
Computational bounds on polynomial differential
equations

D. S. Graça1,2 J. Buescu3 M. L. Campagnolo4,2

1DM/FCT, University of Algarve, Portugal
2SQIG, Institute of Telecommunications, Portugal

3DM/FCUL, University of Lisbon, Portugal
and CAMGSD, Lisbon, Portugal

4DM/ISA, Technical University of Lisbon, Portugal

August 26, 2008

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 1 / 39

Introduction

Outline

1 Introduction
Motivation
The GPAC and PIVP functions
Robust simulations of discrete DSs

2 Main results
Robust simulations of Turing machines
Proof of the results
Application – Undecidability for PIVPs with Comparable Parameters

3 Conclusions/perspectives
Selected references

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 2 / 39

Introduction Motivation

What can be achieved with analog computation?

Church-Turing Thesis: Every function computable according to the
intuitive notion of algorithm is computable by a Turing machine

But what can we say about analog computational models that do not
rely on discrete procedures?

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 3 / 39

Introduction The GPAC and PIVP functions

The GPAC

In 1941, Claude Shannon presented a paper entitled “Mathematical theory
of the Differential Analyzer”, where he first described the General Purpose
Analog Computer (GPAC).

k +

iu

k
u
v

u+v

v
it
t0
u(x)dv(x)

A constant unit associated to
the real value k

An adder unit

An integrator unit A multiplier unit

x
u
v

uva+

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 4 / 39

Introduction The GPAC and PIVP functions

Example

Example

Compute y(x) = ex with a GPAC

i e
t

t{
y ′ = y
y(0) = 1

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 5 / 39

Introduction The GPAC and PIVP functions

Main features of the GPAC

Real numbers are not treated as strings of digits

Assumes continuous-time dynamics

The computation is performed in real time: for a GPAC computing a
function f , if an input x is given at time t, the output at time t is
f (x), i.e. the computation took 0 time units to be carried out.

Generates analytic functions (i.e. it has smooth dynamics)

Proposition

A scalar function f : R→ R is generated by a GPAC iff it is PIVP function
i.e. a component of the solution of a system

y ′ = p(t, y),

where p is a vector of polynomials.

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 6 / 39

Introduction The GPAC and PIVP functions

Questions

1 Can PIVP functions (i.e. a GPAC) simulate Turing machines?

2 Can the previous simulation be made robust?

3 Which are the “simplest” PIVP functions to be able to simulate
Turing machines?

4 Can we establish limits on what can be computed (simulated) by
PIVP functions?

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 7 / 39

Introduction The GPAC and PIVP functions

Properties of PIVP functions

The PIVP functions are closed under the following operations (as far as we
know, these properties have only been reported in the literature for the
broader case of differentially algebraic functions):

Field operations +,−,×, /
Composition

Differentiation

Compositional inverses

Corollary

All closed-form functions (i.e. elementary functions in Analysis which,
informally, correspond to the functions obtained from the rational
functions, sin, cos, exp through finitely many compositions and inversions)
are PIVP functions.

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 8 / 39

Introduction The GPAC and PIVP functions

Theorem

Let S be a subfield of R. Consider the IVP{
x ′ = f (t, x)
x(t0) = x0

(1)

where f : D ⊆ Rn+1 → Rn, D is the domain of f , and each component of
f is a composition of polynomials with coefficients in S and PIVP
functions with parameters in S and (t0, x0) ∈ D ∩ Sn+1. Then there exists
m ≥ n, a polynomial p : Rm+1 → Rm with coefficients in S and y0 ∈ Sm

such that the solution of (1) is given by the first n components of
y = (y1, ..., ym), where y is the solution of the PIVP{

y ′ = p(t, y)
y(t0) = y0

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 9 / 39

Introduction Robust simulations of discrete DSs

Robust simulations of discrete DSs

Before trying to answer questions about the simulation of discrete
dynamical systems via continuous ones, we have to define what we mean
by “simulation”.

Let D be a discrete dynamical system (time and space are discrete). Each
point of the state space can be coded as a point in Nm so that the
evolution of the system is modeled by the iteration of a map
ω : Nm → Nm. In general, if f is a function, we denote its kth iterate by
f [k], i.e. f [0](x) = x and f [k+1] = f ◦ f [k] for all k ∈ N. We now present
some definitions.

