# Parallel Optimization of a Reversible (Quantum) Ripple-Carry Adder 

Michael Kirkedal Thomsen

Holger Bock Axelsen

Department of Computer Science, DIKU,
University of Copenhagen

UC 2008

## Overview

- The end of Moore's Law!
- Reversible logic, gates and circuits
- Binary adders
- Parallelization of addition
- The ripple-block carry adder


## The End of Moore's Law!

## Power Too High


[Gelsinger, Intel '01]

## Reversible Computing

The erasure of information leads to dissipation of heat. [Landauer '61]

Erasure of information is not necessary for computation.
[Bennett '73]
Reversible computing is computing without any information loss.

It is possible to make universal reversible logic gates.
[Toffoli, Fredkin '80-'82]

## Conventional Logic

- Computation today depends on logic operations that destroy information.

Example: AND gate

| In |  | Out |
| :---: | :---: | :---: |
| $A$ | $B$ | $A \wedge B$ |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

## Reversible Logic Gates

Solution: Avoid information loss.

1. The number of input lines is equal to the number of output lines (written $n \times n$ ).
2. Its Boolean function $B^{n} \rightarrow B^{n}$ is bijective.

## Not Gate



| In | Out |
| :---: | :---: |
| $A$ | $\neg A$ |
| 0 | 1 |
| 1 | 0 |

- Simplest reversible gate
- Only classical logic gate useable in reversible circuits


## n-bit Controlled-Not Gate

$$
\begin{array}{ll}
C_{1} & C_{1} \\
C_{2} & C_{2} \\
C_{n-1} \\
A & C_{n-1} \\
& A \oplus C_{1} C_{2} \ldots C_{n-1}
\end{array}
$$

[Toffoli ‘80]

- 3-bit: Toffoli gate
- 2-bit: Feynman gate

| In |  |  |  | Out |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{1}$ | $\mathrm{C}_{2}$ | A | $\mathrm{C}_{1}$ | $\mathrm{C}_{2}$ | $\mathrm{R}_{\mathrm{A}}$ |  |
| 0 | 0 | 0 | 0 | 0 | 0 |  |
| 0 | 0 | 1 | 0 | 0 | 1 |  |
| 0 | 1 | 0 | 0 | 1 | 0 |  |
| 0 | 1 | 1 | 0 | 1 | 1 |  |
| 1 | 0 | 0 | 1 | 0 | 0 |  |
| 1 | 0 | 1 | 1 | 0 | 1 |  |
| 1 | 1 | 0 | 1 | 1 | 1 |  |
| 1 | 1 | 1 | 1 | 1 | 0 |  |

## Controlled-Swap (Fredkin) Gate


[Fredkin, Toffoli '82]

- Can be generalized to a n-bit controlled-swap gate

| In |  |  |  | Out |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | A | B | C | $\mathrm{R}_{\mathrm{A}}$ | $\mathrm{R}_{\mathrm{B}}$ |  |
| 0 | 0 | 0 | 0 | 0 | 0 |  |
| 0 | 0 | 1 | 0 | 0 | 1 |  |
| 0 | 1 | 0 | 0 | 1 | 0 |  |
| 0 | 1 | 1 | 0 | 1 | 1 |  |
| 1 | 0 | 0 | 1 | 0 | 0 |  |
| 1 | 0 | 1 | 1 | 1 | 0 |  |
| 1 | 1 | 0 | 1 | 0 | 1 |  |
| 1 | 1 | 1 | 1 | 1 | 1 |  |

## Diagram Shorthand

Shorthand:
Negated controls are shows with an open circle


## Reversible Circuits

## Important restriction:

- Fan-out is not permitted - it is an irreversible construction

Simulate fan-out through Feynman-gate


## Reversible Circuit Implementations

- Semi conductor (MOS)
- Complementary (dual-line) pass-transistor logic (CPL)
[De Vos et al.]
- Split-phase charge-recovery logic
[Vieri, Frank]
- Y-branch Switching
[Palm et al., Forsberg]
- Quantum computing
- Quantum optical, Solid state, Nuclear magnetic resonance systems
[Cirac, Duan, Zoller, ect.]


