
On the computational complexity of spiking
neural P systems

Turlough Neary

Boole Centre for Research in Informatics,
University College Cork, Ireland,

Funded by Science Foundation Ireland Research
Frontiers Programme grant number 07/RFP/CSMF641.

August 28, 2008

Introduction

I In this talk we give results regarding the time/space efficiency
of spiking neural P systems.

I Spiking neural P systems are the result of a synergy inspired
by spiking neural networks and P systems.

I These systems were first presented and proved universal in
2006 by Ionescu, Păun and Yokomori.

Previous spiking neural P systems

I Păun and Păun gave a strongly universal spiking neural P
system with 84 neurons and another that has extended rules
with 49 neurons.

I Subsequently, the number of neurons used for strong
universality was reduced from 84 to 67 and from 49 to 41 by
Zhang et al.

I Recently we gave an extended spiking neural P system with
12 neurons that is weakly universal and another with 18
neurons that is strongly universal.

I Spiking neural P systems with exhaustive use of extended
rules were proved universal by Ionescu, Păun and Yokomori.

I A number of time efficient solutions to NP-hard problems
have been given that rely families of spiking neural P systems.

Our results

I It is shown that there exists no standard spiking neural P
system that simulates Turing machines with less than
exponential time and space overheads.

I This is done by proving counter machines simulate spiking
neural P systems in linear time and space.

I Here we present a universal spiking neural P system with
exhaustive use of extended rules that has only 18 neurons and
simulates Turing machines in polynomial time.

I This system is shown to be universal by giving an efficient
polynomial time simulation of an existing small universal
Turing machine.

Spiking neural P systems

A spiking neural P system is a tuple
Π = (O, σ1, σ2, · · · , σm, syn, in, out), where:

1. O = {s} is the unary alphabet (s is known as a spike),

2. σ1, σ2, · · · , σm are neurons, of the form
σi = (ni ,Ri), 1 6 i 6 m, where:

2.1 ni > 0 is the initial number of spikes contained in σi ,
2.2 Ri is a finite set of rules of the following two forms:

2.2.1 E/sb → s; d , where E is a regular expression over s, b > 1
and d > 1,

2.2.2 se → λ, where λ is the empty word, e > 1, and for all
E/sb → s; d from Ri se /∈ L(E) where L(E) is the language
defined by E ,

3. syn ⊆ {1, 2, · · · ,m} × {1, 2, · · · ,m} is the set of synapses
between neurons, where i 6= j for all (i , j) ∈ syn,

4. in, out ∈ {σ1, σ2, · · · , σm} are the input and output neurons,
respectively.

Spiking neural P system

σ1

σ2 σ3

input

output

t1 : σ1 = 4, (s2)∗/s3 → s; 3.

On the left σk = y gives the number y of spikes in neuron σk at
time tj and on the right is the next rule that is to be applied at
time t1 if there is an applicable rule at that time.

Spiking neural P system

σ1

σ2 σ3

input

output

t1 : σ1 = 4, (s2)∗/s3 → s; 3.

On the left σk = y gives the number y of spikes in neuron σk at
time tj and on the right is the next rule that is to be applied at
time t1 if there is an applicable rule at that time.

A spiking neural P systems executing rule E/sb → s; d

σ1

σ2 σ3

input

output

t1 : σ1 = 4, (s2)∗/s3 → s; 3.

On the left σk = y gives the number y of spikes in neuron σk at
time tj and on the right is the next rule that is to be applied at
time t1 if there is an applicable rule at that time.

A spiking neural P systems executing rule E/sb → s; d

σ1

σ2 σ3

input

output

t1 : σ1 = 4, (s2)∗/s3 → s; 3.

On the left σk = y gives the number y of spikes in neuron σk at
time tj and on the right is the next rule that is to be applied at
time t1 if there is an applicable rule at that time.

A spiking neural P systems executing rule E/sb → s; d

σ1

σ2 σ3

input

output

t2 : σ1 = 4, (s2)∗/s3 → s; 2.

On the left σk = y gives the number y of spikes in neuron σk at
time tj and on the right is the next rule that is to be applied at
time t1 if there is an applicable rule at that time.

A spiking neural P systems executing rule E/sb → s; d

σ1

σ2 σ3

input

output

t3 : σ1 = 4, (s2)∗/s3 → s; 1.

