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Learning at the Speed of Light

• Focus on the Fixed-Weight Learning Nets than details of opto-
electronic hardware (in paper)

• The problem that we are addressing

• Overview of Optical Test Apparatus

• Fixed-Weight Learning Neural Networks
– Theory

– Creating and Training

• Experimental Results
– uMULT

– PlanTran

– BooLean

• Future Work



3

• Two main activities “Think”  and “Learn”

• Forward Propagate: “Think” 
• Think �Matrix Multiply followed by nonlinear “squash”

Optical Neural Networks
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Optical Neural Networks
“Think” executes very fast on simple optical hardware. 
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Optical Neural Networks

“Learn” is slower and requires more complex and costly hardware.

• Iteratively adjust synaptic weights toward values that minimize errors.

• Performed by a Learning Algorithm, such as the well-known Backpropagation of 

Errors 

• Analogous to long-term memory in biology. 

( ) ( )1W x y y y Tη∆ = − × × − × −

Changing Synaptic Weights is a slow process:  milliseconds 

(SLM) to hours (film)

Multiply a signal by a another signal: higher-order 

synapses, more hardware
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Fixed-Weight Learning Neural Networks

FWL-NN

• Most Optical NNs use standard “von Neumann” CPU-based computations 
to perform learning.

• We believe the learning speed issue is major reason for the lack of common 
use of Optical NNs.

• FWL-NNs are our solution to this problem.

– “Learning” takes place at “thinking” speeds.

– First order synapses

– Don’t ever need to change weights

– Analogous to short-term working memory in biology. 

– Adaptive 



7

Optical Neural Network 
Laboratory Test Apparatus
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Optical Neural Network 
Laboratory Test Apparatus

• Designed for flexibility, not speed.

• Digital Micromirror Device (DMD) for electronic-to-optical signal

• Pulse based - stochastic (SP) or duty cycle (PWM)

• Typical timing: 1 exemplar cycle�4 phases� 4 × 256 pulses

• 35mm film for Synaptic Media. 

– Opaque/Clear pixel density encoding of synaptic medium.

• CCD Camera for optical-to-electronic signal conversion

• Software-based  summation and squashing.

• Synchronous operation of neurons.

• Intensity Calibration every cycle or every phase.

• Software-based distortion corrections.
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Optical Neural Network 
Laboratory Test Apparatus
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Fixed-Weight Learning Neural Networks

• Standard neural networks learn new function mappings by the 

changing of their synaptic weights.  However, the FWL-NNs learn 

new mappings by dynamically changing recurrent neural signals. 

• The (fixed) synaptic weights of the FWL-NN implement learning 

"algorithm" which adjusts the recurrent signals toward their proper 

values. 

• That is, instead of encoding a particular mapping, the synaptic 

weights of a FWL-NN encode how to learn any mapping.
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FWL-NN:

Some History

• Not a new idea, application to Optical NN is new. 

• Also called “Adaptive Behavior with Fixed Weights” and/or 

“Accommodative Neural Networks”

• Cotter, Conwell, Prokhorov, Feldkamp, Hochreiter, Younger, Redd, Lo
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Fixed-Weight Learning Theorem

• Cotter and Conwell 1990 – 1991

• For any (changing weight) neural network and its attendant learning 
algorithm, there exists a FWL-NN that can learn the same functional 
mappings without changing any of its synaptic weights.

• Existence theorem

• Based on Universal Approximation.

• Must be recurrent. Usually larger than equivalent non-fixed-weight 
NN.

• Analogous to short-term working memory in biology.
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Generating FWL-NNs:

The sub-network method.

1. Decide the equivalent FFNN topology

2. Determine the function mapping for the learning algorithm (planapse or 
the teacher equation). 

3. Train a planapse sub-network to learn the planapse equation.

4. Determine the tranapse (sometimes called the model) formula.

5. Train a tranapse sub-network to learn the tranapse formula. 

6. Replace each FFNN synapse with the appropriate planapse-tranapse pair. 
Provide new connections as necessary.

7. Test/Validate the FWL-NN.
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Method for Generating FWL-NNs: 

sub-network training.

