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• Overview of Tile Assembly Model

• The wedge construction

• A new characterization of decidable 

languages

• Analysis of space requirements
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DNA Tile Self-Assembly

Seeman, starting in 1980s

DNA tile, oversimplified:

Four single DNA strands

bound by Watson-Crick

pairing (A-T, C-G).
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DNA Tile Self-Assembly

Seeman, starting in 1980s
DNA tile, oversimplified:

Four single DNA strands

bound by Watson-Crick

pairing (A-T, C-G).
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“Sticky ends” bind with their

Watson-Crick complements,

so that a regular array self-

assembles.

Choice of sticky ends

allows one to program

the pattern of the array.
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Winfree, Ph.D. thesis, 1998
Extension of Wang tiling, 1961

Refined in Paul Rothemund’s Ph.D. thesis, 2001

� Tile = unit square

� Each side has glue

of certain kind and 

strength (0, 1, or 2).
� If tiles abut with 

matching kinds of 

glue, then they bind 

with this glue’s 
strength.

� Tiles may have 

labels.
�Tiles cannot be 

rotated.
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XY
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� Finitely many tile types

� Infinitely many tiles of 

each type available

� Assembly starts from a 
seed tile (or seed

assembly).

� A tile can attach to the 

existing assembly if it 
binds with total strength 

at least 2 (the 

“temperature”).

NEXT: An example…



Tile Assembly Example

S

1

0

c c0

0

1

n c1

1

1

n n1
0

0

n n0

c R

0

L

0

Edge binding strengths:

1

2



Tile Assembly Example

S

S

1

0

c c0

0

1

n c1

1

1

n n1
0

0

n n0

c R

0

L

0

Edge binding strengths:

1

2



Tile Assembly Example

S

0

L

S

1

0

c c0

0

1

n c1

1

1

n n1
0

0

n n0

c R

0

L

0

Edge binding strengths:

1

2



Tile Assembly Example

S

0

L

c R

S

1

0

c c0

0

1

n c1

1

1

n n1
0

0

n n0

c R

0

L

0

Edge binding strengths:

1

2



Tile Assembly Example

S

0

L

c R

c R

S

1

0

c c0

0

1

n c1

1

1

n n1
0

0

n n0

c R

0

L

0

Edge binding strengths:

1

2



Tile Assembly Example

S

0

L

c R

c R

0

L

S

1

0

c c0

0

1

n c1

1

1

n n1
0

0

n n0

c R

0

L

0

Edge binding strengths:

1

2



Tile Assembly Example

S

0

L

c R

c R

0

L

c R

S

1

0

c c0

0

1

n c1

1

1

n n1
0

0

n n0

c R

0

L

0

Edge binding strengths:

1

2



Tile Assembly Example

S

0

L

c R

c R

0

L

c R

0

1

n c1

S

1

0

c c0

0

1

n c1

1

1

n n1
0

0

n n0

c R

0

L

0

Edge binding strengths:

1

2



Tile Assembly Example

S

0

L

c R

c R

0

L

c R

0

1

n c1

0

L

c R
0

1

n c1

S

1

0

c c0

0

1

n c1

1

1

n n1
0

0

n n0

c R

0

L

0

Edge binding strengths:

1

2



Tile Assembly Example

S

0

L

c R

c R

0

L

c R

0

1

n c1

0

L

c R
0

1

n c1

Cooperation is key to 
computing with Tile Assembly 

Model.

S

1

0

c c0

0

1

n c1

1

1

n n1
0

0

n n0

c R

0

L

0

Edge binding strengths:

1

2



Tile Assembly Example

S

0

L

c R

c R

0

L

c R

0

1

n c1

S

1

0

c c0

0

1

n c1

1

1

n n1
0

0

n n0

c R

0

L

0

Edge binding strengths:

1

2

0

0

n n0

0

L

c R

1

0

c c0

c R

0

1

n c1

0

L

0

0

n n0

0

0

n n0

0

1

n c1

1

0

c c0

0

0

n n0

c R

0

L

1

1

n n1

0

0

n n0

0

1

n c1

0

0

n n0

0

0

n n0

c R

0

L

0

L

0

0

n n0

0

0

n n0

0

0

n n0

1

0

c c0

0

0

n n0

0

0

n n0

0

0

n n0

0

1

n c1

0

0

n n0

0

0

n n0

1

1

n n1

0

0

n n0

1

0

c c0

0

1

n c1

0

0

n n0

0

0

n n0

1

1

n n1

0

0

n n0

0

1

n c1
1

1

n n1

0

0

n n0

1

1

n n1

0

0

n n0



Our Results



Our Results

In this paper, we explore the 
connection between decidable sets 
and geometry in the Tile Assembly 

Model.



Our Results

In this paper, we explore the 
connection between decidable sets 
and geometry in the Tile Assembly 

Model.

We demonstrate a construction which 

tiles representations of decidable 

sets, then analyze the space 
requirements.



Our Results

In this paper, we explore the 
connection between decidable sets 
and geometry in the Tile Assembly 
Model.

We demonstrate a construction which 
tiles representations of decidable 
sets, then analyze the space 
requirements.