On the left σk = y gives the number y of spikes in neuron σk at
time tj and on the right is the next rule that is to be applied at
time t1 if there is an applicable rule at that time.

A spiking neural P systems executing rule E/sb → s; d

σ1

σ2 σ3

input

output

t3 : σ1 = 4, (s2)∗/s3 → s; 1.

On the left σk = y gives the number y of spikes in neuron σk at
time tj and on the right is the next rule that is to be applied at
time t1 if there is an applicable rule at that time.

A spiking neural P systems executing rule E/sb → s; d

σ1

σ2 σ3

input

output

t3 : σ1 = 4, (s2)∗/s3 → s; 1.

On the left σk = y gives the number y of spikes in neuron σk at
time tj and on the right is the next rule that is to be applied at
time t1 if there is an applicable rule at that time.

A spiking neural P systems executing rule E/sb → s; d

σ1

σ2 σ3

input

output

t4 : σ1 = 1,

σ2 = 1,

σ3 = 1,

A spiking neural P systems executing rule se → λ

σ1

σ2 σ3

input

output

t4 : σ1 = 1,

σ2 = 1,

σ3 = 1, s → λ

A spiking neural P systems executing rule se → λ

σ1

σ2 σ3

input

output

t5 : σ1 = 1,

σ2 = 1,

σ3 = 0,

Spiking neural P system input and output

σ1

σ2 σ3

input

output

The input is a binary sequence w = {0, 1}∗. The output is the
time between the first and second spike.

Counter machines

A counter machine is a tuple C = (z , cm,Q, q0, qh,Σ, f), where z
gives the number of counters, cm is the output counter,
Q = {q0, q1, · · · , qh} is the set of states, q0, qh ∈ Q are the initial
and halt states respectively, Σ is the input alphabet and f is the
transition function

f : (Σ× Q × g(i))→ ({Y ,N} × Q × {INC ,DEC ,NULL})

where g(i) is a binary valued function and 0 6 i 6 z , Y and N
control the movement of the input read head, and INC , DEC , and
NULL indicate the operation to carry out on counter ci .

Counter machines simulate spiking neural P systems in
linear time and space

I Let Π = (O, σ1, σ2, · · · , σm, syn, in, out) be a spiking neural P
system that completes it computation in time T and space S .

I We explain the operation of a non-deterministic counter
machine CΠ that simulates the operation of Π in time
O(T (x)2m + Tm2) and space O(S).

Counter machines simulate spiking neural P systems

I There are m + 1 counters c1, c2, c3, · · · , cm, cm+1 in counter
machine CΠ.

I Each counter ci emulates the activity of a neuron σi . If σi

contains y spikes then counter ci will store the value y .

I The states of the counter machine are used to control which
neural rules are simulated in each counter and also to
synchronise the operations of the simulated neurons
(counters).

Counter machines simulate spiking neural P systems

Finite state machine G decides if a particular rule E/sb → s; d is
applicable in a neuron given the number of spikes in the neuron at
a given time in the computation.

g1 g2 . . . gx−1 gx gx+1 . . . gy
s s s

sG

Machine G ′ keeps track of the movement of spikes into and out of
the neuron and decides whither or not a particular rule is
applicable at each timestep in the computation.

g1 g2 . . . gx−1 gx gx+1 . . . gy

+s

−s

+s

−s

+s

−s

+s

−s

G ′

Counter machines simulate spiking neural P systems

Finite state machine G decides if a particular rule E/sb → s; d is
applicable in a neuron given the number of spikes in the neuron at
a given time in the computation.

g1 g2 . . . gx−1 gx gx+1 . . . gy
s s s

sG

Machine G ′ keeps track of the movement of spikes into and out of
the neuron and decides whither or not a particular rule is
applicable at each timestep in the computation.

g1 g2 . . . gx−1 gx gx+1 . . . gy

+s

−s

+s

−s

+s

−s

+s

−s

G ′

Counter machines simulate spiking neural P systems

I The algorithm used by counter machine CΠ is presented as
three stages. These three stages simulate the synchronous
update of all the neurons in Π at an arbitrary timestep.

I Recall that each neuron σi in Π is simulated by a counter ci in
CΠ.

I A single iteration of Stage 1 identifies which applicable rule to
simulate in a simulated open neuron ci . If the rule
E/sb → s; d is to be executed then b simulated spikes are
removed by decrementing the counter b times. Also, the d
value for σi is recorded in the states of the counter machine.

