 0 and m ∈ US − OS},

where S(m) is that subsystem of S whose immediate nesting relation ES(m)

is the restriction of ES to the set

US(m) = {m′ ∈ US − OS | there exists a route in GS

with the first element m and the last element m′} ∪ OS

and m is the root of S(m).
The construction of hf(S) appears useful for a discussion of certain evo-

lutive transformations of N -relational membrane systems which are deter-
mined by simultaneous applications of different evolution rules. Namely,
these evolutive transformations can be described in terms of hereditary fi-
nite sets hf(S) by using set theoretical operations of the union, the inter-
section, the difference of sets, and that unary operation {?} whose value is
{x} for a hereditary finite set x. We begin with a description of evolutive
transformations of hereditary finite sets themselves.

We consider those evolutive transformations of hereditary finite set into
hereditary finite sets which are determined by evolution rules written in
Păun’s manner as the parenthese expressions:

R1) [a] → b (dissolution rule),
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R2) [a][b] → [b[a]] (in-rule),

R3) [[a]] → [a][ ] (out-rule),

where a, b are urelements.
The single applications from the top of the above rules to hereditary

finite sets are described in the following way:

— if a ∈ y ∈ x ∈ HF, then the dissolution rule [a] → b can be applied

to x and the result of its application is a new hereditary finite set of
the form

(x − {y}) ∪ (y − {a}) ∪ {b},

— if a ∈ y ∈ x ∈ HF, b ∈ z ∈ x, and z 6= y, then the in-rule [a][b] → [b[a]]
can be applied to x and the result of its application is a new hereditary
finite set of the form

(x − {y, z}) ∪ {z ∪ {y}},

— if a ∈ z ∈ y ∈ x ∈ HF and y − {z} 6= ∅, then the out-rule [[a]] → [a][ ]
can be applied to x and the result of its application is a new hereditary
finite set of the form

(x − {y}) ∪ {y − {z}, z}.

The above described single applications of evolution rules R1), R2), R3)
from the top determine evolutive transformations of hereditary finite sets
into the new hereditary finite sets from the top. One can describe by us-
ing ∪, −, and {?} a more complicated case of evolutive transformations of
hereditary finite sets, where these transformations are determined by simul-
taneous applications of many different rules to many different elements of
WTC(x) for a hereditary finite set x to be transformed and those elements
are not necessarily the elements of x itself.

The evolutive transformations of hereditary finite sets considered above
can be “transferred” to N -relational membrane systems by using the con-
struction of hf(S) to define evolutive transformations of N -relational mem-
brane systems themselves. These evolutive transformations of N -relational
membrane system can be then applied to verify correctness of massively par-
allel computations realized by evolution processes of N -relational membrane
systems.
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Appendix

For a potentially infinite set L of labels or names which are urelements, i.e.,
they are not (treated as) sets themselves, we define inductively a family of
sets HFi for natural numbers i ≥ 0 such that

HF0 = ∅,

HFi+1 = the set of nonempty finite subsets of L ∪ HFi.

The elements of the union HF =
⋃
{HFi | i ≥ 0} ∪ {∅} are called hereditary

finite sets over L or hereditary finite sets with urelements in L, or simply
hereditary finite sets if there is no risk of confusion.

For x ∈ HF we define its weak transitive closure WTC(x) by

WTC(x) =
⋃

{WTC(y) |y ∈ x and y ∈ HF} ∪ {x}.
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Abstract

In the last time several attempts to decrease different complexity
parameters (number of membranes, size of rules, number of objects
etc.) of universal P systems were done. In this article we consider
another parameter which was not investigated yet: the number of rules
of the system. We show that 8 rules suffice to recognise any recursively
enumerable language if splicing tissue P systems are considered.

1 Introduction

P systems were introduced by Gh. Păun in [6] as distributed parallel com-
puting devices of biochemical inspiration, specifically, starting from the
structure and the functioning of a living cell. The cell is considered as a
set of compartments (membranes) nested one in another and which contain
objects and evolution rules. The base model does not specify neither the
nature of these objects, nor the nature of rules. Numerous variants specify
these two parameters by obtaining a lot of different models of computing,
see [11] for a comprehensive bibliography.

The inspiration for tissue P systems comes from two sides. On one hand,
P systems previously introduced may be viewed as transformations of labels
associated to nodes of a tree. Therefore, it is natural to consider same
transformations on a graph. On the other hand, they may be obtained by
following the same reflections as for P systems, but starting from a tissue of
cells and not from a single cell.
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Tissue P systems were first considered by Gh. Păun and T. Yokomori
in [8] and [9]. They have richer possibilities and the advantages of new
topology have to be investigated.

There are many results dealing with the descriptional complexity of (tis-
sue) P systems. In most of the cases, the main complexity parameter of
such systems – the number of membranes/cells is investigated. Recently,
other parameters such as the size of rules or the number of objects started
to be investigated. For example, in [5, 1] systems having a minimal number
of objects are investigated.

In this article we consider another complexity parameter, the number of
rules, which has not been investigated yet. We take a particular class of
tissue P systems, splicing tissue P systems, which is a mixture of tissue P
systems and splicing Head systems and which were introduced by Gh. Păun
in [6]. In this case, we show that systems having 8 rules are universal
and that they can recognise any recursively enumerable language modulo a
suitable codification.

2 Definitions

We do not present here definitions concerning concepts of the theory of
formal languages. We refer to [3] and [10] for more details. We only remark
that we denote the empty word by ε.

A tag system of degree m > 0, see [2] and [4], is a triplet T = (m, V, P ),
where V = {a1, . . . , an+1} is an alphabet and where P is a set of productions
of form ai → Pi, 1 ≤ i ≤ n, Pi ∈ V ∗. The symbol an+1 is called a halting
symbol. A configuration of the system T is a word w. We pass from the
configuration w = ai1 . . . aimw′ to the next configuration z by erasing the
first m symbols of w and by adding Pi1 to the end of the word: w ⇒ z, if
z = w′Pi1 .

The computation of T over the word x ∈ V ∗ is a sequence of configu-
rations x ⇒ . . . ⇒ y, where either y = an+1ai1 . . . aim−1y

′, or y′ = y and
|y′| < m, where |w| is the length of word w. In this case we say that T halts
on x and that y′ is the result of the computation of T over x. We say that
T recognises the language L if for all x ∈ L, T halts on x, and T halts only
on words from L.

We note that tag systems of degree 2 are able to recognise the family
of recursively enumerable languages, see [2] and [4]. Moreover, systems
constructed in [2] have non-empty productions and halt only by reaching
the symbol an+1 in first position.
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2.1 Splicing Operation

By an (abstract) molecule we understand a word over an alphabet.
A splicing rule (over an alphabet V ) is a 4-tuple (u1, u2, u3, u4) where

u1, u2, u3, u4 ∈ V ∗. It is frequently written as u1#u2$u3#u4, {$, #} 6∈ V , or

in two dimensions as
u1 u2

u3 u4

. Strings u1u2 and u3u4 are called splicing

sites. The diameter of splicing rule u1#u2$u3#u4 is the following vector
(|w1|, |w2|, |w3|, |w4|).

