A Biologically Inspired Model with Fusion and Clonation of Membranes

Giorgio Delzanno* and Laurent Van Begin**

*DISI, University of Genova **Universite' Libre de Bruxelles

UC 2008, Wien, August 26, 2008

Motivations and goals

- New computational models with biologically inspired concepts, data structures, and operations

 membrane, fusion, clonation/division
- Expressive power of the new models
- Verification methods for their qualitative analysis
- Comparison with standard concurrency models like Petri Nets and Process Algebra

Contents of the Talk

- Basics on P-systems
- Extension with fusion and creation
- Computational properties:
 - Reachability, Boundedness, and Coverability
- (Un)decidability results
- Conclusions

P-systems Abstract model of the living cell

G. Paun. Computing with membranes, JCSS 61(1), 2000

A P-system consists of

Membranes

- Hierarchically structured set of named containers
- Membranes contains multisets of objects

Objects

- Elementary particles (symbol objects)
- Strings (word objects)

Rules

• To distribute objects across membranes

Membranes

Boundary Rules

 $\mathbf{w} \quad [\mathbf{i} \quad \mathbf{v} \rightarrow \mathbf{z} \quad [\mathbf{i} \quad \mathbf{t}]$

- w (v) = objects that are consumed outside (inside) membrane i
- z (t) = objects that are created outside (inside) membrane i

Example $\bigcirc [4 \bigcirc \rightarrow \bigcirc [4 \bigcirc]$

Example $\bigcirc [4 \bigcirc \rightarrow \bigcirc [4 \bigcirc]$

Example $\bigcirc [4 \bigcirc \rightarrow \bigcirc [4 \bigcirc]$

Computational Power

- P-systems with symbol objects and maximal parallelism are Turing powerful
- P-systems with symbol objects and interleaving semantics (PB systems) are equivalent to Petri nets

[BM02] Bernardini-Manca. P systems with boundary rules. WMC 2002. [DF03] Dal Zilio-Formenti.On the dynamics of PB systems WMC 2003 PBFC systems PB-systems with Fusion and Creation Rules

Fusion Rules

$[i W [j V \rightarrow [k Z$

- Membrane i and j are merged into membrane k
- w (v) = objects that are consumed inside membrane i and j
- z = objects that are created inside membrane k

Example $[2 \circ [3 \circ \rightarrow [5 \circ]$

Example $[2 \circ [3 \circ \rightarrow [5 \circ]$

Example $[2 \circ [3 \circ \rightarrow [5 \circ]$

Clonation

Clonation Rules

$[i w \rightarrow [i v [i z]]$

- Membrane i is duplicated
- w = objects that are consumed inside membrane i
- v and z = objects that are created inside the two copies

Example $[3 \circ \rightarrow [3 \circ [3 \circ]$

Reachability Problem (RP)

Definition of RP

- Assume a PB system with boundary, fusion and creation rules
- Fix two configurations C0 and C1

(RP) Is C1 reachable from C0 by firing rules a finite number of times?

Our Result

• RP is **undecidable** in presence of fusion and clonation

• *Remark*: RP is **decidable** for PB systems (only boundary rules)

Undecidability proof

• We weakly simulate counter machines

Zero-test I

• Suppose we need to test if c2 is empty

Zero-test II

• We block normal execution and clone c2

Zero-test III

• We then merge the copy with trash

Zero-test IV

• Finally, we restart the normal execution

Remark

• If c2 is not zero, trash is not empty after the simulation

Property of the Encoding

- We may take wrong turns (we execute a zero-test on a non-zero counter)
- However, all executions in which configurations have empty trash membrane are good
- Thus, we can encode RP for counter machines (known to be undecidable) into RP for PBFC systems

Boundedness Problem (BP)

Definition of BP

- Assume a PB system with boundary, fusion and creation rules
- Fix a configurations C0
- REACH = the set of configurations reachable from C0

(BP) Is the set REACH finite?

Our Result

BP is decidable for PBFC systems

Proof

- Configurations are finite trees in which each node is labelled with a name and with a multiset of objects
- We first define an ordering < on configurations such that C<C' iff
 - C is mapped to a node in C' with the same name and at least the same objects as C' (inclusion of multisets)
 - The (injective) mapping preserves the father-son relationship of the immersion of C in C'

B-bounded Configurations

- Let B the depth (number of nested membranes) of the initial configuration
- The set REACH contains only trees whose depth is bounded by B
- Notice that the width of trees in REACH is potentially unbounded

Well-quasi ordering

- In the paper we show that < is a well-quasi ordering (wqo) for B-bounded configurations
- *Def wqo*:

There are no infinite sequences of <-incomparable B-bounded configurations

Monotonicity

- PBFC systems are strictly monotonic with respect to <
- *Def:* If $C \rightarrow C'$ and C < D, then there exists D' such that C'<D' and C' \rightarrow D' where \rightarrow is a firing step,

Well-structuredness

- A transition system that is monotonic w.r.t. a wqo defined on configuration is called well-structured [FS01]
- A forward reachability algorithm for checking boundedness for (strictly monotonic) well-structured transition systems is described in [FS01]

[FS01] Finkel-Schnoebelen

Well-structured Transition Systems everywhere TCS 2001

Coverability Problem (CP)

Kruskal Tree Embedding

- Let << be the tree embedding ordering in which labels are ordered by taking
 - equality for names and
 - inclusion for multisets of objects

Ordering << on configurations 2

Ordering << on configurations

Definition of CP

- Assume a PB system with boundary, fusion and creation rules
- Fix two configurations C0 and C1

(CP) Is there a configuration C2 reachable from C0 and such that C1 << C2 ?</p>

Our Result

Coverability is decidable for PBFC systems

Proof

- We first solve the coverability problem with respect to the ordering < used for boundedness on B-bounded configurations
- We then reduce coverability for << to coverability for < by adding (when necessary) intermediate nodes (up to depth B)

Encoding << using <

Remark: the depth is bounded by B: finitely many fake nodes!

Well-structuredness

- PBFC are strictly monotonic on <
- In the paper we show how to symbolically compute predecessors of upward closed sets of configurations
- Thus, we can apply a general result in [FS01] to define a symbolic backward search algorithm for checking coverability

[FS01] Finkel-Schnoebelen Well-structured Transition Systems everywhere TCS 2001

Conclusions

- We have defined a new model with biologically inspired operations
- We have shown that with interleaving semantics the model is in between Petri nets and Turing machines
 - Reachability is undecidable as for TM
 - Coverability and boundedness are decidable as for PN

Future work

- We plan to compare PBFC with (bio)concurrency models based on process algebra (e.g. bio/mobile ambients)
- We plan to study the expressiveness of combinations with other extensions of P-systems (e.g. dissolution and degradation)