Solving NP-complete problems with delayed signals: an overview

Mihai Oltean, Oana Muntean Babes-Bolyai University, Cluj-Napoca, Romania moltean@cs.ubbcluj.ro

Outline

- Problems that we want solve
- Properties of the signal that we can count on
- Basic idea
- Examples Subset sum problem
- Possible implementations
 - Electric-based simulation
- Energy consumption
- What is Next?

Problems that we solve

NP-complete problems.

✓ Hamiltonian Path

Properties of the signal that we can count on

- The signal has a limited speed.
 - It can be delayed by forcing it to pass through a cable of a certain length.

- The signal can be divided into multiple (sub)signals of smaller intensity/power.
 - Massive parallelism.

Basic ideas

- Underlying mechanism: **Brute-force** approach.
 - All possible solutions are generated.
- The device has a directed graph-like structure.
 - There is a *Start* and a *Destination* node.
- Initially a signal is sent to the *Start* node.
- Operations performed with the signals:
 - Delayed by arcs.
 - Divided within nodes and sent to the nodes connected to the current node.
- Each solution follows a particular path in the graph.
 - It is delayed a particular quantity of time.
- At the *Destination* node we will search only for particular signals (arriving at some special moment denoted by *M*).

Did we solve the problem ?

Different solutions arrive at different moments in the *Destination* node.

Is there is a signal arriving at moment *M*?

- YES problem solved.
- NO no solution for the problem.
- Multiple signals arriving at moment *M* means multiple solutions for the problem

Computer Simulation for Subset sum

• http://www.youtube.com/watch?v=EVrQQI5qZhI

Hardware implementation

- A source of signals (laser, pulse generator, etc)
- Several splitters for dividing the signal into multiple subsignals
- A device for detecting fluctuations in the intensity of signal (oscilloscope for electric signals)
 - Delay lines
 - cables having certain lengths.
 - by discrete inductors and capacitors.

Working with electric signals

Electrical delay lines

- Programmable delay lines:
 - Number of steps: 256 (8 bits)
 - Min delay: 16.5 ns
 - Max delay: 1275 ns
 - Price: 7\$ @ 1k

• Extended range by serialization !

Devices that cannot be implemented electrically

• Unbounded subset sum problem.

• But optically we can !

Energy consumption

- Signals are divided multiple times. The intensity of the signal decreases exponentially.
- Subset Sum 2^N
- Hamiltonian path N^N
- DNA computers trying to solve 200-nodes Hamiltonian Path require a quantity of DNA

Other drawbacks

- Cannot compute the actual solution in the case of YES answer. *Tobias Haist* has shown how to do that.
- Moment *M* cannot be measured exactly (with any precision).
 - We can mixed up solutions. \otimes

Large instances ???

What is next: Automation

- Each problem requires its own graph.
 - Each instance may require an extension of some existing graphs or some new graphs.
- What we need:
 - a scalable and reconfigurable graph.
 - programmable / reconfigurable delay lines.

Conclusions

- Unconventional devices for solving NPcomplete problems.
 - Massive parallelism of light could be the key feature.
- Simulations ok ...
- Physical implementation is possible, but still a lot of challenges to fight with.