I Stage 1 is iterated until all simulated open neurons have had
the correct number of simulated spikes removed.

I Note that during Stage 1 if a rule of the form E/sb → s; d is
executed d > 0 this is also recorded in the states of the
counter machine.

Counter machines simulate spiking neural P systems

I A single iteration of Stage 2 identifies all the synapses leaving
a firing neuron and increments every counter that simulates
an open neuron at the end of one of these synapses.

I Stage 2 is iterated until all firing neurons have been simulated
by incrementing the appropriate counters.

I Stage 3 synchronises each neuron with the global clock and
increments the output counter if necessary.

Counter machines simulate spiking neural P systems in
linear time and space

CΠ simulates Π in space of O(S).

I Stage 1. A single iteration of Stage 1 take O(x2) time. This
stage is iterated a maximum of m times per simulated
timestep giving O(x2m) time.

I Stage 2. The maximum number of synapses leaving a neuron
σi is m. A single spike traveling along a neuron is simulated in
one step. Stage 2 is iterated a maximum of m times per
simulated timestep giving O(m2) time.

I Stage 3. Takes a small constant number of steps.

Thus, a single timestep of Π is simulated by CΠ in O(x2m + m2)
time and T timesteps of Π are simulated in linear time
O(Tx2m + Tm2) by CΠ.

Counter machines simulate spiking neural P systems in
linear time and space

I Fischer et al. have previously shown that counter machines
require exponential time and space to simulate Turing
machines.

I From our result and Fischer’s it immediately follows that
spiking neural P systems require exponential time and space
to simulate Turing machines.

A universal spiking neural P system that is both small and
time efficient

I We present a small universal spiking neural P system with
exhaustive use of extended rules and simulates Turing
machines in polynomial time.

I This system has only 18 neurons and simulates the
computation of an existing small universal Turing machine
U6,4.

Extended spiking neural P systems with exhaustive use of
rules

I An extended spiking neural P system has more general rules of
the form E/sb → sp; d , where b > p > 0.

I An extended spiking neural P system with exhaustive use of
rules applies its rules as follows;

σ1

σ2 σ3

t1 : σ1 = 20, (s2)∗/s3 → s2; 0.

Extended spiking neural P systems with exhaustive use of
rules

I An extended spiking neural P system has more general rules of
the form E/sb → sp; d , where b > p > 0.

I An extended spiking neural P system with exhaustive use of
rules applies its rules as follows;

σ1

σ2 σ3

t2 : σ1 = 2,

σ2 = 12,

σ3 = 12, (s2)∗/s → λ; 0.

Extended spiking neural P systems with exhaustive use of
rules

I An extended spiking neural P system has more general rules of
the form E/sb → sp; d , where b > p > 0.

I An extended spiking neural P system with exhaustive use of
rules applies its rules as follows;

σ1

σ2 σ3

t3 : σ1 = 2,

σ2 = 12,

σ3 = 0,

Configuration of universal Turing machine U6,4

. . . c c a−x
. . . a−2 a−1 a0 a1 a2

. . . ay c c . . .

urtape head tape

The current state of U6,4 is ur and c is the blank symbol. The cells
between a−x and ay include all of the cells on U6,4’s tape that
have either been visited by the tape head prior to configuration Ck

above or contain part of the input to U6,4.

Encoding a configuration of U6,4

. . . c c a−x
. . . a−2 a−1 a0 a1 a2

. . . ay c c . . .

urtape head tape

I The encoding of each object z is given by 〈z〉.
I The states and symbols of U6,4 are encoded as numerical

values.

I Each encoded tape cell ai is encoded as 〈ai 〉 = 〈α〉 where α is
a tape symbol of U6,4. The tape contents to the left and right

of the tape head are encoded as the numbers X =
x∑

i=1
32i 〈ai 〉

and Y =
y∑

j=1
32j〈aj〉, respectively.

