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Overview

• Many-to-Many Interaction in Biology
• Fusion Calculus - syntax and semantics
• Exponential Distribution
• Stochastic Fusion - syntax and semantics
• Distribution of Synchronization
• Stochastic Hyperbisimulation
• Axiomatization of Stochastic

Hyperbisimulation
• Conclusion
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Many-to-Many Interaction in Biology

• process algebras are working with one-to-one
interactions, and so it is difficult to use them
in describing (complex) biological systems

• for instance, gene regulatory network involves
many-to-one or many-to-many interactions

• we overcome this limitation and present a
stochastic fusion calculus where
• we use equivalence classes of names when we have

multiple interactions

• the names from the same equivalence class are fusing

under the same name used then in further interactions
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Fusion Calculus

• developed by J.Parrow & B.Victor in 1997-98
• it derives from π-calculus, and inherits all its

expressive power
• let N a countable set of names u, v, . . . z

• for a sequence of names we use x̃

• {x̃ = ỹ} allows names to be interchanged
• if x and y are related by ϕ we write xϕy

• {x̃ = x̃} = 1 identity relation
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π-calculus vs Fusion Calculus (I)

In the π-calculus:
• effects of communication are local

ax.P | a(y).Q | R
τ
→ P | Q{x/y} | R

• has two binding operators:

• input a(x).P

• restriction (νx)P

• input and output are asymmetric:

• input always binds, output does not bind

• has several bisimulation relations: early, late,...
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π-calculus vs Fusion calculus (II)

In the fusion calculus:
• effects of an interaction could be local and global

Example:

uvw.P | uxy.Q | R | S
{v=x,w=y}

→ P | Q | R | S

• there is only one binding operator called scope and is

written (x)P , meaning that the x is local in P

(x)(y)(uvw.P | uxy.Q | R) | S
1
→ (P | Q | R){v/x,w/y} | S

• input and output are symmetric

• a new notion of bisimulation between processes
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Exponential Distribution

Let (Ω,K, P ) be a probability space, (Xt; t ≥ 0) a
stochastic process, and S a finite state space

• holding time for any state is exponentially distributed; an

exponential distribution P (X ≤ t) = 1− e−rt is characterized

by its rate r

• (Xs, 0 ≤ s ≤ t) and (Xu, t < u < ∞) are independent;

• exponential distribution guarantees the memoryless

property which says that at each step in which an activity

has started but not terminated yet, the remaining duration of

the activity is still distributed as the entire duration of the

activity: P (X > u + t|X > t) = P (X > u), for all u, t ≥ 0
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Exponential Distribution Properties

• P (min(X1,X2) ≤ t) = 1 − e−(r1+r2)t, where Xi ∼ Exp(ri); it

is assumed that it is a race among several transitions

competing for a state change; the waiting time in i ends as

soon as the first transition is ready to occur.

• P (X1 < X2) =
r1

r1 + r2
, and P (X2 < X1) =

r2

r1 + r2
this property determines the probability of a specific

transition to win such a race.
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Stochastic Fusion Calculus

• Stochastic processes can be considered the basis of

quantitative modelling performance and reliability

• SFC describes the dynamic behaviour of systems in terms

of probability and waiting-time distributions

Prefixes: µ ::= (ux̃, Fu) | (ux̃, Fu) | (ϕ, Fϕ)
Processes:
P ::= 0 | µ.P | P + Q | P | Q | (x)P | [x = y]P | [x 6= y]P |

A(x̃)
def
= P
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SFC - semantics (I)

PREF : (α,F ).P
(α,F )
−→ 1 P SUM :

Pj
µ
→k P ′

∑

i∈I

Pi
µ
→j.k P ′

PARL :
P

µ
→i P ′

P | Q
µ
→(i,0) P ′ | Q

PARR :
Q

µ
→i Q′

P | Q
µ
→(0,i) P | Q′

bn(µ) ∩ fn(Q) = ∅ bn(µ) ∩ fn(P ) = ∅

PASS :
P

µ
→i P ′, z /∈ fn( µ)