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 10 / 39

Introduction Robust simulations of discrete DSs

Definition

The map Ω : Rm → Rm is a (real) robust extension of the map
ω : Nm → Nm if there exist δin, δev , δout ∈ (0, 1/2) such that for all
x0 ∈ Rm, n0 ∈ Nm, Ω : Rm → Rm one has

1 Ω(n) = ω(n) and

2 ‖n0 − x0‖∞ ≤ δin and
∥∥Ω− Ω

∥∥
∞ ≤ δev implies∥∥ω(n0)− Ω(x0)

∥∥
∞ ≤ δout .

Lemma

If Ω : Rm → Rm is a robust extension of the map ω : Nm → Nm, then
there exist δin, δev , δout ∈ (0, 1/2) such that for all x0 ∈ Rm, n0 ∈ Nm,
Ω : Rm → Rmone has

1 Ω(n) = ω(n) and

2 ‖n0 − x0‖∞ ≤ δin and
∥∥Ω− Ω

∥∥
∞ ≤ δev implies∥∥∥ω[k](n0)− Ω

[k]
(x0)

∥∥∥
∞
≤ δout for all k ∈ N.

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 11 / 39

Introduction Robust simulations of discrete DSs

Definition

Let φ : R→ R be the unique solution of the initial value problem

x ′ = f (t, x), x(0) = n0.

We say that φ is a robust suspension of the map ω : Nm → Nm if there
exist δin, δev , δout , δtime ∈ (0, 1/2), such that for all x0 ∈ Rm, n0 ∈ Nm,
k ∈ N, and f : Rm+1 → Rm one has that

‖n0 − x0‖∞ ≤ δin and
∥∥f − f

∥∥
∞ ≤ δev

implies that the solution φ of the initial-value problem

x ′ = f (t, x), x(0) = x0

satisfies ∥∥∥ω[k](n0)− φ(t)
∥∥∥
∞
≤ δout

for all t ∈ R+
0 such that |t − k| ≤ δtime .

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 12 / 39

Main results Robust simulations of Turing machines

We shall use Q[π], the standard algebraic ring extension of Q by adjoining
the transcendent π, and which is the smallest ring containing Q ∪ {π}:

Q[π] := {anπ
n + . . .+ a1π + a0 ∈ R|a0, . . . , an ∈ Q}.

Theorem

If the map ω : Nm → Nm admits a robust extension Ω : Rm → Rm whose
components are compositions of polynomials and PIVP functions with
parameters in Q[π], then ω admits a robust suspension φ which is a vector
PIVP function with parameters in Q[π].

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 13 / 39

Main results Robust simulations of Turing machines

Main results

The next proposition follows from [GCB08]. There the transition of a
Turing machine is coded as a map over the integers in the following
manner: we code the state as an integer and, using a representation of
numbers in some adequate base, we code the right part of the tape as a
second integer, and the left part as a third integer. We denote that
encoding by η.

Proposition

Under the encoding η, the transition function ω : N3 → N3 of a Turing
machine admits a robust extension Ω : R3 → R3 . Moreover Ω can be
chosen to be a composition of polynomials with coefficients in Q[π] and
PIVP functions with parameters in Q[π] (in particular sin, cos and arctan).

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 14 / 39

Main results Robust simulations of Turing machines

Corollary

With the above encoding, the transition function ω of a given Turing
machine admits a robust suspension φ. Moreover φ is a vector PIVP
function with parameters in Q[π].

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 15 / 39

Main results Proof of the results

Proof of the main results

We need to iterate a map with ODEs. This is done adapting ideas
originally from Branicky and further developed by Campagnolo, Costa,
Moore, Graça, and Buescu.

1st construction

Consider a point b ∈ R (the target), some γ > 0 (the targeting error), and
time instants t0 (departure time) and t1 (arrival time), with t1 > t0. Then
obtain an IVP (the targeting equation) such that its solution y satisfies

|y(t1)− b| < γ

independent of the initial condition y(t0) ∈ R.

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 16 / 39

Main results Proof of the results

This can be done by an ODE

y ′ = c(b − y)3φ(t)

where φ : R→ R+
0 is some function satisfying

∫ t1

t0
φ(t)dt > 0 and c > 0 is

any constant which is bigger than a constant c0 depending on γ and φ.
Note that the only requirement for the construction to hold is that c is
large enough.

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 17 / 39

Main results Proof of the results

2nd construction

Iterate the map ω : Zm → Zm with a smooth ODE y ′ = f (t, y).

