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Intuition on Black hole computation

Theoretical Physics

Relativization of Church-Turing Thesis

Geometry of space & time  Limits of computation

In particular

Some Black hole geometries allow to go beyond classical limits. . .

. . . by using different world lines with incommensurable time scales

they have a common point

the entire future of one is in the casual past of one point in
the other (after a finite length/(local-)duration)
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The observer starts the machine

and sets it on the “faster” world line

Observer infinitely slowed down

Duration for the
observer to reach
the asymptote is
finite

Machine infinitely accelerated

Time available to
the machine is
infinite
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Intuition on Black hole computation

Possible settings

The observer starts the machine

and sets it on the “faster” world line

Observer infinitely slowed down

Duration for the
observer to reach
the asymptote is
finite

Observer stuck in
the singularity

Machine infinitely accelerated

Time available to
the machine is
infinite

Observer can use
the singularity
again and again

The machine can send an atomic piece of information

The observer would get it within a known finite duration
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Intuition on Black hole computation

Abstract level

One iteration for the observer

Unboundedly many iterations for the machine

Relates to

infinite time Turing machines

computing with ordinal time

But

only an atomic piece of information can be sent

it should be sent after finitely many iterations

no “limit operator”
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Intuition on Black hole computation

Computing power

At some point, the observer knows that anything that would have
ever been sent would have been received

If the machine sends a signal only if it stops. . .

the halting problem can be decided by the observer!

The first level of the arithmetical hierarchy can be decided
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Intuition on Black hole computation

Computing power

At some point, the observer knows that anything that would have
ever been sent would have been received

If the machine sends a signal only if it stops. . .

the halting problem can be decided by the observer!

The first level of the arithmetical hierarchy can be decided

Our aim

to translate it into Abstract geometrical computation
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Abstract geometrical computation

An idealization of

Collision computing

Signals in cellular automata

Signals, particles, solitons, filtrons. . .

Information conveyors

Uniform movement

Collisions, encounters. . .

Update informations (and carriers)

Only available interaction

 perform computations without wires nor gates
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Abstract geometrical computation

Signals in CA context

in a chromosome. This de�nes one generation of the GA; it is repeated G times for one GA run.FI(�) is a random variable since its value depends on the particular set of I ICs selected toevaluate �. Thus, a CA's �tness varies stochastically from generation to generation. For thisreason, we choose a new set of ICs at each generationFor our experiments we set P = 100, E = 20; I = 100, m = 2; and G = 50. M was chosenfrom a Poisson distribution with mean 320 (slightly greater than 2N). Varying M preventsselecting CAs that are adapted to a particular M . A justi�cation of these parameter settings isgiven in [9].We performed a total of 65 GA runs. Since F100(�) is only a rough estimate of performance,we more stringently measured the quality of the GA's solutions by calculating PN104(�) withN 2 f149; 599; 999g for the best CAs in the �nal generation of each run. In 20% of the runsthe GA discovered successful CAs (PN104 = 1:0). More detailed analysis of these successful CAsshowed that although they were distinct in detail, they used similar strategies for performing thesynchronization task. Interestingly, when the GA was restricted to evolve CAs with r = 1 andr = 2, all the evolved CAs had PN104 � 0 for N 2 f149; 599; 999g. (Better performing CAs withr = 2 can be designed by hand.) Thus r = 3 appears to be the minimal radius for which the GAcan successfully solve this problem.
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Figure 1: (a) Space-time diagram of �sync starting with a random initial condition. (b) The same space-time diagram after �ltering with a spatial transducer that maps all domains to white and all defects toblack. Greek letters label particles described in the text.Figure 1a gives a space-time diagram for one of the GA-discovered CAs with 100% perfor-mance, here called �sync. This diagram plots 75 successive con�gurations on a lattice of sizeN = 75 (with time going down the page) starting from a randomly chosen IC, with 1-sites col-ored black and 0-sites colored white. In this example, global synchronization occurs at time step58. How are we to understand the strategy employed by �sync to reach global synchronization?Notice that, under the GA, while crossover and mutation act on the local mappings comprising a4
c©Das-Crutchfield-Mitchell-Hanson95
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Abstract geometrical computation

Abstract geometrical computation

Idealization

Signals are dimensionless

Uniform propagation
depending only on the
information carried

Finitely many signals
(finite description)

Space-time diagram

T
im

e

Space
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Abstract geometrical computation

Examples
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Abstract geometrical computation

AGC Primitives

“Meta-programming”

Signal machines and configurations are built from existing ones
by adding signals and rules

Various constructions for various effects

Original computation “preserved”
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Abstract geometrical computation

Freezing and unfreezing

Regular evolution

start of the

computation

rest of the

computation

Frozen, translated and
unfrozen

start of the

computation

rest of the

computation
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Example
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Abstract geometrical computation

Scaling/contracting

Principe on parallel
signals

Frozen, scaled and
unfrozen

start of the

computation

Contraction

rest of the

computation

Example
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Abstract geometrical computation

(Infinite) Shrinking...

