
Ultrafilter and non-standard Turing
machines

Petrus H Potgieter
Department of Decision Sciences

University of South Africa (Pretoria)
&

Elemér E Rosinger
Department of Mathematics and Applied Mathematics

University of Pretoria

UC 2008 :: Vienna :: 2008-08-27

Outline

We consider several kinds of non-finitary computation, using ordinary
Turing machines, as usual, as the reference case.

We are interested in defining the output, or final message, of a machine
which has run for a countably infinite number of steps.

Non-finitary machines are the work-horses of hypercomputation. We
attemt to the question of how to deal with the machine and output
description when we consider a realised non-finitary “computation”.

Needless to say, this is just the problem of Thomson’s lamp, which is

on at time 1− 22n and

off at time 1− 22n+1.

Convention and caveats

We shall consider only Turing machines with unbounded input and
output tapes, with an unbounded working tape, over a finite alphabet.

Our approach bears only a superficial resemblance to the infinite time
Turing machines introduced by Hamkins and Lewis (2000); Hamkins
and Seabold (2001).

Logical difficulties for supertask machines arise, in our view, not from
the identification of logical with computational time but were picked
up in Hilbert’s Non-Smoking Hotel.

Recall that a filter F on X is a non-empty collection of subsets of X ,

• being closed under the taking of finite intersections, and

• containing B whenever B ⊇ A ∈ F .

A Turing machine “run”

A computation on a Turing machine T can be described by a sequence
of natural numbers

(kn)∞n=0

where each ki describes the condition – including the tapes, head po-
sition and internal state – after the i-th step in the computation. Call
such a sequence a run of T .

The sequence (kn)∞n=0 is fully determined by k0 and the rules that de-
termine the machine T .

The input is, naturally, encoded by k0 and if the input leads to an
accepting computation, then the sequence is eventually constant.

Accepting computations

Consider the Fréchet filter

F = {L ⊆ N | N \ L is finite}
consisting of all co-finite subsets of the natural numbers.

Definition 1 A sequence (kn)∞n=0 is an accepting computation when-
ever it is eventually constant, i.e. whenever it is constant on some
element of the Fréchet filter F .

We have de-emphasised the notion of explicitly defined accepting state,
without loss of generality in this recasting of the usual definition.

Definition 2 A sequence (kn)∞n=0 is a G-accepting computation when-
ever it is constant on some element of G.

Definition 2 is especially interesting when we consider U -accepting com-
putations, where U is an ultrafilter.

Ultrafilter-accepting computations

Recall that an ultrafilter on X is a filter with the property that for
each A ⊆ X , either A or its complement belongs to the filter.

Subject to the Axiom of Choice, there exist ultrafilters U on N which
contain F . Choose one such U .

The subsets belonging to a specific filter are often seen as the large
sets. The F -large sets are the cofinite subsets of N.

The U -large sets therefore generalise of the cofinite sets.

Furthermore, U -accepting computation generalises F -accepting com-
putation in a clean and obvious way.

Accepting computation There exists an F -large set of points in
time where the tape content as well as the internal state of the
machine remain constant.

U-accepting computation There exists a U -large set of points in
time where the tape content as well as the internal state of the
machine remain constant.

Consider a machine TTL à la Thomson (1955):

• TTL has alphabet {−1, 1};

• at time n writes (−1)n to the first position of the output tape
and

• has a minimal number of states.

Any run of this machine is a U -accepting computation since either the
set of odd points in time, or the set of even points, belongs to U and is
equivalent to a machine outputting a constant bit on the tape.

TTL and TATL

Consider also a TATL which at time n writes (−1)n+1 to the first position
of the output tape and has a minimal number of states.

Clearly the “output” of TATL is also either +1 or −1, depending on the
choice of U .

Furthermore, considered as U -accepting computations, the machines
TATL and TATL have opposite outputs.

It is not extraordinarily liberal to consider a run of TTL or of TATL an
accepting computation since these machines simply oscillate between
two global states.

Comparison to the Hamkins approach

Hamkins and Lewis (2000) define the state of TTL at the first limit
ordinal ω and – if lim sup has been chosen as the limiting operator for
each cell of the tape – the content of the tape “at” the ordinal ω is +1.

Moreover, in the approach of Hamkins and Lewis (2000) the tape of
TATL would also contain +1 at ordinal ω.

In our approach, we do not know whether a run of TTL, being a U -
accepting computation, will “output” +1 or −1.

Howeber, considered as U -accepting computations, the machines TATL

and TATL have opposite outputs.

Should one, or should one note, distinguish between TATL and TATL?