Let Ω : Rm → Rm be an arbitrary smooth extension of ω to R (not
necessarily robust). The iteration of ω may be performed (results from
Campagnolo, Costa, and Moore) by the initial-value problem{

z ′1 = c1(Ω(r(z2))− z1)3θj(sin 2πt)
z ′2 = c2(r(z1)− z2)3θj(− sin 2πt)

{
z1(0) = x0

z2(0) = x0,
(2)

where z1(t), z2(t) ∈ Rm, θj(x) = 0 if x ≤ 0 and θj(x) = x j if x > 0, and
r(x) is a function that is a solution of an ODE and that satisfies r(x) = i
whenever x ∈ [i − 1/4, i + 1/4] for all i ∈ Z. Note that c1 and c2 depend
on j and that all coefficients in (2) are in Q[π].

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 18 / 39

Main results Proof of the results

Removing non-analyticity

We have used the nonanalytic functions θj and r which are obviously not
PIVP functions. We will remove these functions using the fact that ω
admits a robust extension. Therefore we have to study what happens
when perturbations are allowed to prove the result.

In order to solve the previous problems, we need to recall the following two
functions, σ and l2, which were introduced and studied in [GCB08].

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 19 / 39

Main results Proof of the results

Lemma

Let l2 : R2 → R be given by l2(x , y) = 1
π arctan(4y(x − 1/2)) + 1

2 .
Suppose also that a ∈ {0, 1}. Then, for any a, y ∈ R satisfying
|a− a| ≤ 1/4 and y > 0,

|a− l2(a, y)| < 1

y
.

Lemma

Let σ(x) = x − 0.2 sin(2πx) and ε ∈ [0, 1/2). Then there is some
contracting factor λε ∈ (0, 1) such that for all n ∈ Z, ∀δ ∈ [−ε, ε],
|σ(n + δ)− n| < λεδ.

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 20 / 39

Main results Proof of the results

Studying the perturbed targeting equation

Because the iterating procedure relies on the basic ODE
y ′ = c(b − y)3φ(t), we have to study the following perturbed version of
this ODE

z ′ = c(b(t)− z)3φ(t) + E (t),

where
∣∣b(t)− b

∣∣ ≤ ρ and |E (t)| ≤ δ. This was done in [GCB08], where it
is shown that

|z(1/2)− b| < ρ+ γ +
δ

2
.

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 21 / 39

Main results Proof of the results

Removing the θj ’s

We must remove the θj ’s in two places: in the function r and in the terms
θj(± sin 2πt).

Since in (2) we are using a robust extension Ω : Rm → Rm of
ω : Nm → Nm, we no longer need the corrections performed by r . There
may be a problem when Ω is a robust extension of ω with δout > 1/4, but
this can easily be overcome by applying the function σ l times to each
component of Ω until one has that σ[l] ◦ Ω is a robust extension of ω with
δσin ≤ 1/4, and use σ[l] ◦ Ω instead of Ω.

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 22 / 39

Main results Proof of the results

On the other hand we cannot use the previous technique to treat the
terms θj(± sin 2πt). We need to substitute φ(t) = θj(sin 2πt) with an
analytic (PIVP) function ζ : R→ R with the following ideal behavior:

(i) ζ is periodic with period 1;
(ii) ζ(t) = 0 for t ∈ [1/2, 1];

(iii) ζ(t) ≥ 0 for t ∈ [0, 1/2] and
∫ 1/2

0 ζ(t)dt > 0.

Of course, conditions (ii) and (iii) are incompatible for analytic functions.
Instead, we approximate ζ using a function ζε, where ε > 0. This function
must satisfy the following conditions:

(ii)′ |ζε(t)| ≤ ε for t ∈ [1/2, 1];

(iii)′ ζε(t) ≥ 0 for t ∈ [0, 1/2] and
∫ 1/2

0 ζε(t)dt > I > 0, where I is
independent of ε.

In [GCB08] an example of a PIVP function satisfying both (ii)′ and (iii)′ is
constructed.

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 23 / 39

Main results Undecidability for PIVPs

Application – Undecidability for PIVPs

It is well known from the basic existence-uniqueness theory of ODEs that
if f is analytic, then the IVP

x ′ = f (t, x), x(t0) = x0 (3)

has a unique solution x(t) defined on a maximal interval of existence
I = (α, β) ⊂ R that is analytic on I . The interval is maximal in the sense
that either α = −∞ or x(t) is unbounded as t → α+ with similar
conditions applying to β. Actually, f only needs to be continuous and
locally Lipschitz in the second argument for this maximal interval to exist.

Question

Is it possible to design an automated method that, on input (f , t0, x0),
gives as output the maximal interval of existence for the solution of (3)?

