Jérôme DURAND-LOSE

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, $\operatorname{OrléANS}$, FRANCE

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Physics and Computation '08 Wien, 25-28 August 2008

Jérôme DURAND-LOSE

Laboratoire d'Informatique Fondamentale d'Orléans, Université d'Orléans, $\operatorname{OrléANS}$, FRANCE

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Physics and Computation '08 Wien, 25-28 August 2008

- 2 Abstract geometrical computation
- Oiscrete computation
- Analog computation
- 5 Nested black-holes/accumulations

6 Conclusion

Black hole computation: implementation with signal machines Intuition on Black hole computation

1 Intuition on Black hole computation

2 Abstract geometrical computation

3 Discrete computation

- Analog computation
- 5 Nested black-holes/accumulations

6 Conclusion

Black hole computation: implementation with signal machines Intuition on Black hole computation

Theoretical Physics

Relativization of Church-Turing Thesis

Geometry of space & time ~~~ Limits of computation

In particular

Some Black hole geometries allow to go beyond classical limits...

... by using different world lines with incommensurable time scales

- they have a common point
- the entire future of one is in the casual past of one point in the other (after a finite length/(local-)duration)

Black hole computation: emulation with signal machines Intuition on Black hole computation

Possible settings

The **observer** starts the **machine** and sets it on the "faster" world line

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Black hole computation: with signal machines Intuition on Black hole computation

Possible settings

The **observer** starts the **machine** and sets it on the "faster" world line

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

ъ

The machine can send an **atomic piece of information** The observer would get it within a known finite duration Black hole computation: with signal machines Intuition on Black hole computation

Possible settings

The **observer** starts the **machine** and sets it on the "faster" world line

The machine can send an **atomic piece of information** The observer would get it within a known finite duration Black hole computation: implementation with signal machines Intuition on Black hole computation

Abstract level

- One iteration for the observer
- Unboundedly many iterations for the machine

Relates to

- infinite time Turing machines
- computing with ordinal time

But

- only an atomic piece of information can be sent
- it should be sent after finitely many iterations
- no "limit operator"

Black hole computation: emulation with signal machines Intuition on Black hole computation

Computing power

At some point, the observer knows that anything that would have ever been sent would have been received

If the machine sends a signal only if it stops...

the halting problem can be decided by the observer!

The first level of the arithmetical hierarchy can be decided

Black hole computation: emulation with signal machines Intuition on Black hole computation

Computing power

At some point, the observer knows that anything that would have ever been sent would have been received

If the machine sends a signal only if it stops...

the halting problem can be decided by the observer!

The first level of the arithmetical hierarchy can be decided

Our aim

to translate it into Abstract geometrical computation

Intuition on Black hole computation

- 2 Abstract geometrical computation
- 3 Discrete computation
- Analog computation
- 5 Nested black-holes/accumulations

6 Conclusion

An idealization of

- Collision computing
- Signals in cellular automata

Signals, particles, solitons, filtrons...

- Information conveyors
- Uniform movement

Collisions, encounters...

- Update informations (and carriers)
- Only available interaction

 \rightsquigarrow perform computations without wires nor gates

Abstract geometrical computation

Signals in CA context

Abstract geometrical computation

Idealization

- Signals are dimensionless
- Uniform propagation depending only on the information carried
- Finitely many signals (finite description)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Examples

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

AGC Primitives

"Meta-programming"

Signal machines and configurations are built from existing ones by adding signals and rules

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Various constructions for various effects

Original computation "preserved"

Freezing and unfreezing

くして 前 ふかく ボット 御や ふしゃ

Scaling/contracting

(Infinite) Shrinking...

Iterated scaling

Example

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

(Infinite) Shrinking...