(z)P
µ
→i (z)P ′

OPEN :
P

((ey)uex,F )
−→ i P ′,

(z)P
((zey)uex,F )

−→ i P ′

z ∈ x̃ − ỹ, u /∈ {z, z}, F ∈ {Fu, Fu}
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SFC - semantics (II)

SCOPE :
P

(ϕ,Fϕ)
−→ i P ′

(z)P
(ϕ\z,Fϕ)
−→ i P ′{x/z}

COM :
P

(uex,Fu)
−→ i P ′, Q

(uey,Fu)
−→ j Q′

P | Q
({ex=ey},Fϕ)

−→ (i,j) P ′ | Q

zϕx, z 6= x, ϕ\z = ϕ ∩ (N − {z})2 ∪ {(z, z)}

MATCH :
P

µ
→i P ′

[x = x]P
µ
→i P ′

MISMATCH :
P

µ
→i P ′

[x 6= y]P
µ
→i P ′

SUBST :
P{ỹ/x̃}

µ
→i P ′

A(ỹ)
µ
→i P ′

, A(x̃)
def
= P
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Example

Consider the process

P = (ux, Fu).0 | ((uy, Fu).0 + (uy, Fu).0)

(ux, Fu).0 | ((uy, Fu).0 + (uy, Fu).0)
({x=y},Fϕ)

−→ (1,1.1) 0 | 0

(ux, Fu).0 | ((uy, Fu).0 + (uy, Fu).0)
({x=y},Fϕ)

−→ (1,2.1) 0 | 0
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Distribution of the Synchronization

How to define the distribution of the
synchronization, Fϕ?

• Fi(t) = 1 − eλit, i = 1, 2, with rate(Fi) = λi

• the rate of the distribution of the synchronization is the

product of the rates λi of the two synchronizing actions

• [Hill94] using the apparent rate rα(P ) =
∑

P
(α,Fj )
→ Pj

rate(Fj),

rate(Fϕ) =
rate(Fα)

rα(P )
×

rate(Fα)

rα(Q)
× min{rα(P ), rα(Q)}
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SFC - Structural Congruence

The structural congruence between processes,
denoted by ≡, is the least congruence satisfying
the following axioms:

(fus) (ϕ,Fϕ).P ≡ (ϕ,Fϕ).Pσ, for σ a substitutive effect of ϕ

(par) P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

(scope) (x)0 ≡ 0 (x)(y)P ≡ (y)(x)Q (x)(P + Q) = (x)P + (x)Q

(scope extension) (z)P | Q ≡ (z)(P | Q), where z /∈ fn(Q)
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Fusion Calculus - Hyperbisimulation

• Bisimulation is a binary symmetric relation S over
processes such that P S Q implies
if P

γ
→ P ′ with bn(γ)∩fn(Q) = ∅, then Q

γ
→ Q′ and

P ′σ S Q′σ for some substitutive effect σ of γ.
Notation P

·
∼ Q.

• Bisimilarity is not preserved under fusion prefixes:

x.0 | y.0
·
∼ x.y.0 + y.x.0

{x = y}x.0 | y.0
·
≁ {x = y}(x.y.0 + y.x.0)

• A hyperbisimulation is a substitution closed bisimulation
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Stochastic Hyperbisimulation

• A stochastic hyperbisimulation is an
equivalence relation R over the processes
space P satisfying the following properties:
• R is closed under arbitrary substitution σ;

• for each pair (P,Q) ∈ R, for all actions α, and for all

equivalence classes C ∈ P/R:

γα(P,C) = γα(Q,C),

where γα(R,C) =
∑

{rate(Fα) | R
(α,Fα)
−→ i R′, R′ ∈ C}.