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 24 / 39

Main results Undecidability for PIVPs

In [GZB07] it was shown that given an analytic IVP, defined with
computable data, its corresponding maximal interval may be
non-computable.

Non-computability results related to initial-value problems of differential
equations are not new.

(Aberth) There is an ordinary differential equation, defined with
computable data, that does not have a computable solution

(Pour-El, Richards, Zhong) There is a three-dimensional wave
equation,

∂2u

∂x2
+
∂2u

∂y 2
+
∂2u

∂z2
− ∂2u

∂t2
= 0

u(x , y , z) = f (x , y , z)

∂u

∂t
(x , y , z , 0) = 0

where f is computable, such that its only solution is not computable

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 25 / 39

Main results Undecidability for PIVPs

These examples have somehow disconcerted mathematicians and
physicists, since many of them accept an “extended” Church-Turing
thesis: no feasible physical device has more computational power than a
Turing machine

Actually, the previous results seem to rely on “ill-behaved” data:

The first results is false if we require the solution of the ODE to be
unique

The second result is false if the solution is required to be of class C 1:
if the initial velocity is C k -computable and the initial position is
C k−1-computable, then the solution is C k−1-computable

But this is not the case for the maximal interval problem!

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 26 / 39

Main results Undecidability for PIVPs

Motivated by the non-computability result obtained in [GZB07], this latter
paper also addresses the following problem: while it is not possible to
compute the maximal interval of{

x ′ = f (t, x)
x(t0) = x0

is it possible to compute some partial information about it? In particular,
is it possible to decide if this maximal interval is bounded or not?

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 27 / 39

Main results Undecidability for PIVPs

This question has interest on its own for the following reason. In many
problems, we implicitly assume that t is defined for “all time”. For
example, if one wants to compute sinks or limit cycles associated with
ODEs, this only makes sense if the solution of the ODE is defined for all
times t > t0. This is also implicitly assumed in problems like reachability.
For this reason, those problems only make sense when associated with
ODEs for which the maximal interval is unbounded.

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 28 / 39

Main results Undecidability for PIVPs

In [GZB07], it was shown that for the general class of analytic IVPs, the
boundedness problem of the maximal interval is undecidable. Here we will
deepen this result: we will show that the boundedness problem is still
undecidable for PIVPs of degree greater or equal than 56 with parameters
in Q[π]. Our result is slightly different in form from the case of the general
class of analytic IVPs. Indeed, the coefficients of the polynomials are
coded as finite sequences of integers.

The boundedness problem is decidable for linear differential equations thus
implying that the boundary between decidability/undecidability lies in the
class of polynomials of degree n, for some 2 ≤ n ≤ 56.

This result is shown using methods which differ from those employed in
[GZB07]. This result was already stated in [GBC07], but we now present
its proof.

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 29 / 39

Main results Undecidability for PIVPs

Analytic case

We now introduce a definition that allows us to compare real numbers of
some given set, to avoid trivial undecidability of the boundedness problem
due to the fact that the problem of deciding equality of real numbers is, in
general, undecidable.

Definition

We say that a set D ⊆ R is effectively comparable if D has a naming
system γ, if all elements of D are γ-computable, and if given γ-names of
x , y ∈ D, then x = y and x < y are decidable

In the previous definition, “naming system” is either a (finite) notation or
a (infinite) representation of the elements of D according to Weihrauch
[Wei00].

Lemma

Q[π] is effectively comparable.

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 30 / 39

Main results Undecidability for PIVPs

Main result

Theorem

Let D be an effectively comparable set such that Q[π] ⊆ D. The following
problem is undecidable: “Given p : Rn+1 → Rn with polynomial
components with coefficients in D (these coefficients are given by their
names, as described in Definition 13), and (t0, x0) ∈ Q×Qn, decide
whether the maximal interval of the IVP{

y ′ = p(t, y)
y(t0) = y0

is bounded or not”.

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 31 / 39

Main results Undecidability for PIVPs

Actually, if we are given the description of a universal Turing machine, we
can constructively define a set of polynomial ODEs simulating it that
encodes the Halting Problem. If we use the small universal Turing machine
presented in [Rog96], having 4 states and 6 symbols, we obtain the
following theorem.

Theorem

Let D be an effectively comparable set such that Q[π] ⊆ D. There is a
vector p : Rn+1 → Rn, with n ≥ 1, defined by polynomials with
coefficients in D (these coefficients are given by their names, as described
in Definition 13), where each component has degree less than or equal to
56, such that the following problem is undecidable: “Given
(t0, x0) ∈ Q×Qn, decide whether the maximal interval of the IVP{

y ′ = p(t, y)
y(t0) = y0

is bounded or not”.

