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What this paper is about

I usually argue that hypercomputation is feasible in various models of

physics, but it’s important to approach boundaries from both sides,

so today I’ll be trying to do the exact opposite. Yesterday we saw

versions of GR that support hypercomputation. But what about other

theories? In particular, what about quantum mechanics (QM)?



Strategies

I could try showing that every QM-behaviour can be simulated recur-

sively (by some UQC, say), but if the underlying description of QM

is itself uncomputable, I’ll be no better off.

Besides, experimental physics is defined algorithmically — an exper-

iment is properly specified only if it can be replicated, so you need

to define it as an algorithm — so maybe theory is bound to say

that nature is computable (or is it?) However, this wouldn’t be a

consequence of physical law, but of social convention.



Pour-El/Richards to the Rescue

• . . . algorithmically specified systems can generate uncomputable

outcomes. . .

• . . . therefore, even though experimental physics is algorithmically

specified, the question is still worth asking:

Just how recursive are modern physical theories?



Plan of Action

I’m going to reformulate (one version of) QM in a way that makes

it blatantly obvious that QM is behaviourally computational. This

doesn’t mean hypercomputation is QM-impossible, but it does limit

the ways in which QM-hypercomputation might arise.



More Generally

Suppose Φ is any physical theory, expressed in formal logical terms.

If every construction used to define physical laws (correct behaviour)

in Φ is computable, this could severely limit our ability to construct

hypercomputers relative to Φ. Unfortunately it’s not always obvious

whether Φ is or isn’t defined computably.

A construction can appear to be uncomputable when it isn’t.



Path-Integral Formulation of QM

Famous question - where does light reflect from when you see it in a

mirror?



Feynman’s answer: All paths are equally likely.

Light reflects everywhere, but appears to be reflected in the middle.



Formally. . .

Fix n equally separated times, and
guess the particle’s position qm at each of them. Then work out each
classical path from qm to qm+1. Each subpath has a classical action S,
which you associate with an amplitude eiS/~, and their product gives
the amplitude for the path. Taking the limit generates one possible
path and its amplitude. Now integrate over all possible paths to get
the amplitude to go from the start to the finish.



Unjustified Assumptions!

• each trajectory is continuous, so that taking limits is OK;

• trajectory contains infinitely many events;

• particle moving into future (later: piecewise).



Assumptions are common in physics!

Consider e.g. Zuse’s model of Newtonian physics using an infinite

network of cellular automata (an astoundingly original idea at the

time) to generate an early version of digital physics.

Flaw: Non-collision singularities in the Newtonian n-body problem.

Point particles can be ejected to infinity in finite time, so by time-

reversibility, particles can appear from infinity in finite time. If physics

is digital, the spontaneously generated particle must have been de-

terministically generated by the universe-generating program. But it

requires non-local interaction, so can’t have been the result of the

cellular automata chatting to one another via their local links.



When in doubt, stare at the ceiling!





Why is this a crack?



Interpretation vs Stimuli

• We like things to appear causal.

• We like time to have a direction.

• We like motion to be continuous-ish.

But we shouldn’t simply assume such things, because what we see is

our brains’ interpretation of stimuli; for all we know, causality, time’s

arrow and continuity are psychological artefacts, not physical ones.



Bidirectional Model

Guess the particle’s position and time xm = (qm, tm) at each of n

distinct ticks. Then work out each classical path from xm to xm+1.

Each hop has some kind of hop-action sh, which you associate with

an amplitude e(ish/~), and their product gives the amplitude for the

path. DON’T TAKE ANY LIMITS; JUST ACCEPT THAT OBSER-

VATION IS LIMITED. Now sum over all possible paths to get the

amplitude to go from the start to the finish.



Trajectory = Finite State Machine

Each possible particle trajectory is

an FSM; each such FSM has an amplitude; integrating over all FSMs

gives the required amplitude.



Can the equations be made to work?

Theorem: Yes!



Sketch of Proof

In the path-integral model, the amplitude of completing the journey
via some journey of n classical sub-paths is some function φn, and
you get the required amplitude by taking the limit, φ = limφn.

In our model, we ask ourselves how the motion appears if no ob-
servations are made; the composite answer, taking into account all
potential observers, is given by some amplitude ψ0. If we ask how
it appears if precisely m observations are made during the relocation
from A to B, we get another amplitude ψm. Since these possibili-
ties are all mutually exclusive, and account for every possible finitely
observed relocation from A to B, the overall amplitude that the relo-
cation happens is the sum of these amplitudes, namely some function
ψ =

∑
ψm.



Sketch (continued)

We want φ = ψ for all possible paths:

limφn ≡
∑

ψm

and since

lim
n→∞φn ≡ φ0 +

∞∑
n=1

(
φn − φn−1

)
we can easily solve this requirement by taking

ψ0 = φ0 ,

ψn = φn − φn−1 .



From FSM to X-machines

We can think of particle trajectories as FSMs drawn on spacetime.

But this isn’t enough to make QM ‘computational’, because we

haven’t shown how the amplitudes associated with each FSM are

to be ‘computed’ (as opposed to ‘defined’). We do so by thinking

of the FSM as an X-machine. This is just an FSM whose labels are

relations on some underlying data type X. Technically, I’m using a

(simple) variant of the standard XM definition; see the paper.



Trajectories as computations

In this case, we’re computing amplitudes, so it makes sense to take

X = C. The relation associated with a transition (= hop) of classical

action S is then the relation λz.eiS/~ × z. With this interpretation,

Each trajectory is a computational state machine that

(literally) computes its own amplitude



Implications for Hypercomputation

This tells us that QM has computational structure and effect, since

all motion can be regarded as computation, and all behaviour in-

volves some sort of ‘motion’. But it still doesn’t follow that hyper-

computation is impossible: the hop-relations λz.eiS/~× z could still be

uncomputable. However, that is (presumably) the only way hyper-

computation could be achieved in standard QM.



Implications for Physics

The bidirectional model is identically equivalent to the path-integral

model; it describes exactly the same behaviours. This means that

the assumptions of the path-integral formulation ought to arise as

THEOREMS of the bidirectional model. In particular:

• Motion appears to be continuous;

• Time appears to have an arrow.



Open Questions

• We’ve ignored GR throughout this construction. What happens

if we include it?

• In particular, if you decide to shut off a region of spacetime by

saying that anything hopping in can’t hop out again, this poten-

tially changes all amplitudes for all bidirectional trajectories (this

is NOT obvious in the path-integral formulation). In particular,

geodesics will appear to move in the presence of such a ‘black

hole’. Is this effect already described by GR, or is it new?



THANK YOU!