• Notation: P ∼SH Q
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SFC - Axiomatization (I)

We follow essentially [MPW92].
• Summation

• S1 P + 0 = P

S2 P + Q = Q + P

S3 P + (Q + R) = (P + Q) + R

• S4 (α,F1α).P + (α,F2α).P = (α,F ).P , where F is the

distribution function given by

P (min(X1,X2) ≤ t) = 1 − e−(λ1+λ2)t,

where Xi ∼ Exp(λi)
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SFC - Axiomatization (II)

• Scope

R1 (x)0 = 0
R2 (x)(y)P = (y)(x)P

R3 (x)(P + Q) = (x)P + (x)Q

R4 (x)(α,Fα).P = (α,Fα).(x)P , if x /∈ n(α)

R5 (x)(α,Fα).P = 0, if x is the subject of α

• Match and Mismatch

M1 M̃P = ÑP if M̃ ⇔ Ñ

M2 [x = y]P = [x = y](P{x/y})

M3 MP + MQ = M(P + Q)

M4 [x 6= x]P = 0

M5 P = [x = y]P + [x 6= y]P
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SFC - Axiomatization (III)

• Match and Scope

RM1 (x)[y = z]P = [y = z](x)P if x 6= y, x 6= z

RM2 (x)[x = y]P = 0, if x 6= y

• Fusion

F1 (ϕ,Fϕ).P = (ϕ,Fϕ).[x = y]P , if xϕy

F2 (z)(ϕ,Fϕ).P = (ϕ \ z, Fϕ).P , if z /∈ fn(P )
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SFC - Axiomatization (IV)

• Expansion

P ≡
∑

i

Mi(x̃i)(αi, Fαi
).Pi and Q ≡

∑

j

Nj(ỹj)(βj , Fβj
).Qj

P | Q =
∑

i

Mi(x̃i)(αi, Fαi
).(Pi | Q)+

+
∑

j

Nj(ỹj)(βj , Fβj
).(P | Qj)+

+
∑

αi≡uezi∧βj≡u ewj

MiNj(x̃i)(ỹj)({z̃i = w̃j}, Fϕ).(Pi | Qj),

where Fϕ is the distribution function for fusion.
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SFC - Soundness

Theorem 0.1. ASHE ⊢ P ≡ Q ⇒ P ∼SH Q

Sketch of proof. We prove only for Expansion axiom, the third term.

P | Q ∼SH R. E = {(P | Q,R), | P,Q,R processes} ∪ Id.

For P |Q applying PASS, MATCH, SUM and in the end COM we have:

P | Q
({ezi= ewj},Fϕ)
−→(i.m,j.n) (x̃i)Pi | (ỹj)Qj

For the third term of R we apply PASS , MATCH , and SUM :

R
({ezi= ewj},Fϕ)

−→m (x̃i)(ỹj)(Pi | Qj)

By scope extension applied twice,

(x̃i)Pi | (ỹj)Qj = (x̃i)(ỹj)(Pi | Qj)
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SFC - Completeness

Theorem 0.2. P ∼SH Q ⇒ ASHE ⊢ P ≡ Q

Sketch of proof. Completeness can be proved by direct application of the

proof idea given in [MPW92]. Here we define a head normal formal (HNF) with

the above extended syntax using the HNF defined in [MPW92], replacing the

actions with the new extended action syntax with delay parameters. Then we

use induction on the depth of the processes in HNF (see proof of Theorem 5.4

in [PaVic98]). This is because the rates of transitions remain unchanged in all

the steps required in the proof.
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Conclusions

• Stochastic approach of the fusion calculus allowing to

describe multiple (not only one-to-one) interactions

• The stochastic nature: the labels are pairs (α,F )

• We defined the rate corresponding to the distribution of the

synchronization using the apparent rate as in [Hill94]

• We define a stochastic hyperbisimulation and a (sound and

complete) axiom system ASHE for it

• Further work
• Considering more general probabilistic distributions

• Modelling complex (many-to-many) biological systems
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