Computing ω -Limit Sets in Linear Dynamical Systems

Emmanuel Hainry

LORIA & Université Henri Poincaré, Nancy, France

Unconventional Computation 2008 Wien, Österreich

LORIA – UHP

What is a dynamical system?

Dynamical systems are

a configuration space

► a dynamics function: maps a configuration to the following Interests:

- Describe physical phenomena
- Describe biological phenomena
- Simulate computation models

Natural questions:

- ▶ Population extinction → the system reaches 0.
- ► A cloud goes over a region —→ the trajectory intersects a region.
- ► A program loops infinitely —→ the system is ultimately periodic.

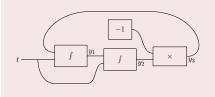
General Purpose Analog Computer

GPAC [Shannon 41] consists in circuits interconnecting the following components:

Computing exp with a $\ensuremath{\mathsf{GPAC}}$



Computing \cos with a GPAC



$$\begin{array}{c} f_{g} \doteq \int a + \int_{t_{0}}^{t} f(u) dg(u) \\ \hline \lambda - \lambda \\ g = - f + g \\ g = - f + g \\ g = - f \times g \end{array}$$

Features of the GPAC

Theorem [Graça Costa 03]

A scalar function $f : \mathbb{R} \to \mathbb{R}$ is generated by a GPAC iff it is a component of the solution of a system

$$y' = p(t, y), \tag{1}$$

where p is a vector of polynomials.

▶ GPAC is a polynomial dynamical system.

n-body problem

Proposition

The *n*-body problem (with Newton's laws) can be written as a polynomial dynamical system (with n^2 components)

Theorem [Warren D. Smith]

The *n*-body problem can "solve" the halting problem for Turing machines in constant time.

- ► This is a polynomial dynamical system.
- ► The collapsing of the *n*-body problem is undecidable.

Problem: Reachability

Definition

Given a dynamical system (X, f), and two points A and B, does the trajectory issued from A reach B?

Reachability of a point

Problem: ω -limit set

Definition

Given a dynamical system with solution y, the ω -limit set is the set of $A \in X$ such there $(t_n) \to +\infty$ such that $\lim y(t_n) = A$.

Périodicity, divergence.

Reachability of a hyperplane

Definition

Introduction

Given a dynamical system (X, f), a point A and a hyperplane \mathscr{P} , does the trajectory issued from A intersect \mathscr{P} ?

- Reachability of a region.
- Skolem-Pisot's problem is equivalent to reachability of a hyperplane for a linear system.

Known result: Undecidability

Theorem

Reachability is undecidable

The halting problem can be written as a reachability question (for a discrete-time or a continuous-time DS).

Known result: Undecidability in Polynomial DS

Proposition

Reachability is undecidable in Continuous-time Polynomial Dynamical Systems.

Proposition

Hyperplane reachability is undecidable in Continuous-time Polynomial Dynamical Systems.

Proofs: From [Bournez, Campagnolo, Graça, Hainry 2007], GPACs and recursive analysis have the same computational power.

Known result: Uncomputability

Proposition

For continuous-time (Polynomial) Dynamical Systems ω -limit sets are not computable.

Introduction	Problems	Linear Dynamical Systems	Conclusion

Recap.

In continuous-time dynamical systems,

	ω -limit set	Reachability	hyperplane reach.
DS	non computable	undecidable	undecidable
polynomial DS	non computable	undecidable	undecidable
linear DS	computable	decidable	?

Linear Dynamical Systems

Definition

Introduction

A continuous-time linear dynamical system is described by a dimension n, a sqaure matrix A of size n^2 with rationnal coefficients.

$$X = \mathbb{R}^n$$

f: Y \mapsto AY

A trajectory issued from $Y_0 \in \mathbb{Q}^n$ is a solution of the Cauchy problem: $\begin{cases} Y' = AY \\ Y(0) = Y_0 \end{cases}$. *Id est* $Y(t) = \exp(tA)Y_0$.

Example: prey/predator

Simplified Lottka-Volterra equations:

$$\begin{pmatrix} X \\ Y \end{pmatrix}' = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix}$$

With

- X number of predators
- Y number of preys
- a birth rate
- b predation rate

Example: Gravity and wind

$$y' = -g \cdot y + v_y$$

$$x' = v_x$$

$$x(0) = y(0) = 0$$

which can be translated in

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}' = \begin{pmatrix} 0 & 0 & v_x \\ 0 & -g & v_y \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} (0) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

LORIA – UHP

Theorem

Reachability is decidable in continuous-time linear dynamical systems.

$$f: \begin{array}{rcl} \mathbb{R}^n & \to & \mathbb{R}^n \\ X & \mapsto & A \cdot X \text{ with } A \in \mathbb{Q}^{n \times n} \\ & X_0 \text{ initial point} \\ & Y \text{ target} \end{array}$$

LORIA – UHP

Omega-limit set

Theorem

The ω -limit set is computable for continuous-time linear dynamical systems.