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 32 / 39

Main results Undecidability for PIVPs

Proof

The idea to prove this theorem is to simulate with a set of polynomial
ODEs Rogozhin’s small universal Turing machine [Rog96]. We can obtain
a set of PIVPs simulating this Turing machine as described by previous
results. Then we expand this PIVP system as a polynomial ODE using
techniques already introduced before in this presentation. Since the entire
procedure is constructive and bottom-up, it is possible to determine the
degrees of the polynomials appearing in the IVP. This can be done through
a careful analysis involving transcendence degrees (too many details —
omitted here).

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 33 / 39

Main results Undecidability for PIVPs

The important point is that we can obtain a PIVP function xq, that
satisfies for every k ∈ N{

xq(t) ≤ m − 11
16 if M has not halted at step k and t ≤ k

xq(t) ≥ m − 5
16 if M has already halted at step k and t ≥ k

where the states of the Turing machine are encoded by numbers in
{1, . . . ,m} and m = 4 is the Halting state. Consider the IVP{

z ′1 = xq − (m − 1/2)
z2 = 1

z1

⇐⇒
{

z ′1 = xq − (m − 1/2)
z ′2 = ((m − 1/2)− xq)z2

2
(4)

where z1(0) = z2(0) = −1. It is easy to see that while M hasn’t halted,
xq − (m− 1/2) ≤ −3/16. Thus z1 keeps decreasing and the IVP is defined
in (0,+∞), i.e. the maximal interval is unbounded, if M never halts.

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 34 / 39

Main results Undecidability for PIVPs

On the other hand, if M eventually halts, z1 starts increasing at a rate of
at least 3/16 and will do that forever. So, at some time it will have to
assume the value 0. When this happens, a singularity appears for z2 and
the maximal interval is therefore (right-)bounded. For negative values of t
just replace t by (−t) in the ODE and assume t to be positive. It can be
shown that the behavior of the system will be similar, and we reach the
same conclusions for the left bound of the maximal interval. So M halts iff
the maximal interval of the PIVP (4) is bounded, i.e. boundedness is
undecidable.

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 35 / 39

Main results Undecidability for PIVPs

Let us remark that, while the boundedness problem of the maximal
interval for unrestricted PIVPs is in general undecidable, this is not the
case for some subclasses of polynomials. For instance, the boundedness
problem is decidable for the class of linear differential equations (the
maximal interval is always R) or for the class of one-dimensional
autonomous differential equations where f is a polynomial of any degree
(the ODE is separable, yielding an integral of a rational function that can
be algorithmically solved). It would be interesting to investigate maximal
classes where the boundedness problem is decidable.

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 36 / 39

Conclusions/perspectives

Conclusions/perspectives

We have shown how polynomial ODEs can simulate Turing machines

We have shown that “well-behaved” ODEs, i. e., defined with analytic
(PIVP) functions, can have non-computable properties

It would be interesting to know which is the least degree of a
polynomial ODE able to (robustly) simulate Turing machines

It would also be interesting to know which is the least degree for
which the boundedness problem for polynomial ODE is undecidable

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 37 / 39

Conclusions/perspectives Selected references

Selected references

See the paper for a more complete listing of references.

[GBC07] D. S. Graça, J. Buescu, and M. L. Campagnolo.
Boundedness of the domain of definition is undecidable for polynomial
ODEs, Proc. CCA 2007, pages 127–135, 2007

[GCB08] D. S. Graça, M. L. Campagnolo, and J. Buescu.
Computability with polynomial differential equations, Adv. Appl.
Math., 40(3):330–349, 2008

[GZB07] D.S. Graça, N. Zhong, and J. Buescu. Computability,
noncomputability and undecidability of maximal intervals of
IVPs,Trans. Amer. Math. Soc., To appear.

[Rog96] Y. Rogozhin. Small universal Turing machines.Theoret.
Comput. Sci., 168(2):215–240, 1996

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 38 / 39

Conclusions/perspectives Selected references

Thank you!

Graça, Buescu, and Campagnolo Computational bounds on polynomial differential equations 39 / 39

	Main
	Introduction
	Motivation
	The GPAC and PIVP functions
	Robust simulations of discrete DSs

	Main results
	Robust simulations of Turing machines
	Proof of the results
	Application -- Undecidability for PIVPs with Comparable Parameters

	Conclusions/perspectives
	Selected references