We say that a word x matches rule r if x contains an occurrence of one of
the two sites of r. We also say that x and y are complementary with respect
to a rule r if x contains one site of r and y contains the other one. In this
case we also say that x or y may enter rule r. When x and y can enter a
rule r = u1#u2$u3#u4, i.e., we have x = x1u1u2x2 and y = y1u3u4y2, it
is possible to define the application of r to couple x, y. The result of this
application is w and z where w = x1u1u4y2 and z = y1u3u2x2. We also say
that x and y are spliced and w and z are the result of this splicing. We
write this as follows: (x, y) ⊢r (w, z) or

x1u1 u2x2

y1u3 u4y2

⊢r
x1u1u4y2

y1u3u2x2

.

The pair σ = (V, R) where V is an alphabet and R is a set of splicing
rules is called a splicing scheme or an H-scheme.

For a splicing scheme σ = (V, R) and for a language L ⊆ V ∗ we define:

σ(L)
def
= {w, z ∈ V ∗ | ∃x, y ∈ L,∃r ∈ R : (x, y) ⊢r (w, z)}.

Now we can introduce the iteration of the splicing operation.
σ0(L) = L,
σi+1(L) = σi(L) ∪ σ(σi(L)), i ≥ 0,
σ∗(L) = ∪i≥0σ

i(L).
The iterated splicing preserves the regularity of a language:

Theorem 1. [7] Let L ⊆ T ∗ be a regular language and let σ = (T, R) be a
splicing scheme. Then language σ∗(L) is regular.

2.2 Splicing Tissue P Systems

A splicing tissue P system of degree m ≥ 1 is a construct

Π = (V, T, G, A1, . . . , Am, R1, . . . , Rm),

where V is a finite alphabet, T ⊆ V is the terminal alphabet and G is the
underlying directed labeled graph of the system. The graph G has m nodes
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(cells) numbered from 1 to m. Each node has a label that contains a set of
strings (a language) over V . The symbols A1, . . . , Am are finite sets of strings
over V that give initial labels of nodes of G. Symbols Ri, 1 ≤ i ≤ m are
finite sets of rules (associated to regions) of the form (r; tar1, tar2), where
r is a splicing rule: r = u1#u2$u3#u4 and tar1, tar2 ∈ {here, goj , out},
1 ≤ j ≤ m are target indicators.

A configuration of Π is the m-tuple (N1, . . . , Nm), where Ni ⊆ V ∗. A
transition between two configurations (N1, . . . , Nm) ⇒ (N ′

1, . . . , N
′
m) is de-

fined as follows. In order to pass from one configuration to another, splicing
rules of each node are applied in parallel to all possible words that belong to
the label of that node. After that, the result of each splicing is distributed
according to target indicators. More exactly, if there are x, y in Ni and
r = (u1#u2$u3#u4; tar1; tar2) in Ri, such that (x, y) ⊢r (w, z), then words
w and z are sent to nodes indicated by tar1, respectively tar2. We write
this as follows (x, y) ⊢r (w, z)(tar1, tar2). If tark = here, k = 1, 2 then the
word remains in node i; if tark = goj , then the word is sent to node j (it is
clear that there must be an edge (i, j) in G); if tark = out, the word is sent
outside of the system.

Since the words are present in an arbitrary number of copies, after the
application of rule r in node i, words x and y are still present in the same
node.

A computation in a splicing tissue P system Π is a sequence of transi-
tions between configurations of Π which starts from the initial configuration
(A1, . . . , Am). The result of the computation consists of all words over ter-
minal alphabet T which are sent outside the system at some moment of the
computation. We denote by L(Π) the language generated by system Π.

We also define the notion of an input for the system above. An input
word for a system Π is simply a word w over the non-terminal alphabet of
Π. The computation of Π on input w is obtained by adding w to the axioms
of A1 and after that by evolving Π as usual.

We denote by ELStPm(spl, go) the family of languages generated by
tissue splicing P systems having a degree at most m.

We shall consider a restriction of splicing tissue P systems. A restricted
splicing tissue P system is a special class of splicing tissue P systems which
has the property that for any rule (r; tar1, tar2) either tar1 = tar2 = goj ,
or tar1 = tar2 = out. This means that both resulting strings are moved
over the same connection. In this case, we may associate splicing rules to
corresponding edges. If both targets are out, then we associate the splicing
rule with an edge going to a special node called out. A restricted splicing
tissue P system will be denoted as (V, T, G, A1, . . . , Am, R), where V , T , G,
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and Ai, 1 ≤ i ≤ m, have the same meaning as before and R is a set of
splicing rules associated to edges.

3 Main Results

Let V = {a1, . . . , an} be an alphabet. Consider coding functions c and c̄

defined as follows: c(ai) = αiβ and c̄(ai) = βαi. We extend these functions
to words and put c(w) = c(b1) . . . c(bm) if w = b1 . . . bm.

Theorem 2. Let TS = (2, V, P ) be a tag system and w ∈ V ∗. Then, there
is a restricted splicing tissue P system Π = (V ′, T, G, A1, . . . , Am, R), having
8 rules, which given the word Xc(w)Y as input simulates TS on input w,
i.e. such that:

1. for any word w on which TS halts producing the result w′, the system
Π produce an unique result Xc(w′)Y .

2. for any word w on which TS does not halt, the system Π computes
infinitely without producing a result.

Proof. We construct the system Π as follows.
Let |V | = n.
V ′ = {α, β, X, Y, Z}, T = {X, Y, α, β}.
The graph G and rules from R are given below:

��
��

1 ��
��

2 ��
��

3

��
��

5 ��
��

4

-

�

6

?

j

Y

1

out

HHHHHHHHY

1 : β Y

Z α

2 : ε αY

Z Y

3 : Xα ε

X Z

4 : ε βY

Z Y

5 : Xβ ε

X Z6 : Xα α

X Z

7 : Xβ α

X Z

8 : X c(a
n+1)

X Z
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The initial languages Aj are given as follows.
A1 = {Zc(Pi)c̄(ai)Y | ai → Pi ∈ P} ∪ {XZ}, A2 = {ZY }, A3 = A4 =

A5 = {XZ}.
The main idea of the construction is the following. Using rule 1 one

attaches a production Pi and symbol ai, 1 ≤ i ≤ n at the end of the word
(in this way a guess is made about the first symbol of the word). After
that, indices of the first and the last symbol are decreased simultaneously
by taking off one α (since all symbols are coded in unary alphabet this
decreases the index of the symbol). This work is done by rules 2 and 3.
When the same number of α is present at both ends of a string, i.e., both
indices coincide, the system removes one more symbol and the string returns
to node 1 where it may be processed again. The check for equality is made
by rules 4 and 5, while the elimination of the second symbol is done by rules
6 and 7. When a symbol an+1 begins the string, rule 8 is used and the
resulting string is sent outside of the system. It is quite obvious that the
system simulates in this way productions of the tag system. It is also clear
that a successful computation in TS may be reconstructed from a successful
computation in Π. For this it is enough to look at strings of form XwY in
node 1.

Remark 1. It is clear that the alphabet V ′ may be reduced to two elements
by reencoding letters X, Y, Z, α, β in binary alphabet.

Hence the system constructed above needs 8 rules, 2 symbols and n + 5
initial axioms. The diameter is given in the following table:

Rule(s) Diameter

1 (1, 1, 1, 1)

2, 4 (0, 2, 1, 1)

3, 5 (2, 0, 1, 1)

6, 7 (2, 1, 1, 1)

8 (1, n + 2, 1, 1)

It is easy to observe that if we put c(an+1) = ββ, then the last diameter
becomes (1, 2, 1, 1), hence the diameter of the whole system is (2, 2, 1, 1).