Theorem

The ω -limit set for a continuous-time linear dynamical system is semi-algebraical.

$$f: \begin{array}{rcl} \mathbb{R}^n & \to & \mathbb{R}^n \\ X & \mapsto & A \cdot X \text{ with } A \in \mathbb{Q}^{n \times n} \\ & X_0: \text{ initial point} \\ & \Omega: & \omega \text{-limit set} \end{array}$$

Introduction	Problems	Linear Dynamical Systems	Conclusion
Prerequisite			
Theorem [Bak	ær]		
Given $\alpha \in \mathbb{C}^{\star}$, either α or $\exp(\alpha)$ is transcendantal.			
Theorem [Gelf	fond-Schneid	er]	
Let α and β algebraic, if $\alpha \notin \{0,1\}$ and $\beta \notin \mathbb{Q}$, then α^{β} is transcendantal.			

Definition

An algebraic number x is represented by its minimal polynomial χ , a and ϵ such that x is the only root of χ in $\mathcal{B}(a, \epsilon)$

Proposition

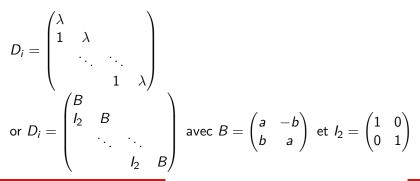
+, -, \times , / are computable for algebraic numbers. Deciding whether an algebraic number is rational is decidable.

E. Hainry

Proof (1)

Let us assume the matrix A is in Jordan form:

$$A = \begin{pmatrix} D_1 & 0 & & 0 \\ 0 & D_2 & 0 & \vdots \\ \vdots & & \ddots & \\ 0 & \cdots & 0 & D_k \end{pmatrix}$$



E. Hainry

LORIA - UHP

19/25

Introduction	n Problems	Linear Dynamical Sy	ystems Conclusion	
Proof (trajectory)				
X(t)	$= X_0 \exp(tA) = X_0$	$\begin{pmatrix} \exp(tD_1) \\ & \exp(tD_2) \end{pmatrix}$	$\left(\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \exp(tD_k) \end{array} \right)$	
	$ \left\{ e^{t\lambda} \begin{pmatrix} 1 \\ t & 1 \\ \frac{t^2}{2} & t \\ \vdots & \ddots & \vdots \\ \frac{t^k}{t^k} & \cdots & \vdots \end{pmatrix} \right\} $	$\begin{pmatrix} 1 \\ \vdots \\ \frac{t^2}{2} & t & 1 \end{pmatrix}$	or	
$\exp(tD_i) = -$	$\begin{cases} e^{ta} \begin{pmatrix} k! \\ B_2 \\ tB_2 & B_2 \\ \frac{t^2}{2}B_2^2 & tB_2 \\ \vdots & \ddots \\ \frac{t^k}{k!}B_2^k & \cdots \end{pmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	or $with \ B_2 = egin{bmatrix} \cos(tb) & -\ \sin(tb) & c \end{bmatrix}$	sin(<i>tb</i>) cos(<i>tb</i>)

E. Hainry

LORIA – UHP

20/25

We can distinguish some cases

> an eigenvalue has a positive real part,

 $\Rightarrow \Omega = \emptyset$

- \blacktriangleright an eigenvalue has a null real part and >1 multiplicity, $\Rightarrow \ \Omega = \emptyset$
- all eigenvalues have negative real part,

$$\Rightarrow \Omega = \{0^k\}$$

otherwise...

Proof (otherwise)

All eigenvalues have \leq 0 real part ; those with null real part have multiplicity 1.

- blocks for eigenvalues with negative real part will converge towards 0.
- blocks for null eigenvalue will be constant.

Problems

other blocks have eigenvalue ib. Those are rotations

If there is only one ib eigenvalue, the ω -limit set will be a circle. If there are several ib_j , we have to take the commensurability of the b_j into account

Introduction

Proof (end)

We have several ib_j , If the b_j are not commensurable (there are no $\alpha_j \in \mathbb{Q}$ s.t. $\sum \alpha_j b_j = 0$),

$$\Omega = \{(x_1, ..., x_n); \forall i, x_{2i+1}^2 + x_{2i+2}^2 = x_{0_2i+1}^2 + x_{0_2i+2}^2\}.$$

Otherwise, the commensurability eqs lead to new constraints:

$$\left(\prod_{i< n} X_{0_i}^{\alpha_i}\right) X_{2n}(t)^{\alpha_i} = X_{0_2n}^{\alpha_n} \prod_{i< n} X_i(t)^{\alpha_i}.$$

where $X_i = x_{2i-1} + ix_{2i}$

Conclusion

As for discrete DS, reachability is decidable for continuous-time linear Dynamical Systems but undecidable for polynomial DS.

	ω -limit set	Reachability	hyperplane reach.
DS	non computable	undecidable	undecidable
polynomial DS	non computable	undecidable	undecidable
deg.2 poly DS	non computable	undecidable	undecidable
linear DS	computable	decidable	?

Lottka-Volterra equations

 $\begin{pmatrix} X \\ Y \end{pmatrix}' = \begin{pmatrix} A & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} + XY \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ polynomial term

•

LORIA – UHP