• Scaling considerations. 

– Unipolar signals.

– Limited range synaptic weights 

– Limited range signals.

• Signal propagation timing: cycles/phases/pulses

• Train on random inputs over wide range. 

• Alternate squashing can simplify!

• Large training set (>25,000) many epochs (>100,000) on MATLAB 
traingdx.m
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Generating FWL-NNs:

Alternatives

• Analytical: same as sub-network method, but generate the sub-networks 

by analytically design instead of training.

– We used it on the BooLean network.

• Meta-learning: optimize the (initially random) synaptic weights of a 

FWL-NN to be an efficient learner of function mappings from a given 

set of mappings.

– Requires optimizing over many examples of many mappings from 

the given set of mappings.

• Can combine methods. 
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Experimental Results

• Several networks were created. Results from 3 reported here.

• uMULT – Unsigned Multiplication. Building block.

• PlanTran – A single planapse/tranapse pair.

• BooLean – Can learn linearly separable Boolean functions
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Neural Network NN08jan04uMULT Plotted on 05-Aug-2008
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uMULT: Unsigned Multiplication

Training and Simulation Results

7.15.4367×10–59

7.34.0069×10–58

7.72.1617×10–57

7.53.1636×10–56

5.83.0794×10–45

5.73.6876 ×10–44

5.36.5003×10–43

Sig BitsMSEHidden Layer Size

Large training set (25,000) many epochs (100,000) on MATLAB traingdx.m
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PlanTran FWL-NN:
Equivalent FFNN

Σ
y(t)

M

x(t)
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Feed-Forward Network that can learn Linearly 

Separable Boolean Functions

(a single neuron)

Weights for Various Functions

Function θ w1 w2

AND -1 2/3 2/3

OR -1/2 1 1

NAND 1 -2/3 -2/3

TRUE 1 0 0
. . . 

θ

Σ

y(t-1)

w2

w1

A(t)

B(t)

Bias
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Recurrent Fixed-Weight-Learning Separable Boolean Neural Network
One synapse of the above network has been expanded into its sub-network(s); 

weights replaced with potencies.

y(t-1)

T(t-1)

T(t-1)

T(t-1)

P2(t-1)

T(t-1)

B(t-1)

y(t-1)

Tranapse

Planapse

P1(t-1)

Σ

Bias

A(t)

B(t) Tranapse

Delay

Planapse

Tranapse

Planapse

P0(t-1)

y(t-1)

y(t-1)
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Generating Test Data for FWL-NNs.

Algorithm to generate training/test data for a FWL-NN:

repeat Number-of-Mappings times

Randomly select a mapping M from a set S.

repeat Number-of-Exemplars-per-Mapping times

Generate a random input vector x

Use x with mapping M generate target vector T

Output training pair (x,T)

end repeat

end repeat 
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Generating Test Data for FWL-NNs
Data Sets

• For PlanTran, set S is all function mappings,

where the real index M

specifies the particular mapping. 

• For BooLean, S is the set of all 14 of the 

Linearly Separable Boolean functions with two 

logical arguments and one logical result. The 

integer index M specifies the particular 

mapping.

( )logsig ,  4 4T M x M= ⋅ − ≤ ≤ +
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Boolean Problem Set Truth Table

ALWAYS TRUE111116

NAND011115

NOT(A) OR B101114

ignore BNOT(A)001113

A OR NOT(B)110112

ignore ANOT(B)010111

DisallowedNOT XOR100110

NOR00019

OR11108

Disallowed XOR01107

ignore AB10106

NOT(A) AND B00105

ignore B A11004

A AND NOT(B)01003

AND10002

ALWAYS FALSE00001

NotesFunction Mapping 

Name

AB

11

AB

10

AB

01

AB

00

Index 

M
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Experimental Results on Optical Hardware.
L- Number of  Layers, N–number of neurons, W--–number of synapses, φφφφ - Phases per 