4 Conclusions

In this work we investigated a different complexity parameter of (tissue)
P systems – the number of rules – which was not investigated before. We
showed that it is possible to construct a universal system having only 8
rules. In order to achieve this, we used a particular class of splicing tissue
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P systems. An open problem raised by this result is if the above number is
minimal. Other open problems concern the minimal number of rules in the
case of ordinary P systems or P systems with symbol-objects.
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[9] Gh. Păun, T. Yokomori: Membrane computing based on splicing. In:
E. Winfree, D. K. Gifford (Eds.): DNA Based Computers. American
Mathematical Society (1999), 217–232.

[10] G. Rozenberg, A. Salomaa:Handbook of Formal Languages. Springer-
Verlag, Berlin (1997).

[11] The P Systems Web Page http://psystems.disco.unimib.it/

516



Modeling the Dynamical Parallelism of

Bio-Systems
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Abstract

Among the many events that occur in the life of biological organ-
isms are a multitude of specific chemical transformations, which pro-
vide the cell with usable energy and the molecules needed to form its
structure and coordinate its activities. These biochemical reactions as
well as all other cellular processes are governed by basic principles of
chemistry and physics. A significant factor that determines whether
or not reactions could take place is the entropy and it measures the
randomness of the system. This measure depends on various factors
like degrees of freedom (movement, vibration) for molecules, order in
the solution, number of molecules, etc. In an abstract framework, all
these factors that describe the way molecules interact can be expressed
by means of a multivalued function that depends on the current state
of the system. Inspired by these facts, here we introduce and study
several bio-mimetic computational systems that use rewriting rules,
working in a degree of parallelism (specified by a multivalued func-
tion) that depends on the current state of the system. Moreover, we
are interested by systems that produce the same output, independently
of the multivalued mappings considered.

1 Introduction

In nature, we often find biological systems (but not only) that are not nec-
essarily homogeneous, consisting of many discrete, interacting entities that
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have a certain physical spatial distribution. This fact suggests that even if
these entities interact in a parallel manner, they obey to some local condi-
tions (concentration for instance) and therefore the interaction parallelism
cannot be considered as maximal or fixed, but as a variable that depends
on the state of the system.

For example, at the cell level, bimolecular mechanisms are the result
of many different chemical reactions that take place with a certain degree
of mutual independence but such that they finally (and amazingly) exhibit
an overall co-ordination. Traditionally these behaviors were modeled using
the theory of partial derivative equations and nonlinear dynamical systems.
However, this approach usually gave the general evolution and the dynamics
of the system but not always giving the exact solution. From the discrete
point of view, the interest was mainly in inferring the properties of the lan-
guages generated by such bio-inspired models. Although discrete models of
complex phenomena may generate errors, the magnitude of the errors can
be arbitrarily reduced by considering a better granularity of the phenom-
enon. This approach leads in general to a high computational effort, so a
more efficient way of studying properties of bio-systems might be to consider
discrete formal systems that have embedded into their formal description a
certain degree of randomness that describes the way systems evolve.

One such property regards the measure of parallelism. From this point
of view, using biochemical reasoning, one might predict for instance that
given a particular state of a bio-system and the rules that make it evolves,
an approximate next state is reached after a particular time. Basically, even
if one does not know the exact number of times the rules are applied, one
knows that after a particular time the reactions that had the potential to
be applied, were actually accomplished in an approximate rate with respect
to the state of the system.

Moreover, from the computer science point of view, in case we are trying
to make use of bio-systems as computational devices we should be able to
control their behavior no matter the rate of parallelism occurring within
them. Therefore, we are interested in systems that one might call “parallel
fault tolerant” meaning that they produce the same output no matter which
is the “evolution” of the parallelism. This assumption might also have a bi-
ological counterpart, namely natural sub-systems are able to regulate them-
selves and replace, in case is needed, the functions of other sub-systems such
that the overall system can realize the same task. From this point of view
one can assume that a complex bio-system (like a cell or whatever organism)
has the ability to reach a “desired” state, no matter how local decisions were
made.
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Here we will consider two bio-mimetic models, namely Lindenmayer sys-
tems, inspired by the development of multi-cellular organisms and P system
with promoters/inhibitors, inspired by the enzyme activation/deactivation
process, occurring in the cells.

We assume the reader to be familiar with basic notions of Lindenmayer
systems and P systems.

2 On the Dynamical Parallelism of L Systems

In this section we extend the classical definitions of Lindenmayer systems
in order to fit a more general perspective. Such systems model biological
developments in which parts of organism change simultaneously but not in
the total parallel manner as in the classical Lindenmayer theory, but with
respect to the current state of the organism. Several results regarding the
computational power of these systems are also presented.

Given a set B, the set of all subsets of B is denoted by 2B. Given another
set A, a map F : A → 2B is called a multivalued map, from A into B. The
special case where F (x) is the singleton {F (x)} for every x ∈ A will be
emphasized by using the term single-valued (or simply a map) for F .

Definition 2.1 An M -rate 0L system, denoted by M0L, is a triplet H =
(V, P, ω), where V = {a1, . . . , am} is a finite alphabet, P is a set of rules of
the form i : (a → α, Fi), a ∈ V , α ∈ V ∗, Fi : V ∗ → 2IN , such that Fi(z) ∈
P({0, 1, 2, . . . , |z|a}), for all z ∈ V ∗, is a partially defined multivalued map,
and ω ∈ V ∗ is the axiom. The set of rules P has to be complete, i.e., for
each symbol a ∈ V there must exist at least one rule i : (a → α, Fi) ∈ P
with this letter a on the left side.

Consider the partition P = P1 ∪ P2 ∪ . . . ∪ Pm where Pk = {(ak →
α, F ) | (ak → α, F ) ∈ P}. Denote tk = |Pk| and let Pk = {(ak →
α1, F(k,1)), . . . , (ak → αtk , F(k,tk))}.

M0L systems use M -rate parallel derivations, i.e., x directly derives y

in a M0L system H = (V, P, ω), with x, y ∈ V ∗, written as x
MOL
=⇒H y,

providing that a rule (ak → αi, F(k,i)) ∈ Pk, 1 ≤ k ≤ m, 1 ≤ i ≤ tk,
is applied (nondeterministically choosing the positions of symbols ak to be
rewritten in x):

• j times, j ∈ F(k,i)(x), if

|x|ak
≥

tk∑

h=1

lh,
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where (l1, . . . , ltk) ∈ F(k,1)(x) × F(k,2)(x) × . . . × F(k,tk)(x) or at most
j times, j ∈ F(k,i)(x) (with competition on symbols if |Pk| ≥ 2, non-
deterministically choosing the rules) otherwise. This type of applying
the rules is called the weak mode.

• max(1, j) times, j ∈ F(k,i)(x), if

|x|ak
≥

tk∑

h=1

lh,

where (l1, . . . , ltk) ∈ F(k,1)(x) × F(k,2)(x) × . . . × F(k,tk)(x) or at most
j times, j ∈ F(k,i)(x) (with competition on symbols if |Pk| ≥ 2, non-
deterministically choosing the rules) but at least one time if possible,
otherwise. This type of applying the rules is called the strong mode.

Remark 2.1 Here we have defined the most general case by considering that
multivalued functions, depending on the current state of the system, control
the applications of rules. This assertion can be more intuitively understood
if we express this mathematical formalism by means of percentages. For a
given state of a bio-system (specified by a multiset w), one can predict that a
certain rule, say a → α, is to be applied on the multiset w in a rate specified
by a value in the interval (x, y) ⊆ (0, 1). Therefore, in that computational
step, the rule a → α is applied a number of times

[
x · |w|a

]
≤ i ≤

[
y · |w|a

]
.