Encoding a configuration of U6,4

X =
x∑

i=1
32i 〈ai 〉

. . . c c a−x
. . . a−2 a−1 a0 a1 a2

. . . ay c c . . .

urtape head tape

︷ ︸︸ ︷X ︷ ︸︸ ︷Y︷︸︸︷〈α1〉

Thus the entire configuration Ck is encoded as three natural
numbers via the equation

〈Ck〉 = (X , Y , 〈ur 〉+ 〈α1〉)

Simulating the transition rule ur , α1, α2, L, us on 〈CK 〉

X =
x∑

i=1
32i 〈ai 〉

. . . c c a−x
. . . a−2 a−1 a0 a1 a2

. . . ay c c . . .

urtape head tape

︷ ︸︸ ︷X ︷ ︸︸ ︷Y︷︸︸︷〈α1〉

〈Ck〉 = (X , Y , 〈ur 〉+ 〈α1〉)

Simulating the transition rule ur , α1, α2, L, us on CK

X =
x∑

i=1
32i 〈ai 〉

. . . c c a−x
. . . a−2 a−1 a0 a1 a2

. . . ay c c . . .

ustape head tape

︷ ︸︸ ︷X ︷ ︸︸ ︷Y︷︸︸︷〈α2〉

〈Ck〉 = (X , Y , 〈ur 〉+ 〈α1〉)

Simulating the transition rule ur , α1, α2, L, us on CK

X =
x∑

i=1
32i 〈ai 〉

. . . c c a−x
. . . a−2 a−1 a0 a1 a2

. . . ay c c . . .

ustape head tape

︷ ︸︸ ︷X
32 − (X

32 mod 32) ︷ ︸︸ ︷32Y + 32〈α2〉︷︸︸︷
X
32 mod 32

〈Ck〉 = (X , Y , 〈ur 〉+ 〈α1〉)

〈Ck+1〉 =

(
X

32
− (

X

32
mod 32), 32Y + 32〈α2〉, (

X

32
mod 32) + 〈us〉

)

Simulating the transition rule ur , α1, α2,D, us on CK

. . . c c a−x
. . . a−2 a−1 a0 a1 a2

. . . ay c c . . .

ustape head tape

︷ ︸︸ ︷X
32 − (X

32 mod 32) ︷ ︸︸ ︷32Y + 32〈α2〉︷︸︸︷

〈Ck〉 = (X , Y , 〈ur 〉+ 〈α1〉)

〈Ck+1〉 =

{(
X
32 − (X

32 mod 32), 32Y + 32〈α2〉, (X
32 mod 32) + 〈us〉

)(
32X + 32〈α2〉, Y

32 − (Y
32 mod 32), (Y

32 mod 32) + 〈us〉
)

Universal spiking neural P system

σ8 σ9 σ10 σ11

σ12 σ13 σ14 σ15

σ16 σ17σ17

σ18

σ5

σ2

σ7

σ3 σ4

σ6

σ1

input output

Simulating ur , α1, α2, L, us

σ8 σ9 σ10 σ11

σ12 σ13 σ14 σ15

σ16 σ17σ17

σ18

σ5

σ2

σ7

σ3 σ4

σ6

σ1

32Y + 32〈α2〉

X
32
− (X

32
mod 32)

(X
32

mod 32) + 〈us〉

input output

ti : σ2 = X ,

σ3 = Y ,

σ5 = 〈ur 〉+ 〈α1〉, s〈ur 〉+〈α1〉/s → s; 1,

σ7 = 〈ur 〉+ 〈α1〉, s〈ur 〉+〈α1〉/s → s; 1.

Simulating ur , α1, α2, L, us

σ8 σ9 σ10 σ11

σ12 σ13 σ14 σ15

σ16 σ17σ17

σ18

σ5

σ2

σ7

σ3 σ4

σ6

σ1

32Y + 32〈α2〉

X
32
− (X

32
mod 32)

(X
32

mod 32) + 〈us〉

input output

ti+1 : σ2 = X + 〈ur 〉+ 〈α1〉, s64(s32)∗s〈ur 〉+〈α1〉/s32 → s; 9,

σ3 = Y + 〈ur 〉+ 〈α1〉, (s32)∗s〈ur 〉+〈α1〉/s → s; 1.

Simulating ur , α1, α2, L, us

σ8 σ9 σ10 σ11

σ12 σ13 σ14 σ15

σ16 σ17σ17

σ18

σ5

σ2

σ7

σ3 σ4

σ6

σ1

32Y + 32〈α2〉

X
32
− (X

32
mod 32)

(X
32

mod 32) + 〈us〉

input output

ti+2 : σ2 = X + 〈ur 〉+ 〈α1〉, s64(s32)∗s〈ur 〉+〈α1〉/s32 → s; 8,

σ4 = Y + 〈ur 〉+ 〈α1〉, s → λ; 0,

σ6 = Y + 〈ur 〉+ 〈α1〉, (s32)∗s〈ur 〉+〈α1〉/s → s; 1,

σ7 = Y + 〈ur 〉+ 〈α1〉, s32(s32)∗s〈ur 〉+〈α1〉/s → λ; 0.