Exemplar,  Pulses – Number of pulse timeslots in one Phase. Learn – Number of 

Exemplars required to learn mapping (for FWL-NN) , MSE – mean squared error (after 

learning), SigBits – Number of Significant Bits

M=16~40.007621256456335BooLean

~40.0083112566100294PlanTran

~60.0013n/a128230133uMULT

NotesSigBitsMSELearnPulsesφφφφWNLNN
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FWL-NN BooLean

Hardware-Based Learning Curve
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FWL-NN PlanTran

Hardware-Based Learning Curve
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Lessons Learned: FWL-NN

• It works!

– Sub-network and analytic approaches are valid.

• Sufficient signal resolution (significant bits) is was hard to achieve.

• Synaptic weight resolution was sufficient with 35mm film  ~16 bits. (However, 

repeatability was a problem.)

• “Opaque” areas on a slide aren’t.

• Both pulse encoding schemes have methods of trading-off other resources for more 

signal resolution. 

– Stochastic pulse: More bits are slower.

– Intensity: More bits require more neurons.
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Future Work

• Faster Hardware
– More functions moved to optical path.

• Expanded Neuralware
– Larger Networks

– FWL-NNs that are equivalent to 3 layer FFNNs (Universal 
Approximation)

– Improved Learning
• Reduce overhead

• Off-line or Batch learning.

• Applications
– Real-World problems: Speech, Vision, Data Mining, Adaptive 

Robotics

– APIs

– Promotion
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Neural Network NN07feb12Recurron Plotted on 05-Aug-2008
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Neural Network NN07aug31Boolean Plotted on 05-Aug-2008
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Neural Network NN07feb21TranPlan Plotted on 08-Aug-2008



34



35



36

Meta-Learning

• Alternative method of deriving FWL-NNs.

• Optimize the (initially randomized) synaptic weights 

of a FWL-NN to be an efficient learner of function 

mappings from a given set of mappings.

• Requires optimizing over many examples of many 

mappings from the given set of mappings.

• Slow to converge, but has derived FWL-NNs that are 

very efficient learners. 
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uMULT: Unsigned Multiplication

Σ

Σ

Σ

Σ

x1

x2

1 2y x x= ×
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Stochastic Pulse Neural Networks
• A stochastic bit-stream is a sequence of equally weighted bits where the 

probability of each being set is proportional to the value that the bit-stream 
represents. 

( 1) .

x A

p P A x

N on p N

= = =

×

Maps rational number  into random variable  with generating probability:

 

For a signal bitstream of length , the expected number of bits that are  is : 

.

( 1) ( 1)

 For two such streams,  and  The probability of a given bit poistion being set for both 

streams is :  
A BBA x x

A B

P A P B p p = ×= ∧ = ↔ ×

• That is,  multiplication can be done by an AND operation!

• We do the AND with a small squash-each-pulse neural network.



39

Σ

Stochastic Pulse Multiplication NN

W1=0.666

x1

x2

θ = −1
Bias

W2=0.666

Σ

W3=1/N

y

Update-each-pulse 

neuron

Update-each-phase 

neuron (256 pulses)

1 2y x x= ×
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Lessons Learned: Opto-Electronics

• Practical:
– Windows is not real time. This causes problems. S-l-o-w

– MATLAB  Rules! 

– Intensity must be tightly controlled (drift).

• “Opaque” areas on a slide aren’t. 

• Slide gray areas are not repeatable enough, even when on/off pixel 
encoding is used.
– LCD-based Spatial Light Modulators

– Laser-cut masks

• Stochastic Pulse Coding works well. It greatly reduces FWL-NN sizes.

• DMD works well, except slow compared to Laser Diodes.

• Software-based alignment and distortion correction works well.

• Diffraction may limit spatial resolution in free-space optics.

• Random noise was not much of a problem.
– Windows is not real time. This causes problems. S-l-o-w
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( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1M t M t x t y t y t y t T tη= − − − × − × − − × − − −      