However, when generalizing this concept, we might assume that there are
more than one interval that control the applications of rules, and this bring
us to the formalism above introduced.

The strong mode of derivation imposes the restriction that a rule, if it has
all required objects, will be executed at least one time (of course, respecting
the competition with other rules).

Definition 2.2 An M -rate T0L system, denoted by MTOL, is a triplet
H = (V, T, ω), where V is a finite alphabet, T = {T1, · · · , Tk} is a finite set
of tables over V , where each table Ti, 1 ≤ i ≤ k, is a complete set of CF
rules over V , and ω ∈ V ∗ is the axiom. We say that x directly derives y in

a MT0L system H = (V, T, ω), with x, y ∈ V ∗, written as x
MTOL
=⇒ H y, if

x
OL
=⇒Hi

y for some i, 1 ≤ i ≤ k, with the 0L system Hi = (V, Ti, ω).

Definition 2.3 An M -rate ET0L system, denoted by MET0L, is a quadru-
ple H = (V, T, ω, ∆), where H = (V, T, ω) is an MT0L system, and ∆ ⊆ V ,
∆ 6= ∅, is the terminal alphabet. In an MET0L system H = (V, T, ω, ∆), x
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directly derives y, with x, y ∈ V ∗, written as x
METOL

=⇒ H y, if x
MTOL
=⇒ H y.

The transitive and reflexive closure of
METOL

=⇒ H is denoted by
METOL

=⇒∗
H .

The generated language of the MET0L system H (denoted by L(H)) is

L(H) = {w ∈ ∆∗ | ω
METOL

=⇒∗
H w}

Definition 2.4 An M0L (or MT0L, MET0L) system generating the same
language independently of the multivalued mappings associated with the rules
is called parallel-free M0L (or MT0L, MET0L respectively) system.

The families of languages generated by M0L (or MT0L, MET0L) sys-
tems working in the strong mode are denoted by M0Ls (MT0Ls, MET0Ls

respectively).
The families of languages generated by M0L (MT0L, MET0L respec-

tively) systems working in the weak mode are denoted by M0Lw (MT0Lw,
MET0Lw respectively).

When we speak about above mentioned families of languages, we will
denote the parallel-free property by adding the superscript pf .

We denote by U = {L | |L| = 1} the family of all singleton languages.
We have the following results.

Theorem 1 MET0Lw,pf = ME0Lw,pf = U ∪ {∅}.

Proof. The reason is trivial, because a system working in parallel-free mode
means that whatever multivalued mappings associated with rules we choose,
the system produces the same output; in addition, because the system works
in a weak mode then it means that certain rules might not be applied at
all even if there are objects (but not enough) that are within the scope
of them. So, one can choose the multivalued mappings in such a manner
that the rules cannot be applied at all. Therefore, such systems generate
languages containing at most the systems axiom. 2

Using a similar argument one can prove that:

Theorem 2 MT0Lw,pf = M0Lw,pf = U.

Example 2.1 Let H = (V, P, ω) be a M0Ls system such that:
V = {a, b, c},
P = {1 : (a → aa, F1(w)) with F1(w) = 0 for all w ∈ V ∗,

2 : (b → bb, F2(w)) with F2(w) = 0 for all w ∈ V ∗,
3 : (c → cc, F3(w)) with F3(w) = 0 for all w ∈ V ∗},

ω = abc
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The system H generates the language LH = {anbncn | n ≥ 1}.

Theorem 3 ME0Lw = MET0Lw ⊃ RE.

Proof. The proof is based on the argument that there is no constraint
on how the multivalued mappings are chosen. In particular one can choose
the mappings such that there exists a system that simulates the moves of
a deterministic Turing machine (the computation of the Turing machine is
“stored” into the mappings). Moreover, there exist uncomputable multival-
ued mappings associated to rules such that the system generates a language
which is not in RE.

Here is an example of such a system. Let us consider the function f :
M −→ {0, 1} where M ⊂ IN is an uncomputable set, such that f(n) ={

1, n ∈ M,

0, n 6∈ M.
Obviously, f is an uncomputable mapping.

We define the a ME0Lw system H = (V, P, ω, ∆) where V = {a, b},
ω = a, ∆ = {b} and the set P contains the following rules:

(a → ab, F1), such that F1(w) = 1 for all w ∈ V ∗;
(a → b, F2), such that F2(w) = f(|w|) for all w ∈ V ∗.

If the first rule is applied, then the system generates abn, n ∈ IN . At any
moment, nondeterministically, rule (a → b, F2) can be selected to be applied.
A terminal string is obtained iff the rule is applied and the symbol a is
transformed into symbol b. In this way the system H generates the language
{bn+1 | n + 1 ∈ M}. Consequently, L(H) ∩ b+ = {bn | n ∈ M} /∈ RE, hence
L(H) /∈ RE. 2

Example 2.2 The language L = {a, a3} is not MOLs,pf (or MT0Ls,pf )
language. This is proved by contradiction as follows. If there exists a
MOLs,pf system H = (V, P, ω) such that L(H) = {a, a3} then, since ob-
viously V = {a}, we have two cases: (i) ω = a and a ⇒ a3, hence a3 ⇒ ak,
k 6= 1, 3, therefore a contradiction; (ii) w = a3, hence a ⇒ a and a ⇒ λ.
Thus a3 ⇒ a2 and so a2 ∈ L(G), therefore a contradiction.

Obviously, the following results stand:

Proposition 1 MT0Ls,pf ⊂ RE.

Proposition 2 M0Ls,pf ⊂ RE.

Now, we will prove that there exists a class of ET0L systems that are
independent of the multivalued mappings associated to the rules and which
are able to generate the whole class of ET0L languages.
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Theorem 4 MET0Ls,pf = ET0L.

Proof. We prove this result by double inclusion.

(1) MET0Ls,pf ⊇ ET0L.

Consider an ET0L system H̃ = (Ṽ , T̃ , ω̃, ∆̃) such that T̃ = {T̃1, T̃2}.
Let h1 : Ṽ ∗ → V

∗
be a morphism such that h1(a) = a, a ∈ Ṽ . Also, let

h2 : Ṽ ∗ → V
∗

be a morphism such that h2(a) = a, a ∈ Ṽ .
We will simulate the computation of the system H̃ with an MET0L

system H = (V, T, ω, ∆) defined as follows.
• V = Ṽ ∪ {h1(A), h2(A) | A ∈ Ṽ } ∪ {t1, t2, t3, t4} ∪ {#};
• T = {T1, T2, T3, T4}, where

T1 = {(A → h1(α)t1, F ) for all A → α ∈ T̃1}

∪ {(h1(A) → h1(A), F ) for all A ∈ Ṽ }

∪ {(h2(A) → #, F ) for all A ∈ Ṽ }

∪ {(# → #, F ), (t1 → λ, F ), (t2 → #, F ), (t3 → #, F ), (t4 → #, F )},

T2 = {(A → A, F ) for all A ∈ Ṽ }

∪ {(h1(A) → At2, F ) for all A ∈ Ṽ }

∪ {(h2(A) → #, F ) for all A ∈ Ṽ }

∪ {(# → #, F ), (t1 → #, F ), (t2 → λ, F ), (t3 → #, F ), (t4 → #, F )},

T3 = {(A → h2(α)t3, F ) for all A → α ∈ T̃2}

∪ {(h1(A) → #, F ) for all A ∈ Ṽ }

∪ {(h2(A) → h2(A), F ) for all A ∈ Ṽ }

∪ {(# → #, F ), (t1 → #, F ), (t2 → #, F ), (t3 → λ, F ), (t4 → #, F )},

T4 = {(A → A, F ) for all A ∈ Ṽ }

∪ {(h2(A) → At4, F ) for all A ∈ Ṽ }

∪ {(h1(A) → #, F ) for all A ∈ Ṽ }

∪ {(# → #, F ), (t1 → #, F ), (t2 → #, F ), (t3 → #, F ), (t4 → λ, F )};

• ω = ω̃;
• ∆ = ∆̃.