## Cost Metrics in CPL

- Transistor cost ~ "Space"
- Circuit delay ~"Time"
- Garbage bit
- Non-constant output that is not part of the desired result
- Ancilla bit
- Bit that is constant at both input and output
- Ancillae is preferable to garbage due to reuse

[De Vos, Rentergem '03]


## Addition

$$
\begin{aligned}
& 2+3 \rightarrow 5 \\
& 1+4 \rightarrow 5 \\
& 5 \rightarrow ?+?
\end{aligned}
$$

- Addition is irreversible
- We need a reversible way to add numbers


## Reversible Updates

- Updating a value $B$ with a value that does not depend on $B$


Example: The n-bit controlled-not gate

- Addition:

$$
(A, B) \mapsto\left(A, B+A \bmod 2^{n}\right)
$$

## Binary Full-Adder

- Conventional binary addition is not reversible
- We need a new adder construction

$$
\begin{aligned}
S_{i} & =C_{i} \oplus A_{i} \oplus B_{i} \\
C_{i+1} & =C_{i}\left(A_{i} \oplus B_{i}\right) \oplus A_{i} B_{i} .
\end{aligned}
$$

| In |  |  | Out |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $A_{i}$ | $B_{i}$ | $C_{i}$ | $A_{i}$ | $S_{i}$ | $C_{i+1}$ |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 | 0 |
| 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 |

## CDKM Adder Circuit

$$
\begin{aligned}
S_{i} & =C_{i} \oplus A_{i} \oplus B_{i} \\
C_{i+1} & =C_{i}\left(A_{i} \oplus B_{i}\right) \oplus A_{i} B_{i} .
\end{aligned}
$$

- Sum and carry can be calculated independently
- Sum is not needed for the sum of next bits [Vedral, Barenco, Ekert '96]


Unmajority Circuit

Sum calculation Circuit
[Cuccaro, Draper, Kutin, Moulton '05]

## CDKM Adder Circuit


[Cuccaro, Draper, Kutin, Moulton '05]

## Ripple-Carry CDKM Adder Circuit



| Transistors | $\mathrm{O}(\mathrm{n})$ |
| :--- | :--- |
| Delay | $\mathrm{O}(\mathrm{n})$ |
| Ancillae | $\mathrm{O}(1)$ |

[Cuccaro, Draper, Kutin, Moulton '05]

Binary adders (7/7)

## CDKM Adder Circuits in CPL


[Skoneczny, van Rentergem, De Vos '08]

## Optimization using Parallelization

- Ripple-carry adders are small but slow
- Small: Few transistors
- Slow: Large delay
- Optimization schemes exist
- Carry-lookahead, carry-save, conditional-sum...
- These are not reversible
- Goal:

Faster reversible adder using parallelization

## The Parallelization Idea



## Carry Correction

Lemma 1 (Carry correction). Let $A$ and $B$ be $n$-bit binary numbers, then for all $i$ and $j$ such that $0 \leq i<j \leq n$ it holds that

$$
C_{j}=\underline{\left(C_{i}\left(A_{i} \oplus B_{i}\right)\left(A_{i+1} \oplus B_{i+1}\right) \cdots\left(A_{j-1} \oplus B_{j-1}\right)\right) \oplus}{ }^{{ }_{i} C_{j}} .
$$

| $C_{\text {in }}$ | $A$ | $B$ | ${ }_{n} C_{\text {out }}$ | $C_{\text {out }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 |

## Carry Correction

Lemma 1 (Carry correction). Let $A$ and $B$ be $n$-bit binary numbers, then for all $i$ and $j$ such that $0 \leq i<j \leq n$ it holds that

$$
C_{j}=\left(C_{i}\left(A_{i} \oplus B_{i}\right)\left(A_{i+1} \oplus B_{i+1}\right) \cdots\left(A_{j-1} \oplus B_{j-1}\right)\right) \oplus{ }_{i} C_{j} .
$$



Parallelization of addition (5/8)

## Carry Correction



- Too many carries

Parallelization of addition (6/8)

## Uncomputation of Carries

Lemma 2 (Carry-sum dependency). Let $A, B, S$ be $k$-bit (non-negative) binary numbers $\in\left\{0 \ldots 2^{k}-1\right\}$ and $C_{0}, C_{k}$ be single bits (truth values) as described above. Then

$$
C_{k}=\underline{C_{0}(A=S)} \oplus \underline{(S<A)} .
$$

| $\mathrm{C}_{\text {in }}$ | A | B | S | $\mathrm{C}_{\text {out }}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 |  | 0 | 1 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 |  | 1 | 1 |