Iterated scaling
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Abstract geometrical computation

(Infinite) Shrinking...

Iterated scaling
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Converging geometrical progression

Any computation starting from a bounded configuration
can be folded into a finite part of the plane
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Abstract geometrical computation

...generates an accumulation
????
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Abstract geometrical computation

...generates an accumulation
????

Dealing with accumulations

Various schemes can be defined

For this talk

Signals are emitted according to
incident signal(s)
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Discrete computation

Computing (in the usual understanding)

Modeled by Turing machines
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Discrete computation

Shrinking the computation

Whole (potentially infinite) computation embedded inside
a finite part of the space-time diagram

Problem: recovering any “result”

add meta-signals and rules to let some information leave
add signals out-side to collect it
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Discrete computation

Computing power

Let R be any recursive total predicate
(a computable total function from N to {YES, NO})

Shrink a machine that tests R for every value and
stops on the first YES (and sends a signal)

The observer

can decide any formula of the form

∃n ∈ N, recursive total predicate on n

This is the first level of the arithmetical hierarchy Σ1
0

halting problem

conjecture decision

consistency of logics
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Discrete computation

Comparing to the black hole model

Shrinking provides the infinite acceleration

An atomic piece of information can leave

Same computing power
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Analog computation

Model considered

There is no Turing thesis  a lot of incomparable models

Blum, Shub and Smale model
(R,+,−, ∗)

Input c

y ← πy2 − 8x2
.y −

√
2

0 ≤ x

Output 1

yes

no

D-L CiE ’07

AGC without accumulations
is equivalent to
BSS without inner multiplication

D-L CiE ’08

AGC with accumulations
can simulate the full BSS
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Analog computation

Model considered

There is no Turing thesis  a lot of incomparable models

Blum, Shub and Smale model
(R,+,−, ∗)

Input c

y ← πy2 − 8x2
.y −

√
2

0 ≤ x

Output 1

yes

no

D-L CiE ’07

AGC without accumulations
is equivalent to
BSS without inner multiplication

D-L CiE ’08

AGC with accumulations
can simulate the full BSS

Question

How does this behave with
accumulations/black-holes?
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Analog computation

Encoding

scale scale

1

base val

4

Value: 4
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Analog computation

Encoding

scale scale

1

baseval

−1.5

Value: −1.5
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√
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As far as all the computation is folded, there is no problem

An atomic piece of information may leave
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Analog computation

Encoding

scale scale

1

base val

√

2

Value:
√

2

As far as all the computation is folded, there is no problem

An atomic piece of information may leave

Limits

A real number is encoded by four signals

they might leave at the accumulation at different foldings

at the accumulation all signals meet
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Analog computation

Computing power

So that only an atomic piece of information, i.e. a digital one

BSS-arithmetic hierarchy

It corresponds to ∃n ∈ N over a BSS total predicate

It is not an analytical hierarchy since

all integers can be listed

but not all real numbers
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Analog computation

Multiplication already uses accumulation

How does it work?

3 signals are fixed

The accumulation takes place where the 4th one should be
and is generated according to the accumulation scheme

Interaction with the shrinking structure

Structure away from accumulation. . . OK

Structure on the accumulation. . .
its signals are incident distinguishing the accumulation. . . OK

Infinitely many multiplications. . .

 second order accumulation!
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Nested black-holes/accumulations

Folding on folding

Iterated construction

Each construction generates new signals and rules

The scheme used distinguishes the cases

The level has to be defined from start and cannot be changed

Effect

Climbing the levels of the corresponding arithmetic hierarchies
(i.e. alternation of ∃-∀ quantifiers on N)

It correspond to SADn

(arithmetical sentence deciding space-times) of Hogarth
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Conclusion

Results

Similarities

sub-computation has infinite time to run

it can send an atomic piece of information
(after a finite time)

same computing power

Main difference

singularities are generated (vs. they have to be found)
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Conclusion

Thank you for you attention
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