Here is how the construction is done. We want to simulate the applica-
tions of H̃ tables; to this aim let us assume, without loosing the generality,
that first T̃1 is simulated. So, in H, at the beginning, one table is chosen
nondeterministically; in case table T2 or T4 is chosen, then the computation
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will not stop because at least one rule of type (A → #, F ) will be applied at
least one time (recall that our constructed system is working in the strong
sense) and therefore the symbol # will never be removed. If table table
T1 (or T3) is chosen then rules of type (A → h1(α)t1, F ) will be executed.
However because the parallelism is not necessarily maximal but depends on
the multivalued mappings associated to rules, then not necessarily all sym-
bols A from the current sentential form will be rewritten. Now, assume that
there are still symbols A not rewritten despite the existence of rules han-
dling symbol A. In addition, remark that there exists at least one symbol
from V . If this is the case, observe that if any other table is chosen for a
next application then symbol # is produced (because, for sure there will be
applied a rule of type (A → #, F ) ∈ T2, (h1(A) → #, F ) ∈ T3, (t1 → #, F )
or (h1(A) → #, F ) ∈ T4). Therefore, the only table that can be applied
and that does not produce the symbol # is again T1. Finally, all symbols
A ∈ V will be rewritten by table T1 and all symbols t1 will be deleted, and
in the sentential form we will have only overlined symbols. At that moment,
if we choose to apply any other table except T2 the symbol # is again pro-
duced. In case table T2 is applied, then with a similar mechanism as before,
the system checks whether or not all overlined symbols are rewritten into
regular ones. Again, during this checking procedure if we choose to apply
another table other than T2, symbol # is produced. The simulation of the
application of table T̃2 follows a similar pattern.

Observe that the strong working mode feature is essential because if at a
certain moment a wrong table is chosen for application, then we have to be
sure that at least one symbol # is produced, hence a rule has to be applied
at least once if it can be applied.

It is easy to see that the constructed system generates the same language
as the arbitrarily considered ET0L. Consequently, we have that

MET0Ls,pf ⊇ ET0L

(2) ET0L ⊇ MET0Ls,pf .
In order to prove this inclusion, we will simulate the computation of an ar-
bitrary MET0Ls,pf system H = (V , T , ω, ∆) with an ETOL system H =
(V, T, ω, ∆) we construct. First, remark that because the system H is
parallel-free, then, no matter how the multivalued mappings associated with
rules are chosen, the result of the computation is the same. In particular
one can associate with all rules of the system the multivalued mappings
such that, during the computation, the rules are applied in a total parallel
manner (as for L systems).
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Therefore H is defined as follows:
• V = V ;
• T = {T1, T2, . . . , Tk} providing that T = {T1, T2, . . . , Tk};
• ω = ω;
• Ti = {A → α | (A → α, F ) ∈ Ti, 1 ≤ i ≤ k};
• ∆ = ∆.

Observe that in an ET0L system, when a certain table is applied, if a
rule can be applied then it will be applied (of course respecting the nonde-
terminism if exists). This corresponds to the strong mode of derivation for
MET0L systems.

Consequently, we have that ET0L ⊇ MET0Ls,pf .
2

3 On the Dynamical Parallelism of P Systems

In this section we will extend the definition of another formal bio-inspired
model – P Systems. However, we will focus only on a particular model
motivated by the cell enzyme activation/deactivation mechanism, namely P
systems with promoters/inhibitors.

Definition 3.1 A P system with M -rate derivations (in short, a PM sys-
tem) of degree m ≥ 1, with catalysts and promoters is a construct

Π = (V, C, P, µ, w1, . . . , wm, R1, . . . , Rm, i0),

where:
• V is an alphabet; its elements are called objects;

• C ⊆ V is a distinguished subset of the alphabet, called the set of cata-
lysts;

• P ⊆ V is a distinguished subset of the alphabet, called the set of pro-
moters;

• µ is a membrane structure consisting of m membranes labeled 1, . . . , m;

• wi, 1 ≤ i ≤ m, specify the multiset of objects present in the corre-
sponding regions at the beginning of the computation;
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• Ri, 1 ≤ i ≤ m, are finite sets of evolution rules over V associ-
ated with regions 1, 2, . . . , m of µ; we have non-cooperative rules, of the
form (a → v, F ), where a is an object from V \ C, v is a string over
{ahere, aout | a ∈ V \ C} ∪ {ainj

| a ∈ V \ C, 1 ≤ j ≤ m}, and F : V ∗ →

2{0,1,...,|z|a}, z ∈ V ∗, is a partially defined multivalued mapping; catalytic
rules (ca → cv, F ), where a is an object from V \ C, v is a string over
{ahere, aout | a ∈ V \C}∪{ainj

| a ∈ V \C, 1 ≤ j ≤ m} and c ∈ C; promoted
rules (a → v|t, F ) and (ca → cv|t, F ), with t ∈ P , c ∈ C, a is an object
from V \ C, and v is a string over {ahere, aout | a ∈ V \ C} ∪ {ainj

| a ∈

V \ C, 1 ≤ j ≤ m}, and F : V ∗ → 2{0,1,...,|z|a}, z ∈ V ∗ (when there is no
ambiguity on the target, inj is simply written as in);

• i0 ∈ {0, 1, · · · , m} specifies the output region of Π (0 indicates the
environment).

Similarly as defined for MOL systems in Section 2 we can define the
M -strong rate and the M -weak rate modes of derivation for P systems. The
main differences consist on considering multisets instead of strings and the
usage of catalysts that represent another “tool” for controlling the degree of
the parallelism.

Remark. The definitions of the derivation modes can be extended and
generalized also for cooperative (other than catalytic rules) types of rules.
One method of doing this is to consider a multifunction that maps each
string x a maximal multiset of rules that are applicable to x. In this way, the
function determines for each configuration which are the applicable multisets
of rules. In addition the whole nondeterminism of the system is embedded
in the way the multiset of applicable rules is chosen.

The model of computation that implies a variable parallelism which de-
pends on the current configuration represents an extension of maximal par-
allel rewriting and it can be adapted to many other rewriting systems (other
variants of P systems, Lindenmayer systems, etc).

We use the notation:

PsPα
m(β, proR), β ∈ {ncoo, coo} ∪ {catk | k ≥ 0},

to denote the family of sets of vectors of natural numbers generated by
P systems with M–strong mode derivations (α = MS), or with M -weak
mode derivations (α = MW ) respectively, having at most m membranes,
evolution rules that can be non-cooperative (ncoo), cooperative (coo), or
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catalytic (catk), using at most k catalysts, and promoters (proR) at the
level of rules.

