

DEPARTMENT OF COMPUTER SCIENCE UNIVERSITY OF COPENHAGEN

Parallel Optimization of a Reversible (Quantum) Ripple-Carry Adder

KE

Michael Kirkedal Thomsen Holger Bock Axelsen

Department of Computer Science, DIKU, University of Copenhagen

UC 2008

Overview

- The end of Moore's Law!
- Reversible logic, gates and circuits
- Binary adders
- Parallelization of addition
- The ripple-block carry adder

Moore's Law (1/2)

The End of Moore's Law!

Reversible Computing

The erasure of information leads to dissipation of heat. [Landauer '61]

Erasure of information is not necessary for computation. [Bennett '73]

Reversible computing is computing without any information loss.

It is possible to make universal reversible logic gates. [Toffoli, Fredkin '80-'82] **Reversible logic, gates and circuits (1/9)**

Conventional Logic

 Computation today depends on logic operations that destroy information.

Example: AND gate

lı	n	Out
А	В	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

Reversible logic, gates and circuits (2/9)

Reversible Logic Gates

Solution: Avoid information loss.

1. The number of input lines is equal to the number of output lines (written $n \times n$).

2. Its Boolean function $B^n \rightarrow B^n$ is bijective.

Reversible logic, gates and circuits (3/9)

Not Gate

- Simplest reversible gate
- Only classical logic gate useable in reversible circuits

Reversible logic, gates and circuits (4/9)

n-bit Controlled-Not Gate

[Toffoli '80]

- 3-bit: Toffoli gate
- 2-bit: Feynman gate

	In			Out			
C ₁	C ₂	Α	C ₁	C ₂	R _A		
0	0	0	0	0	0		
0	0	1	0	0	1		
0	1	0	0	1	0		
0	1	1	0	1	1		
1	0	0	1	0	0		
1	0	1	1	0	1		
1	1	0	1	1	1		
1	1	1	1	1	0		

Reversible logic, gates and circuits (5/9)

Controlled-Swap (Fredkin) Gate

$$C \longrightarrow C \\ A \oplus CB \\ B \longrightarrow CA \oplus \overline{CB}$$

[Fredkin, Toffoli '82]

• Can be generalized to a n-bit controlled-swap gate

In				Out	
С	Α	В	С	R _A	R_{B}
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	0	1
1	1	1	1	1	1

Reversible logic, gates and circuits (6/9)

Diagram Shorthand

Shorthand:

Negated controls are shows with an open circle

$$\begin{array}{cccc} A & \underbrace{\not \times \bullet } & A \\ B & \underbrace{\longrightarrow} & B \oplus \overline{A} \end{array} \begin{array}{c} \underbrace{def} & A & \underbrace{\longrightarrow} & A \\ B & \underbrace{\longrightarrow} & B \oplus \overline{A} \end{array} \begin{array}{c} B & \underbrace{\longrightarrow} & A \\ B & \underbrace{\longrightarrow} & B \oplus \overline{A} \end{array}$$

Reversible logic, gates and circuits (7/9)

Reversible Circuits

Important restriction:

• Fan-out is not permitted – it is an irreversible construction

Simulate fan-out through Feynman-gate

Reversible Circuit Implementations

- Semi conductor (MOS)
 - Complementary (dual-line) pass-transistor logic (CPL)

[De Vos et al.]

Split-phase charge-recovery logic

[Vieri, Frank]

– Y-branch Switching

[Palm et al., Forsberg]

- Quantum computing
 - Quantum optical, Solid state,
 Nuclear magnetic resonance systems

[Cirac, Duan, Zoller, ect.]

Reversible logic, gates and circuits (7/7)

Cost Metrics in CPL

- Transistor cost ~ "Space"
- Circuit delay ~ "Time"
- Garbage bit
 - Non-constant output that is not part of the desired result
- Ancilla bit
 - Bit that is constant at both input and output
- Ancillae is preferable to garbage due to reuse

Binary adders (1/7)

Addition

 $2 + 3 \rightarrow 5$ $1 + 4 \rightarrow 5$ $5 \rightarrow ? + ?$

- Addition is irreversible
- We need a reversible way to add numbers

Binary adders (2/7)

Reversible Updates

 Updating a value B with a value that does not depend on B

Example: The n-bit controlled-not gate

• Addition:

$$(A,B) \mapsto (A,B+A \mod 2^n)$$

Binary adders (3/7)

Binary Full-Adder

- Conventional binary addition is not reversible
- We need a new adder construction

$$S_i = C_i \oplus A_i \oplus B_i$$
$$C_{i+1} = C_i (A_i \oplus B_i) \oplus A_i B_i.$$

	In			Out			
A _i	B _i	C _i	A _i	S _i	C _{i+1}		
0	0	0	0	0	0		
0	0	1	0	1	0		
0	1	0	0	1	0		
0	1	1	0	0	1		
1	0	0	1	1	0		
1	0	1	1	0	1		
1	1	0	1	0	1		
1	1	1	1	1	1		