Simulating ur , α1, α2, L, us

σ8 σ9 σ10 σ11

σ12 σ13 σ14 σ15

σ16 σ17σ17

σ18

σ5

σ2

σ7

σ3 σ4

σ6

σ1

32Y + 32〈α2〉

X
32
− (X

32
mod 32)

(X
32

mod 32) + 〈us〉

input output

ti+3 : σ2 = X + 〈ur 〉+ 〈α1〉, s64(s32)∗s〈ur 〉+〈α1〉/s32 → s; 7,

σ5, σ7 = Y + 〈ur 〉+ 〈α1〉, s32(s32)∗s〈ur 〉+〈α1〉/s → λ; 0,

σ8, σ9, σ10, σ11 = Y + 〈ur 〉+ 〈α1〉, s32(s32)∗s〈ur 〉+〈α1〉/s → s; 1.

Simulating ur , α1, α2, L, us

σ8 σ9 σ10 σ11

σ12 σ13 σ14 σ15

σ16 σ17σ17

σ18

σ5

σ2

σ7

σ3 σ4

σ6

σ1

32Y + 32〈α2〉

X
32
− (X

32
mod 32)

(X
32

mod 32) + 〈us〉

input output

ti+4 : σ2 = X + 〈ur 〉+ 〈α1〉, s64(s32)∗s〈ur 〉+〈α1〉/s32 → s; 6,

σ12, σ13, σ14, σ15 = 4(Y + 〈ur 〉+ 〈α1〉), (s128)∗s4(〈ur 〉+〈α1〉)/s → s; 1.

Simulating ur , α1, α2, L, us

σ8 σ9 σ10 σ11

σ12 σ13 σ14 σ15

σ16 σ17σ17

σ18

σ5

σ2

σ7

σ3 σ4

σ6

σ1

32Y + 32〈α2〉

X
32
− (X

32
mod 32)

(X
32

mod 32) + 〈us〉

input output

ti+5 : σ2 = X + 〈ur 〉+ 〈α1〉, s64(s32)∗s〈ur 〉+〈α1〉/s32 → s; 5,

σ16, σ17 = 16(Y + 〈ur 〉+ 〈α1〉), (s512)∗s16(〈ur 〉+〈α1〉)/s → s; 1.

Simulating ur , α1, α2, L, us

σ8 σ9 σ10 σ11

σ12 σ13 σ14 σ15

σ16 σ17σ17

σ18

σ5

σ2

σ7

σ3 σ4

σ6

σ1

32Y + 32〈α2〉

X
32
− (X

32
mod 32)

(X
32

mod 32) + 〈us〉

input output

ti+6 : σ2 = X + 〈ur 〉+ 〈α1〉, s64(s32)∗s〈ur 〉+〈α1〉/s32 → s; 4,

σ18,= 32(Y + 〈ur 〉+ 〈α1〉), (s322

)∗s32(〈ur 〉+〈α1〉)/s322

→ (s322

); 1.

Simulating ur , α1, α2, L, us

σ8 σ9 σ10 σ11

σ12 σ13 σ14 σ15

σ16 σ17σ17

σ18

σ5

σ2

σ7

σ3 σ4

σ6

σ1

32Y + 32〈α2〉

X
32
− (X

32
mod 32)

(X
32

mod 32) + 〈us〉

input output

ti+7 : σ2 = X + 〈ur 〉+ 〈α1〉, s64(s32)∗s〈ur 〉+〈α1〉/s32 → s; 3,

σ5 = 32Y , (s32)∗/s32 → s; 1,

σ7 = 32Y , (s32)∗/s32 → s; 1,

σ18,= 32(〈ur 〉+ 〈α1〉), s32(〈ur 〉+〈α1〉)/s32(〈ur 〉+〈α1〉)−〈us〉 → s32〈α2〉; 1.