Example 3.1 Consider the P system Π = (V, P, C, µ, w, R, ϑ) defined as
follows:

V = {a, p};

P = {p};

C = ∅;

µ = [ ]1;

w = a2p;

R = {(a → aaa|p, F1(w)) with F1(w) = {[0.5 ∗ |w|a]} for all w ∈ V ∗),

(p → p, F2(w)) with F2(w) arbitrary ,

(p → λ, F3(w)) with F3(w) arbitrary };

ϑ = 1.

Let us see how this system works. Assume that rule r1 : (a → aaa|p, F1)
is applied k times. Then we have:

|w|a = |w1|a = 2;

|w2|a = 6;

|w3|a = 14;

· · · · · · · · · · · · · · · · · · · · · · · ·

|wk|a = ([|wk−1|a ∗ 0.5] + 1) ∗ (right(r1)

+ |wk−1|a − ([|wk−1| ∗ 0.5] + 1)

= 2 ∗ (1 + [|wk−1| ∗ 0.5] + |wk−1|a

Observe that if |w1|a
...2 ⇒ |wk|a

...2, then this mean that [|wi|a ∗ 0.5] =
|wi|a ∗ 0.5. We have the following recurrent formulas.

|wk|a = 2 ∗ |wk−1|a + 2 ∗20

|wk−1|a = 2 ∗ |wk−2|a + 2 ∗21

· · · · · · · · · · · · · · · · · · · · · · · ·
|w2|a = 2 ∗ |w1|a + 2 ∗2k−2

+

In order to obtain the general term |wk|a we will multiply each recurrent
formula by a corresponding constant and we will sum the results. Then, we
have:
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|wk|a = 2k−1 ∗ |w1|a + 21 + 22 + · · · + 2k−1 = 2 + · · · + 2k = 2∗(2k−1)
2−1 =

2k+1 − 2.
This means that Π generates the set {2k+1 − 2 | k ≥ 2}.

Theorem 5 PsP s,pf
m (ncoo, inhR) = PsET0L.

Proof. In [9] it is proved that PsP1(ncoo, inhR) = PsET0L. Moreover, it

is easy to see that PsP s,pf
1 (ncoo, inhR) = MET0Ls,pf . Since in Theorem

4 we have shown that MET0Ls,pf = ET0L, we have that PsET0L =
PsP s,pf

1 (ncoo, inhR). 2

Theorem 6 PsP s,pf
2 (cat1, proR) = PsRE.

Proof. In [4] it is proved that PsP1(cat1, proR) = PsRE. There the in-
clusion PsP1(cat1, proR) ⊇ PsRE was shown by simulating a deterministic
register machine in a deterministic manner. The role of the catalyst was
to sequentialize when needed the behavior of the P system. Basically, at
each time during the computation, one or more rules were executed, but
only once at a time (and not maximally rewriting all occurrences of a given
object by the same rule).

Therefore, using exactly the same construction, we have that

PsP s,pf
2 (cat1, proR) = PsRE

2

In [4] was proved that PsP1(cat1, inhR) ⊇ PsRE by simulating a de-
terministic register machine, then the same argument as in the proof of the
above theorem can be invoked to show that:

Theorem 7 PsRE = PsP s,pf
2 (cat1, inhR).

4 Conclusions

Starting from natural motivations, we have generalized the concept of maxi-
mal parallel rewriting mechanism by considering multivalued functions that
control the way the rules are applied during the derivation process. We were
interested mainly in finding systems that are independent of such mappings,
thus, in a certain sense, tolerant to the degree of parallelism. This concept
can be applied to many other parallel rewriting models like DNA computing,
Indian parallel grammars, and so on.
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Abstract

The paper answers an open problem from [4], proving that tran-
sition P systems with non-cooperative rules using priorities generate
exactly the Parikh images of ET0L languages.

1 Introduction

The classical model of P systems with priorities has been introduced in [3]
and since then the field of membrane computing has growth considerably,
nowadays becoming more and more a framework for expressing various phe-
nomena occurring in cells.

The model of P systems with priorities was initially used to describe the
biochemical reactions occurring in the cell. There, priority relations (in the
form of a partial order relation) among the rules from each region expressed
the following phenomena: if a biochemical reaction r1 is more active than
a reaction r2 and it consumes a given resource (energy for example) from
the region, the reaction r2 cannot take place despite the availability of all
necessary input objects.

In the attempt to make use of these features to design new bio-inspired
computational devices, the current trend was to decrease as much a possible
the level of cooperation between the objects participating into the rules
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while maintaining the currently obtained results. The mathematical interest
was also the opposite problem, namely to see which is the upper bound of
cooperation such that the systems are not anymore universal, knowing that
almost for all P systems variants the universality results were reached.

This bring us to the topic of the paper – it determines the computational
power of the classical P system model with strong priorities when only non-
cooperative rules are being used.

We assume the reader familiar with basic notions of P systems with
priorities among rules and P systems with promoters/inhibitors at the level
of rules. For more details regarding these topics we refer to [1], [2] and [7].
In addition, we assume known the basic theory and results of Lindenmayer
systems (see [5] and [6] for details).

We will denote by PsPm(ncoo, α), α ∈ {pri, inh} the family of sets of
vectors of numbers, computed by P systems of degree at most m, m ≥ 1, us-
ing non-cooperative rules and priorities among rules (α = pri) or inhibitors
at the level of rules (α = inh).

2 Some Known Results

In [7] was proved that P systems with non-cooperative rules and inhibitors at
the level of rules generates exactly the PsET0L, the family of Parikh images
of ET0L languages. For the sake of clarity, we sketch the original proof of
the inclusion PsET0L ⊇ PsP (ncoo, inh), pointing out some relevant details
for the present work.

Here are the outlines of the proof:

• First we have shown the equivalence between P systems with non-
cooperative inhibited rules using m membranes, and P systems with
non-cooperative inhibited rules and only one membrane with a similar
construction as will be presented in the proof of Lemma 3.1.

• We have shown that any P system with non-cooperative inhibited rules
is equivalent with a P system with non-cooperative inhibited rules, one
region and having the alphabet made out of two disjoint sets, the set
of terminals and of non-terminals; in addition, all the rules have a
non-terminal on their left-hand side; moreover, the set is complete,
i.e. for each symbol in the nonterminal alphabet there exists at least
one rule having it on the left-hand side.

• For a given set of inhibited rules, we have defined saturated classes
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of rules, i.e, we have found the sets containing rules that does not
mutually forbids each other.

Let V be an alphabet and R = {r1, r2, . . . , rk} a set of rules over
V , of the form ri : (Ai → αi|¬Bi

), Ai, Bi ∈ V , Ai 6= Bi, αi ∈ V ∗,
1 ≤ i ≤ k. For a rule r : (A → α|¬B) ∈ R let us define left(r) = A

and inh(r) = B.

Two rules ri, rj ∈ R are said to be in the non-excluding inhibiting

relation, and we denote this by ri ≡nei rj , iff left(ri) 6= inh(rj) and
left(rj) 6= inh(ri).

A subset W ⊆ R is said to be saturated (or complete) with respect
to non-excluding inhibiting relation ≡nei iff (∀) ri, rj ∈ W , ri ≡nei rj ,
and (∀) ri ∈ R \ W, (∃) rj ∈ W such that ri 6≡nei rj .