Binary adders (4/7)

CDKM Adder Circuit

$$S_i = C_i \oplus A_i \oplus B_i$$
$$C_{i+1} = C_i (A_i \oplus B_i) \oplus A_i B_i.$$

- Sum and carry can be calculated independently
- Sum is not needed for the sum of next bits [Vedral, Barenco, Ekert '96]

[Cuccaro, Draper, Kutin, Moulton '05]

Binary adders (5/7)

CDKM Adder Circuit

[Cuccaro, Draper, Kutin, Moulton '05]

Binary adders (6/7)

[Cuccaro, Draper, Kutin, Moulton '05]

Transistors	O(n)
Delay	O(n)
Ancillae	O(1)

Binary adders (7/7)

CDKM Adder Circuits in CPL

[Skoneczny, van Rentergem, De Vos '08]

Optimization using Parallelization

- Ripple-carry adders are small but slow
 - Small: Few transistors
 - Slow: Large delay
- Optimization schemes exist
 - Carry-lookahead, carry-save, conditional-sum...
 - These are not reversible
- Goal:

Faster reversible adder using parallelization

Parallelization of addition (2/8)

The Parallelization Idea

Carry Correction

Lemma 1 (Carry correction). Let A and B be n-bit binary numbers, then for all i and j such that $0 \le i < j \le n$ it holds that

$$C_j = (C_i(A_i \oplus B_i)(A_{i+1} \oplus B_{i+1}) \cdots (A_{j-1} \oplus B_{j-1})) \oplus {}_iC_j.$$

C _{in}	А	В	_n C _{out}	C _{out}
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Carry Correction

Lemma 1 (Carry correction). Let A and B be n-bit binary numbers, then for all i and j such that $0 \le i < j \le n$ it holds that

$$C_j = (C_i(A_i \oplus B_i)(A_{i+1} \oplus B_{i+1}) \cdots (A_{j-1} \oplus B_{j-1})) \oplus {}_iC_j.$$

Parallelization of addition (5/8)

Carry Correction

Too many carries

Uncomputation of Carries

Lemma 2 (Carry-sum dependency). Let A, B, S be k-bit (non-negative) binary numbers $\in \{0 \dots 2^k - 1\}$ and C_0, C_k be single bits (truth values) as described above. Then

C _{in}	А	В	S	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$C_k = \underline{C_0(A = S)} \oplus (\underline{S < A}).$$

Uncomputation of Carries

Lemma 2 (Carry-sum dependency). Let A, B, S be k-bit (non-negative) binary numbers $\in \{0 \dots 2^k - 1\}$ and C_0, C_k be single bits (truth values) as described above. Then

$$C_k = \underline{C_0(A = S)} \oplus (\underline{S < A}).$$

Corollary 1. Let A, B, S be n-bit numbers defined as in Lemma 2. For all i, j, where $0 \le i < j \le n$, the following recurrence holds.

$$C_j = C_i(A_{i..j-1} = S_{i..j-1}) \oplus (S_{i..j-1} < A_{i..j-1})$$

Uncomputation of Carries

$$C_j = C_i(A_{i..j-1} = S_{i..j-1}) \oplus (S_{i..j-1} < A_{i..j-1})$$

Design of Parallelization

Cost of Ripple-Block Carry Adder

$rac{1}{2}$ crag	ene gaecee						
bits	n-bit, m	CDKM-	adder				
$n \backslash m$	2	4	8	16	32		
8	32	22	23			41	54%
16	60	36	30	39		81	37%
32	116	64	44	46	71	161	27%
64	228	120	72	60	78	321	19%
128	452	232	128	88	92	641	14%

Transistor cost

Delay in aates

$n \backslash m$	2	4	8	16	32		
8	800	912	992			512	178%
16	1856	1984	2000	2080		1024	195%
32	4736	4704	4352	4176	4256	2048	213%
64	13568	12448	10400	9088	8528	4096	222%
128	43520	37152	27872	21792	18560	8192	266%

Ripple-block carry adder (3/4)

Implementation Cost

	CDKM	RBCA	
Transistors	O(n)		O(√(n))
Delay	O(n)	C)(n √(n))
Ancillae	O(1)		O(√(n))
Garbage	0		0

• Results when RBCA is optimized wrt. delay

Simple "space" * "time" cost improvement:

 $\frac{CDKM_t(n) \cdot CDKM_d(n)}{RBCA_t(m,k) \cdot RBCA_d(m,k)}$

	CDKM		CDKM RBCA		Improve-
Bits	Time	Space	Time	Space	ment
16	81	1024	30	2000	1.4
32	161	2048	40	4352	1.9
64	321	4096	60	9088	2.4

Thank You!