First we’ll define two supplementary constructions…
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• Named for the shape of the assembly

• Utilizes well known technique of simulating 
a Turing machine with a tile assembly
– Every row of the assembly encodes the entire 

configuration of the Turing machine (tape and 
state) at a particular step in the computation

– The assembly simulates a ‘one-way infinite to 
the right’ tape by adding a tile on the right side 
of the row for each subsequent computation 
step

The Wedge Construction
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Wedge Construction Example

q00 1 _* Initial configuration:  TM on input ’01’



q00 1 _*

1 _q01 _*

Wedge Construction Example

After 1 computation step



q00 1 _*

1 _q01 _*

0 _q1_ _*1

Wedge Construction Example

After 2 computation steps



q00 1 _*

1 _q01 _*

0 _q1_ _*1

1 __ _*q201

Wedge Construction Example

Etc.



Log-Width Binary Counter

• An assembly which simulates a binary 

counter from 0 to infinity as it grows 

upward

• Each row represents a single value, 

which is one greater than the value of the 

row beneath it

• The width of each row is equal to the 

(floor of) the log2 of the counter’s value in 

that row
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Log-Width Binary Counter 
Example
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A New Characterization of 
Decidable Languages

Theorem:  Let A N.  The set A is decidable if 

and only if A x {0} and Ac x {0} weakly self-

assemble.

⊆

Proof:  (→) This direction of our proof consists 

of a construction that demonstrates the 

claim.



Construction Overview

Fact:  If A is decidable, then there exists a TM 

M which halts on every input and accepts 

exactly those that are in A



Construction Overview

 whileend
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if end    

0output         

else    

1output         

 thenaccepts,  if    

 oftion representabinary  on the  simulate    

do 0 while

+=

∞<≤

nn

M

nM
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Construction Overview

Our construction implements that algorithm by 

stacking wedge constructions on top of 

each other

Each wedge construction simulates M on an 

input value one greater than the wedge 

construction below it

Incrementing the inputs is done by embedding 

a log-width binary counter within the wedge 

constructions
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Construction Technique:  
Embedding Functionality

1 q00

1

q00

< q00< <

Log-width binary

counter tile

Turing machine

tile

Turing machine tile passing

binary counter value upward
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Construction Diagram

Start with a wedge construction
which simulates TM M on input 0



Construction Diagram

Embed a log-width binary

counter along the left side



Construction Diagram

Once M(0) halts and accepts or rejects,

make a row specifying the result



Construction Diagram

Next, add a row which

increments the counter



Construction Diagram

Use the new counter value

to begin the simulation

of M(1)



Construction Diagram

Increment the counter



Construction Diagram

Simulate M(2)



Construction Diagram

Increment the counter



Construction Diagram

Etc.
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Propagate the ‘answers’ from each

computation down to the axis
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Propagate the ‘answers’ from each

computation down to the axis



Construction Example



A New Characterization of 
Decidable Languages

This construction proves that if a set is 

decidable, then A x {0} and Ac x {0} weakly 

self-assemble.



A New Characterization of 
Decidable Languages

Proof: (←)  This direction of the proof uses 

the existence of self-assembly simulators to 

prove that if A x {0} and Ac x {0} weakly self-

assemble, then the set A is decidable.
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Proof Sketch (←)

• Assume A and Ac both weakly self-assemble

• Then there exist tile assembly systems TTTTAx{0}

and TTTTAcx{0} in which they weakly self-assemble

• For an input n, simulate both tile assembly 

systems in parallel

• Accept if TTTTAx{0} puts a black tile at (n,0)

• Reject if TTTTAcx{0} puts a black tile at (n,0)



A New Characterization of 
Decidable Languages

This completes the proof that a set A is 

decidable if and only if A x {0} and Ac x {0} 

weakly self-assemble.



Second Main Result

To prove our first main result, we constructed 

a tile assembly system that placed at least 

one tile in three different quadrants. 



Second Main Result

To prove our first main result, we constructed 

a tile assembly system that placed at least 

one tile in three different quadrants. 

Note that it is possible to prove our first main 

result while placing tiles in only two 

quadrants. 



Two quadrants



Two quadrants

We simply embed the 
log-width binary counter 
in the Turing machine 
simulation.



Second Main Result

However, if the language A has sufficient 

space complexity, AND your tile assembly 

system resembles our construction in the 

sense that the TM is simulated “row by row,”

then two quadrants of space are necessary. 
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Second Main Result (proof idea)

Assumption #1: connected to each point 

along the x-axis is a unique longest path 

originating from some unique point in the first 

quadrant that carries the answer to the 

question: does this TM accept/reject this 

input?
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Second Main Result (proof idea)

Assumption #2: aside from all of the paths 

mentioned on the previous slide, the rest of 

the assembly can be self-assembled 

(entirely) one row at a time



Second Main Result (proof idea)

TM simulation

y-axis

x-axis
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Second Main Result (proof idea)

x-axis

y-axis

TM simulation
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Second Main Result (proof idea)

• Proof by contradiction

• At least one of the yellow or black paths 

must turn “left” at some point (otherwise 

the language has small space complexity)

• Once a single path turns left, all must do 

so.

• Infinitely many paths turning left must 

eventually creep into another (adjacent) 

quadrant.
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Second Main Result (proof idea)

Contradiction!



Software which generates tile sets for the main 

construction from Turing machine definitions and 

tile assembly simulation software are freely 

available for download from the homepage for 

the ISU Laboratory for Nanoscale Self-

Assembly:

http://www.cs.iastate.edu/~lnsa

Web Site
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Summary

In this paper we showed:

1.A new characterization of decidable languages in 

terms of self-assembly

2.A lower bound on the space requirements of our 

construction

Thank you!