• We have constructed an ET0L system H = (V, T, ω, ∆), with T =
{T1, T2, . . . , Tk}, having as tables all the saturated sets {T1, T1, . . . , Tk}
(but with rules without inhibiting conditions and, in addition, with
some other rules as will be explained later). Remark that from the
way we have defined the saturated subsets, the conditions on the rules
can be omitted (observe that two rules r1 : (a1 → α1|¬b1 and r2 : (a2 →
α2|¬b2) can simultaneously rewrite symbols a1 and a2 iff b1 6= a2 and
a1 6= b2) in case we divide them in different tables. In addition, we have
added to each table all context-free rules of the P system that does not
violate the saturation relation considered for the table. We also have
added rules of the type b → # if rules {a → α | a → α|¬b ∈ Ti} ∈ Ti

and # → #; in this way we have assured that if we have chosen the
“wrong” table, the computation will never stop since the # is produced
(and therefore # → # will always be executed no matter which table
is chosen).

In [4] was shown in a straightforward manner that PsP1(ncoo, pri) ⊇
PsET0L by simulating with a constructed P system with non-cooperative
rules and priorities the computation of an arbitrary two table ET0L system
H. In addition, catalytic P systems with priorities proved to be universal
when only one catalyst is used. The remaining open problem (Q2 in [4]) was
whether or not non-cooperative systems with priorities are universal. Here
we deal with this problem.
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3 P Systems with Priorities – New Results

P systems with priorities equals in generative power the class of PsET0L

languages. In the proof of this result we will need the notions of P systems
with inhibitors (see [1] for the introductory paper on this topic).

The following lemma shows that P systems with non-cooperative rules
and priorities, having only one membrane equals in computational power
the ones having the same features, but with m > 1 membranes.

Lemma 3.1 PsPm(ncoo, pri) = PsP1(ncoo, pri), m ≥ 1.

Proof. The inclusion PsPm(ncoo, pri) ⊇ PsP1(ncoo, pri) is trivial. For the
proof of the inclusion PsPm(ncoo, pri) ⊆ PsP1(ncoo, pri), we construct a P
system Π1 = (V, C, µ, w, R, ϑ) that simulates the computation of P system
Πm = (V , C, µ,w1, . . . , wm, R1, . . . , Rm, ϑ) in the following way.

First, denote by L = {1, 2, . . . , m} the set of labels of the regions in Πm.
Then, we define:
• V = {ai | a ∈ V , i ∈ L}.
• C = C = ∅;
Let h : V

∗

× L → V ∗ be a mapping such that
1) h(a, i) = ai, a ∈ V , i ∈ L;
2) h(λ, j) = λ, ∀j ∈ L;
3) h(x1x2, j) = h(x1, j)h(x2, j), x1, x2 ∈ V

∗

, j ∈ L.

• denote by w = h(w1)h(w2) . . . h(wm), where wi is the multiset present in
region i ∈ L of Πm at the beginning of the computation.
• R is defined as follows. For each rule a → α ∈ Ri, a ∈ V , α is a string
over {c, cout, cin | c ∈ V }, i ∈ L, we add to R the rule h(a, i) → α′ where α′

is the corresponding string over {h(c, i), h(c, j), h(c, k) | c ∈ V , i, j, k ∈ L},
j being the label of the outer region of i, and k being the label of an inner
region of i. In addition, we inherit the existing priority relations among the
rules.
• ϑ = 1;

In other words, for the P system with a single region that simulates a
P system with m regions, we have encoded the regions labels into objects
(the subscript associated to an object indicates the region where the corre-
sponding object belongs) and we have expressed the rules of regions by the
corresponding encoded objects. In this way we ensured that, when simulat-
ing Πm with Π1, both the parallelism at the level of regions and at the level
of whole system Πm is respected. In addition, one can remark that whenever
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Πm halts, Π1 halts as well. Moreover, when Π1 halts, we will have in the
output region of Π1 all the objects corresponding to the multisets present
in all regions of Πm.

However, in the output multiset wΠ1 of Π1 we can distinguish the output
multiset wΠm

of Πm because we know which are the objects corresponding

to the output region of Πm (they are the objects that have as index ϑ).
Therefore, we have to delete the unnecessary objects that remain in the
output region of Π1 in a halting configuration since we want to show that
Π1 and Πm generate exactly the same set of vectors of numbers. We will
modify the rules presented above in the following manner.

We add to the vocabulary V a new symbol D (the object D stands for
the “deletion command”) and we replace each rule ai → α′ ∈ R by

ai → α′D ∈ R,

of course, maintaining the priority relations among the rules. In addition,
we add the following rules (with the corresponding priority relation)

D → λ > ai → λ , for all ai ∈ V , i 6= ϑ

One can remark that in this way we produce at each computational step at
least one object D and also, in the same time, we delete the already existing
object(s) D. If there exist rules that can be executed (i.e. there will be
objects D) rules of type ai → λ cannot be applied because they are locked
according to the priority relations. When the computation halts, objects D

are not produced anymore, and so, the deletion rules can start and erase
the remaining unnecessary objects. Consequently, we have shown that both
systems generate the same family of vectors of natural numbers, hence we
have PsPm(ncoo, pri) ⊆ PsP1(ncoo, pri).

Finally, by the double inclusion, we have proved that PsPm(ncoo, pri) =
PsP1(ncoo, pri). 2

As a consequence of the above result we can state the following

Corollary 1 For any P system Π with non-cooperative rules, using priori-

ties, there exists an equivalent P system Π′ with non-cooperative rules, using

priorities such that, for any halting configuration of Π′, all regions of Π′,

excepting the output one, are empty.

Now, we can prove the following result:

Theorem 1 PsPm(ncoo, pri) = PsPm(ncoo, inh) = PsET0L.
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Proof. In [4] was shown that PsP (ncoo, pri) ⊇ PsET0L. In cite [7] was
shown that PsP (ncoo, inh) = PsET0L following a procedure as the one
roughly described in Section 1. Here we will show that PsP (ncoo, inh) ⊇
PsP (ncoo, pri) and hence, PsP (ncoo, pri) = PsET0L. Here is how we
proceed.

Let us consider an arbitrary P system Π̃ with m membranes, non-
cooperative rules and with a priority relations among rules. According
to Lemma 3.1 we know that we can construct an equivalent P system
Π = (V , C, µ,w,R, ϑ) where:
• V = {X1, X2, . . . , Xr};
• C = ∅;
• µ = [ ]1;
• w ∈ V

∗

;
• The set R is defined by the sequences of rules:

X(1,1) → α(1,1) > X(1,2) → α(1,2) > · · · > X(1,k1) → α(1,k1)

· · ·

X(p,1) → α(p,1) > X(p,2) → α(p,2) > · · · > X(p,kp) → α(p,kp)

with X(i,j) ∈ V , such that X(i,j1) 6= X(i,j2), for all j1 6= j2, 1 ≤ i ≤ p and

αi,j ∈ V
∗

, 1 ≤ i ≤ p, 1 ≤ j ≤ ki. In addition, without loosing the generality,
we will assume that k1 ≥ k2 ≥ . . . ≥ kp.

Recall that we assumed that X(i,j1) 6= X(i,j2), for all j1 6= j2, 1 ≤ i ≤ p

because in case X(i,j1) = X(i,j2), the rule X(i,j2) → α(i,j2) will never be
applied since the rule X(i,j1) → α(i,j1), having a grater priority, is applied
first (of course, if it fulfills all required conditions).

We construct a P system Π = (V, C, µ, w, R, ϑ) with non-cooperative
inhibited rules that simulates the moves of Π and which is defined as follows.