## Uncomputation of Carries

Lemma 2 (Carry-sum dependency). Let $A, B, S$ be $k$-bit (non-negative) binary numbers $\in\left\{0 \ldots 2^{k}-1\right\}$ and $C_{0}, C_{k}$ be single bits (truth values) as described above. Then

$$
C_{k}=\underline{C_{0}(A=S)} \oplus \underline{(S<A)} .
$$

Corollary 1. Let $A, B, S$ be n-bit numbers defined as in Lemma 2. For all $i, j$, where $0 \leq i<j \leq n$, the following recurrence holds.

$$
C_{j}=\underline{C_{i}\left(A_{i . . j-1}=S_{i . . j-1}\right)} \oplus \underline{\left(S_{i . j-1}<A_{i . . j-1}\right)}
$$

## Uncomputation of Carries



$$
C_{j}=\underline{C_{i}\left(A_{i . . j-1}=S_{i . . j-1}\right)} \oplus \underline{\left(S_{i . . j-1}<A_{i . . j-1}\right)}
$$

Ripple-block carry adder (1/4)

## Design of Parallelization



## Ripple-block carry adder (2/4)

## Cost of Ripple-Block Carry Adder

Delay in gates

| bits | $n$-bit, $m$-block ripple-block carry adder | CDKM-adder |  |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $n \backslash m$ | 2 | 4 | 8 | 16 | 32 |  |  |
| 8 | 32 | $\mathbf{2 2}$ | 23 |  |  | 41 | $54 \%$ |
| 16 | 60 | 36 | $\mathbf{3 0}$ | 39 |  | 81 | $37 \%$ |
| 32 | 116 | 64 | $\mathbf{4 4}$ | 46 | 71 | 161 | $27 \%$ |
| 64 | 228 | 120 | 72 | $\mathbf{6 0}$ | 78 | 321 | $19 \%$ |
| 128 | 452 | 232 | 128 | $\mathbf{8 8}$ | 92 | 641 | $14 \%$ |


| $n \backslash m$ | 2 | 4 | 8 | 16 | 32 |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 8 | 800 | $\mathbf{9 1 2}$ | 992 |  |  | 512 | $178 \%$ |
| 16 | 1856 | 1984 | $\mathbf{2 0 0 0}$ | 2080 |  | 1024 | $195 \%$ |
| 32 | 4736 | 4704 | $\mathbf{4 3 5 2}$ | 4176 | 4256 | 2048 | $213 \%$ |
| 64 | 13568 | 12448 | 10400 | $\mathbf{9 0 8 8}$ | 8528 | 4096 | $222 \%$ |
| 128 | 43520 | 37152 | 27872 | $\mathbf{2 1 7 9 2}$ | 18560 | 8192 | $266 \%$ |

## Implementation Cost

|  | CDKM | RBCA |
| :--- | ---: | ---: |
| Transistors | $\mathrm{O}(\mathrm{n})$ | $\mathrm{O}(\sqrt{ }(\mathrm{n}))$ |
| Delay | $\mathrm{O}(\mathrm{n})$ | $\mathrm{O}(\mathrm{n} \sqrt{ }(\mathrm{n}))$ |
| Ancillae | $\mathrm{O}(1)$ | $\mathrm{O}(\sqrt{ }(\mathrm{n}))$ |
| Garbage | 0 | 0 |

- Results when RBCA is optimized wrt. delay


## "Energy" Comparison

Simple "space" * "time" cost improvement:

$$
\frac{C D K M_{t}(n) \cdot C D K M_{d}(n)}{R B C A_{t}(m, k) \cdot R B C A_{d}(m, k)}
$$

| Bits | CDKM |  | RBCA |  | Improve- |
| ---: | ---: | ---: | ---: | ---: | :--- |
|  | Time | Space | Time | Space | ment |
| 16 | 81 | 1024 | 30 | 2000 | 1.4 |
| 32 | 161 | 2048 | 40 | 4352 | 1.9 |
| 64 | 321 | 4096 | 60 | 9088 | 2.4 |

## Thank You!



