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What is a dynamical system?
Dynamical systems are

I a configuration space
I a dynamics function: maps a configuration to the following

Interests:
I Describe physical phenomena
I Describe biological phenomena
I Simulate computation models

Natural questions:
I Population extinction −→ the system reaches 0.
I A cloud goes over a region −→ the trajectory intersects a

region.
I A program loops infinitely −→ the system is ultimately

periodic.
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General Purpose Analog Computer
gpac [Shannon 41] consists in
circuits interconnecting the
following components:
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t0
f(u)dg(u)
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g f + g+

f
g f × g×

Computing exp with a GPAC
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Computing cos with a GPAC
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Features of the GPAC

Theorem [Graça Costa 03]
A scalar function f : R→ R is generated by a GPAC iff it is a
component of the solution of a system

y ′ = p(t, y), (1)

where p is a vector of polynomials.

I gpac is a polynomial dynamical system.
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n-body problem

Proposition
The n-body problem (with Newton’s laws) can be written as a
polynomial dynamical system (with n2 components)

Theorem [Warren D. Smith]
The n-body problem can “solve” the halting problem for Turing
machines in constant time.

I This is a polynomial dynamical system.
I The collapsing of the n-body problem is undecidable.
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Problem: Reachability

Definition
Given a dynamical system (X , f ), and two points A and B, does
the trajectory issued from A reach B?

I Reachability of a point
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Problem: ω-limit set

Definition
Given a dynamical system with solution y , the ω-limit set is the set
of A ∈ X such there (tn)→ +∞ such that lim y(tn) = A.

I Périodicity, divergence.
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Reachability of a hyperplane

Definition
Given a dynamical system (X , f ), a point A and a hyperplane P,
does the trajectory issued from A intersect P?

I Reachability of a region.
I Skolem-Pisot’s problem is equivalent to reachability of a

hyperplane for a linear system.
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Known result: Undecidability

Theorem
Reachability is undecidable

The halting problem can be written as a reachability question (for
a discrete-time or a continuous-time DS).
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Known result: Undecidability in Polynomial DS

Proposition
Reachability is undecidable in Continuous-time Polynomial
Dynamical Systems.

Proposition
Hyperplane reachability is undecidable in Continuous-time
Polynomial Dynamical Systems.

Proofs: From [Bournez, Campagnolo, Graça, Hainry 2007], GPACs
and recursive analysis have the same computational power.
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Known result: Uncomputability

Proposition
For continuous-time (Polynomial) Dynamical Systems ω-limit sets
are not computable.
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Recap.

In continuous-time dynamical systems,
ω-limit set Reachability hyperplane reach.

DS non computable undecidable undecidable
polynomial DS non computable undecidable undecidable
linear DS computable decidable ?
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Linear Dynamical Systems

Definition
A continuous-time linear dynamical system is described by a
dimension n, a sqaure matrix A of size n2 with rationnal
coefficients.

X = Rn

f : Y 7→ AY

A trajectory issued from Y0 ∈ Qn is a solution of the Cauchy

problem:
{

Y ′ = AY
Y (0) = Y0

. Id est Y (t) = exp(tA)Y0.

E. Hainry LORIA – UHP Computing ω-Limit Sets in Linear Dynamical Systems 13/25



Introduction Problems Linear Dynamical Systems Conclusion

Example: prey/predator

Simplified Lottka-Volterra equations:(
X
Y

)′
=

(
a b
−b a

)(
X
Y

)

With
X number of predators
Y number of preys
a birth rate
b predation rate
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Example: Gravity and wind

y ′ = −g · y + vy
x ′ = vx
x(0) = y(0) = 0

which can be translated inx
y
z


′

=

0 0 vx
0 −g vy
0 0 0


x

y
z


x

y
z

 (0) =

00
1


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Reachability

Theorem
Reachability is decidable in continuous-time linear dynamical
systems.

f :
Rn → Rn

X 7→ A · X with A ∈ Qn×n

X0 initial point

Y target
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Omega-limit set

Theorem
The ω-limit set is computable for continuous-time linear dynamical
systems.

Theorem
The ω-limit set for a continuous-time linear dynamical system is
semi-algebraical.

f :
Rn → Rn

X 7→ A · X with A ∈ Qn×n

X0: initial point

Ω: ω-limit set
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Prerequisite
Theorem [Baker]
Given α ∈ C?, either α or exp(α) is transcendantal.

Theorem [Gelfond-Schneider]
Let α and β algebraic, if α /∈ {0, 1} and β /∈ Q, then αβ is
transcendantal.

Definition
An algebraic number x is represented by its minimal polynomial χ,
a and ε such that x is the only root of χ in B(a, ε)

Proposition
+, −, ×, / are computable for algebraic numbers.
Deciding whether an algebraic number is rational is decidable.
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Proof (1)
Let us assume the matrix A is in Jordan form:

A =


D1 0 0
0 D2 0

...
... . . .
0 · · · 0 Dk



Di =


λ
1 λ

. . . . . .
1 λ



or Di =


B
I2 B

. . . . . .
I2 B

 avec B =

(
a −b
b a

)
et I2 =

(
1 0
0 1

)
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Proof (trajectory)

X(t) = X0 exp(tA) = X0


exp(tD1)

exp(tD2)
. . .

exp(tDk)



exp(tDi) =



etλ


1
t 1
t2

2 t 1
...

. . . . . . . . .
tk

k!
· · · t2

2 t 1

 or

eta


B2

tB2 B2
t2

2 B2
2 tB2 B2

...
. . . . . . . . .

tk

k!
Bk

2 · · · t2

2 B2
2 tB2 B2

 with B2 =

[
cos(tb) − sin(tb)

sin(tb) cos(tb)

]
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Proof (cases)

We can distinguish some cases
I an eigenvalue has a positive real part,
⇒ Ω = ∅

I an eigenvalue has a null real part and > 1 multiplicity,
⇒ Ω = ∅

I all eigenvalues have negative real part,
⇒ Ω = {0k}

I otherwise. . .
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Proof (otherwise)

All eigenvalues have ≤ 0 real part ; those with null real part have
multiplicity 1.

I blocks for eigenvalues with negative real part will converge
towards 0.

I blocks for null eigenvalue will be constant.
I other blocks have eigenvalue ib. Those are rotations

If there is only one ib eigenvalue, the ω-limit set will be a circle.
If there are several ibj , we have to take the commensurability of
the bj into account
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Proof (end)

We have several ibj ,
If the bj are not commensurable (there are no αj ∈ Q s.t.∑
αjbj = 0),

Ω = {(x1, ..., xn);∀i , x2
2i+1 + x2

2i+2 = x2
02i+1 + x2

02i+2}.

Otherwise, the commensurability eqs lead to new constraints:(∏
i<n

Xαi
0i

)
X2n(t)αi = Xαn

02n
∏
i<n

Xi (t)αi .

where Xi = x2i−1 + ix2i
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Conclusion

As for discrete DS, reachability is decidable for continuous-time
linear Dynamical Systems but undecidable for polynomial DS.

ω-limit set Reachability hyperplane reach.
DS non computable undecidable undecidable
polynomial DS non computable undecidable undecidable
deg.2 poly DS non computable undecidable undecidable
linear DS computable decidable ?
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Lottka-Volterra equations

(
X
Y

)′
=

(
A 0
0 −1

)(
X
Y

)
+ XY

(
−1
1

)
︸ ︷︷ ︸

polynomial term
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