• V = V ∪ {X | X ∈ V } ∪ {A(i,j), U(i,j) | 1 ≤ i ≤ p, 1 ≤ j ≤ ki}

∪ {S, T, H, #} ∪ {Wi | 1 ≤ i ≤ k1 + 1};

• C = ∅;

• µ = [ ]1;

• w = STHw;

• The set of rules R is defined as follows:
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⋄ we add to R the rules:
Xi → XiTA(1,1)A(1,2) . . . A(1,k1) . . . . . . A(p,1) . . . A(p,kp), 1 ≤ i ≤ k

S → U(1,0)U(2,0) . . . U(p,0)WTHA(1,1)A(1,2) . . . A(1,k1) . . . . . . A(p,1) . . . A(p,kp)

W → W1THA(1,1)A(1,2) . . . A(1,k1) . . . . . . A(p,1) . . . A(p,kp)

W1 → W2THA(1,1)A(1,2) . . . A(1,k1) . . . . . . A(p,1) . . . A(p,kp)

· · ·
Wk1 → Wk1+1THA(1,1)A(1,2) . . . A(1,k1) . . . . . . A(p,1) . . . A(p,kp)

Wk1+1 → SH

T → λ

A(i,j) → λ, 1 ≤ i ≤ p, 1 ≤ j ≤ ki.

⋄ for each sequence of rules belonging to R:
X(i,1) → α(i,1) > X(i,2) → α(i,2) > · · · > X(i,ki) → α(i,ki)

we add to R the rules:
U(i,0) → U(i,1)|¬X(1,1)

U(i,1) → U(i,2)|¬X(1,2)

· · ·
U(i,ki) → U(i,ki+1)|¬X(1,k1)

U(i,0) → A(i,2)A(i,3) . . . A(i,r)|¬T

U(i,1) → A(i,1) A(i,3)A(i,4) . . . A(i,r)|¬T

· · ·
U(i,ki) → A(i,1) . . . A(i,k1) A(i,k1+2) . . . A(i,r)|¬T

U(i,ki+1) → A(i,1) . . . A(i,r)|¬T

X(i,j) → α(i,j)|¬A(i,j)
, 1 ≤ j ≤ ki

⋄ also, we add the rules:
S → λ

Xi → #|¬H iff there exits a rule Xi → αi ∈ R

# → #
H → λ

X(i,j) → X(i,j)|¬H ,

Let us see how the simulation works. First, observe that (as a general
technique) when we want to execute a certain non-cooperative rule r at a
certain moment during the computation, then we might activate it using
an inhibitor; however, this means that all the time during the computation
we have to generate the symbol representing the inhibitor, to delete at each
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step all previously created inhibitors, and only when we actually want to
execute r we omit its generation.

We start the computation by executing the rule:
Xi → XiTA(1,1)A(1,2) . . . A(1,k1) . . . . . . A(p,1) . . . A(p,kp), 1 ≤ i ≤ k

This rule is responsible for “painting” all objects Xi that correspond to
objects in V . In the same time we create the objects:

A(1,1), A(1,2), . . . , A(1,k1), . . . . . . , A(p,1), . . . , A(p,kp),

1 ≤ i ≤ k that will be used as “flags”, indicating which rules cannot be
applied (here the simulation of any rule from Π is forbidden – all objects are
present). In addition, we create the object T that represents as well a flag,
its role being to indicate when the selected rules will be effectively applied.

In the same time, the rule
S → U(1,0)U(2,0) . . . U(k,0)WTHA(1,1)A(1,2) . . . A(1,k1) . . . . . . A(p,1) . . . A(p,kp)

is executed. All objects U(i,0), 1 ≤ i ≤ p represent the starting points for
the sequences of rules of type:

U(i,0) → U(i,1)|¬X(1,1)

U(i,1) → U(i,2)|¬X(1,2)

· · ·
U(i,ki) → U(i,ki+1)|¬X(1,k1)

Such a sequence (that correspond to X(i,1) → α(i,1) > · · · > X(i,ki) → α(i,ki)∈

R is used to check which rules from R can be applied. Depending where this
sequence stops we will know what rules we have to apply. This information
will be stored in the objects U(i,j .

Remark that along with objects U(i,0), 1 ≤ i ≤ p it is produced the
object W . This object will be used by the cycle (let us call it the “waiting”
cycle):

W → W1THA(1,1)A(1,2) . . . A(1,k1) . . . . . . A(p,1) . . . A(p,kp)

W1 → W2THA(1,1)A(1,2) . . . A(1,k1) . . . . . . A(p,1) . . . A(p,kp)

· · ·
Wk1 → Wk1+1THA(1,1)A(1,2) . . . A(1,k1) . . . . . . A(p,1) . . . A(p,kp)

Wk1+1 → SH

which it produce “enough” time (more than the maximum length of the
sequences of rules in R) objects A(1,1)A(1,2) . . . A(1,k1) . . . . . . A(p,1) . . . A(p,kp)

which forbids the application of any rule that corresponds to a rule in R. In
the last step of the cycle we omit the creation of object T . The absence of
object T means that we can apply one of the rules:

537



U(i,0) → A(i,2)A(i,3) . . . A(i,r)|¬T

U(i,1) → A(i,1) A(i,3)A(i,4) . . . A(i,r)|¬T

· · ·
U(i,ki) → A(i,1) . . . A(i,k1) A(i,k1+2) . . . A(i,r)|¬T

U(i,ki+1) → A(i,1) . . . A(i,r)|¬T

In this way we are able to select which are the rules (that corresponds
to rules in R) that can be applied, namely:

X(i,j) → α(i,j)|¬A(i,j)
, 1 ≤ j ≤ ki

Now, observe that all the time the “waiting” cycle is active (that is, we
intend to make a simulation of a step in Π) the object H is created. Also,
the already existing objects H are deleted by the rule H → λ. This object
will help us to finish the simulation. Here are the details.

Nondeterministically, object S might also be deleted by the rule S → λ.
If this happen, then the object H is not produced anymore and so, the rules
X(i,j) → X(i,j)|¬H and X(i,j) → #|¬H are executed. So, basically, if symbol
# appears, then the computation will not stop because the rule # → # will
be always executed.

In case th symbol # is not produced then the computation eventually
stops if the computation of Π stops. This is due to the fact that the cycle
involving object S might be always executed. However, the system Π will
generate in a nondeterministic manner (if object S is deleted and there is no
symbol #) the same language as Π. Consequently, the families of languages
generated by these types of systems are equal.

Therefore, we have that

PsPm(ncoo, pri) = PsPm(ncoo, inh) = PsET0L.

2

4 Concluding Remarks

Here we have proved that P systems with strong priorities generate the same
class of languages as PsET0L. Recall now that in the sequential case, forbid-
den random context grammars equals in computational power ordered gram-
mars. From this perspective, the result PsP (ncoo, pri) = PsP (ncoo, inh) =
PsET0L surprises also because here the maximal parallelism proved not to
influence the equality between the classes of languages generated by systems
with priorities and with inhibitors.

In addition, the exact equality with the class of languages generated by
ET0L systems gives us “for free” all decidability and properties results. For
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example, knowing that ET0L is a AFL, then the Corollary 1 becomes trivial
since after the encoding the membrane structure into the objects (as we did)
we can argue that such systems are closed under arbitrary morphism (so we
can delete the unnecessary objects).

In addition, the equality with the class of Parikh images of ET0L lan-
guages gives us ”for free” all decidability known for the family of ET0L
languages. For example, it is of a mathematical interest (but not only) to
mention that reachability and membership problems for ET0L systems are
decidable.
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