Example Iterated scaling A₁

Converging geometrical progression

Any computation starting from a bounded configuration can be folded into a finite part of the plane

Abstract geometrical computation

...generates an accumulation

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

...generates an accumulation

Dealing with accumulations

Various schemes can be defined

For this talk

Signals are emitted according to *incident signal(s)*

Discrete computation

2 Abstract geometrical computation

Oiscrete computation

- Analog computation
- 5 Nested black-holes/accumulations

6 Conclusion

Discrete computation

Computing (in the usual understanding)

Simulation

Discrete computation

Shrinking the computation

- Whole (potentially infinite) computation embedded inside a finite part of the space-time diagram
- Problem: recovering any "result"
 - add meta-signals and rules to let some information leave
 - add signals out-side to collect it

Discrete computation

Computing power

Let R be any recursive total predicate (a computable total function from \mathbb{N} to {YES, NO})

Shrink a machine that tests R for every value and stops on the first YES (and sends a signal)

The observer

can decide any formula of the form

 $\exists n \in \mathbb{N}, \text{ recursive total predicate on } n$

This is the first level of the arithmetical hierarchy Σ_0^1

- halting problem
- conjecture decision
- consistency of logics

Discrete computation

Comparing to the black hole model

- Shrinking provides the infinite acceleration
- An atomic piece of information can leave

◆□> ◆□> ◆三> ◆三> ・三 のへで

• Same computing power

Analog computation

2 Abstract geometrical computation

3 Discrete computation

5 Nested black-holes/accumulations

6 Conclusion

Black hole computation: emulation with signal machines Analog computation

Model considered

There is no Turing thesis ~> a lot of incomparable models

D-L CiE '07

AGC *without accumulations* is equivalent to BSS without inner multiplication

D-L CiE '08

AGC with accumulations can simulate the full BSS

Black hole computation: emulation with signal machines Analog computation

Model considered

There is no Turing thesis ~> a lot of incomparable models

D-L CiE '07

AGC *without accumulations* is equivalent to BSS without inner multiplication

D-L CiE '08

AGC with accumulations can simulate the full BSS

Question

How does this behave with accumulations/black-holes?

Analog computation

Encoding

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Black hole computation: with signal machines

Analog computation

Encoding

Black hole computation: with signal machines

Analog computation

Encoding

• As far as all the computation is folded, there is no problem

◆□> ◆□> ◆三> ◆三> ・三 のへで

• An atomic piece of information may leave

Black hole computation: with signal machines

Analog computation

Encoding

- As far as all the computation is folded, there is no problem
- An atomic piece of information may leave

Limits

A real number is encoded by four signals

- they might leave at the accumulation at different foldings
- at the accumulation all signals meet

Analog computation

Computing power

So that only an atomic piece of information, *i.e.* a *digital* one

BSS-arithmetic hierarchy

It corresponds to $\exists n \in \mathbb{N}$ over a BSS total predicate

It is not an analytical hierarchy since

- all integers can be listed
- but not all real numbers

Analog computation

Multiplication already uses accumulation

How does it work?

- 3 signals are fixed
- The accumulation takes place where the 4th one should be and is generated according to the accumulation scheme

Interaction with the shrinking structure

- Structure away from accumulation... OK
- Structure on the accumulation... its signals are incident distinguishing the accumulation... OK

Infinitely many multiplications...

 \rightsquigarrow second order accumulation!

Black hole computation: implementation with signal machines Nested black-holes/accumulations

2 Abstract geometrical computation

3 Discrete computation

- Analog computation
- 5 Nested black-holes/accumulations

▲日▼▲□▼▲□▼▲□▼ □ ののの

6 Conclusion

Black hole computation: implementation with signal machines Nested black-holes/accumulations

Folding on folding

Iterated construction

- Each construction generates new signals and rules
- The scheme used distinguishes the cases

The level has to be defined from start and cannot be changed

Effect

Climbing the levels of the corresponding arithmetic hierarchies (*i.e.* alternation of $\exists \neg \forall$ quantifiers on \mathbb{N})

It correspond to SAD_n (arithmetical sentence deciding space-times) of Hogarth

Conclusion

- 2 Abstract geometrical computation
- 3 Discrete computation
- Analog computation
- 5 Nested black-holes/accumulations

6 Conclusion

Conclusion

Results

Similarities

- sub-computation has infinite time to run
- it can send an atomic piece of information (after a finite time)
- same computing power

Main difference

• singularities are generated (vs. they have to be found)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Conclusion

Thank you for you attention

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