All G-accepting computations cycle

Proposition 1 If a filter G) F then every G-accepting computa-
tion is either

(i) an F-accepting computation, i.e. a usual accepting computa-
tion; or

(ii) a computation that ends in a finite cycle of global states of
the machine, in the fashion of Thomson’s lamp.

This elementary result follows directly from the internal dynamics of
the Turing machine and the requirement that this also stabilise on the
“large” filter set.

Ultrafilter machines

One can use the filters F and U to describe two further notions for
machines with a dedicated output tape.

Limit computation For each F -small set of positions on the output
tape, there exists a F -large set of points in time where those
positions on the output tape do not change.

G-limit computation For each G-small set of positions on the out-
put tape, there exists a G-large set of points in time where those
positions on the output tape do not change.

Ultrafilter computation There exists a U -large set of points in
time where the output tape is constant.

Ultrafilter computation still avoids some pathologies like the undefin-
ability of the output of the Thomson’s lamp machine TTL.

A further toy example

Consider a Turing machine Td, operating with the alphabet {−1, 1}:

write -1 on the tape up to position 98;

n = 0;

while 1 > 0 do

write "+1" on position 99;

go back and write "-1" on position 99;

write "-1" in the 2^n positions to

the right of 99;

move back to position 99;

n = n + 1;

end while;

Td has neither an accepting computation, nor a U -accepting computa-
tion. It is also not limit-computable or ultrafilter computable.

Non-standard Turing machine outputs

In this part simply define the sequence of output tape content, at each
discrete moment in time, as the output of the machine.

If p(k) denotes the content of the output tape of a machine when its
global description is k then for each run (kn) of the machine, (p(kn))
will be the sequence of output tape contents.

For the classically accepting computations, we identify the output se-
quence (p(kn)) – which will be constant after a finite number of terms
– with the limit of the sequence, which is exactly the classical output
of the machine.

If U is the ultrafilter discussed earlier, we proceed to use the notions of
non-standard analysis.

Equivalence classes of outputs

Definition 3 For each sequence of natural number (an) we set

(an)U = {(bn)| {m|am = bm} ∈ U}

which is the equivalence class of all sequences that agree with (an)
on a U-large set of indices.

Theorem 1 If a run (an) of a classical Turing machine T is an
accepting computation with output k then

(i) for some ` ∈ N we have (an)U = `; and

(ii) (p(an))U = k.

Here k is also the equivalence class of a constant sequence.

Non-standard inputs/outputs

We can now see the output of a Turing-type machine as a, possibly
infinite, non-standard natural number (cn)U where cn = p(kn) for some
run (kn) of the machine.

The input of the machine can also be made a non-standard natural
number. Suppose (ai) is a sequence of natural numbers and let (ki

n)
denote a run of Turing machine T on input ai – in the classical sense.
We simpy define a run of T on (ai) to be the sequence (ki

i).

Remark 1 If (an)U = (bn)U and (kn) and (`n) are runs of T on the
two respective non-standard numbers, then

(kn)U = (`n)U .

Definition 4 The output of T on input (an)U is the class (p(kn))U
where (kn) is a run of T on (an).

NSTMs are unconventional

Within this framework the halting problem for ordinary Turing ma-
chines can be solved by a machine that outputs (1)U if the machine
halts, and (0)U otherwise.

It is clear, of course, what the concatenation of two NST machines
would compute as the output of an NST is always a valid input for
another NSTM.

How this concatenation would be implemented on an NSTM – and
whether this would be possible at all – is not so clear.

The non-standard approach to computability has been investigated be-
fore, i.a. by Richter and Szabo (1988).

Conclusion

We have explored – modestly and briefly – how the filter and ultra-
filter concepts can be used to characterise the behaviour of certain
non-classical computation schemes based on Turing machines.

A fully non-standard scheme w.r.t. the input, output and run length
is proposed as only one way to overcome the problem of defining the
output or final global state of the machine.

The authors regard this as a tentative proposal with for extending the
vocabulary of hypercomputation by accelerated Turing machines.

References

Hamkins, J. D. and Lewis, A. (2000). Infinite time turing machines.
The Journal of Symbolic Logic, 65:567–604.

Hamkins, J. D. and Seabold, D. E. (2001). Infinite time turing machines
with only one tape. MLQ. Mathematical Logic Quarterly, 47:271–
287.

Richter, M. M. and Szabo, M. E. (1988). Nonstandard methods in
combinatorics and theoretical computer science. Polish Academy of
Sciences. Institute of Philosophy and Sociology. Studia Logica.
An International Journal for Symbolic Logic, 47:181–191.

Thomson, J. (1954–1955). Tasks and Super-Tasks. Analysis, 15:1–13.