Simulating ur , α1, α2, L, us

σ8 σ9 σ10 σ11

σ12 σ13 σ14 σ15

σ16 σ17σ17

σ18

σ5

σ2

σ7

σ3 σ4

σ6

σ1

32Y + 32〈α2〉

X
32
− (X

32
mod 32)

(X
32

mod 32) + 〈us〉

input output

ti+8 : σ2 = X + 〈ur 〉+ 〈α1〉, s64(s32)∗s〈ur 〉+〈α1〉/s32 → s; 2,

σ3 = 32Y ,

σ5 = 32〈α2〉, (s32)∗/s32 → s; 1,

σ7 = 32〈α2〉, (s32)∗/s32 → s; 1,

σ18,= 〈us〉, s〈us〉/s → s; 4.

Simulating ur , α1, α2, L, us

σ8 σ9 σ10 σ11

σ12 σ13 σ14 σ15

σ16 σ17σ17

σ18

σ5

σ2

σ7

σ3 σ4

σ6

σ1

32Y + 32〈α2〉

X
32
− (X

32
mod 32)

(X
32

mod 32) + 〈us〉

input output

ti+9 : σ2 = X + 〈ur 〉+ 〈α1〉, s64(s32)∗s〈ur 〉+〈α1〉/s32 → s; 1,

σ3 = 32Y + 32〈α2〉,

σ18,= 〈us〉, s〈us〉/s → s; 3.

Simulating ur , α1, α2, L, us

σ8 σ9 σ10 σ11

σ12 σ13 σ14 σ15

σ16 σ17σ17

σ18

σ5

σ2

σ7

σ3 σ4

σ6

σ1

32Y + 32〈α2〉

X
32
− (X

32
mod 32)

(X
32

mod 32) + 〈us〉

input output

ti+10 : σ2 = 〈ur 〉+ 〈α1〉, s〈ur 〉+〈α1〉/s → λ; 0,

σ3 = 32Y + 32〈α2〉

σ5 =
X

32
, (s32)∗s(X

32
mod 32)/s32 → s32; 1,

σ6 =
X

32
, (s32)∗s(X

32
mod 32)/s32 → λ; 0,

σ18,= 〈us〉, s〈us〉/s → s; 2.

Simulating ur , α1, α2, L, us

σ8 σ9 σ10 σ11

σ12 σ13 σ14 σ15

σ16 σ17σ17

σ18

σ5

σ2

σ7

σ3 σ4

σ6

σ1

32Y + 32〈α2〉

X
32
− (X

32
mod 32)

(X
32

mod 32) + 〈us〉

input output

ti+11 : σ2 =
X

32
− (

X

32
mod 32)

σ3 = 32Y + 32〈α2〉

σ5 =
X

32
mod 32 s

X
32

mod 32/s
X
32

mod 32 → λ; 0

σ6 =
X

32
mod 32 s

X
32

mod 32/s
X
32

mod 32 → s; 1

σ18,= 〈us〉, s〈us〉/s → s; 1 .

Simulating ur , α1, α2, L, us

σ8 σ9 σ10 σ11

σ12 σ13 σ14 σ15

σ16 σ17σ17

σ18

σ5

σ2

σ7

σ3 σ4

σ6

σ1

32Y + 32〈α2〉

X
32
− (X

32
mod 32)

(X
32

mod 32) + 〈us〉

input output

ti+12 : σ2 =
X

32
− (

X

32
mod 32)

σ3 = 32Y + 32〈α2〉

σ5 = (
X

32
mod 32) + 〈us〉 s(X

32
mod 32)+〈us〉/s → s; 1

σ7 = (
X

32
mod 32) + 〈us〉 s(X

32
mod 32)+〈us〉/s → s; 1,

σ8, σ9, σ10, σ11 =
X

32
mod 32 s

X
32

mod 32/s
X
32

mod 32 → λ; 0.

Conclusions

I Standard (extended) spiking neural P systems require
exponential time and space to simulate Turing machines.

I Extended spiking neural P systems with exhaustive use of
rules simulate Turing machines in polynomial time and
exponential space.

I The simulation technique given for the universal spiking
neural P system is easily adapted to give other more time
efficient spiking neural P systems.

	Introduction
	Previous spiking neural P systems
	Our results

	Spiking neural P system and counter machines
	Spiking neural P systems
	Counter machines

	Counter machines simulate spiking neural P systems in linear time and space
	Extended spiking neural P systems with exhaustive use of rules
	A universal spiking neural P system U6,4 that is both small and time efficient
	Encoding a configuration of the universal Turing machine U6,4
	Universal spiking neural P system U6,4 simulates U6,4

	Conclusions

