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Learning at the Speed of Light

Focus on the Fixed-Weight Learning Nets than details of opto-
electronic hardware (in paper)

The problem that we are addressing
Overview of Optical Test Apparatus

Fixed-Weight Learning Neural Networks
— Theory
— Creating and Training

Experimental Results

— uMULT
— PlanTran
— BoolLean

Future Work



Optical Neural Networks

e Two main activities “Think” and “Learn”

 Forward Propagate: “Think”
e Think ->Matrix Multiply followed by nonlinear “squash”

y; =0, {ZWJ” -xl), where 0 is

o, (s)=logsig(s)= ~, ... or perhaps....

0, 1fx<0
O'j(s):linsig(s): x, if0<x<1
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Optical Neural Networks

“Think” executes very fast on simple optical hardware.

Parallel attenuation of light signals
passing through synaptic medium

Intensity-level or
pulse-coded analog
optical signals

Op-Amps or
nonlinear
materials
(VO,) Synaptic Media
(35 mm film, SLM)

Optical Intensity Parallel

Summation (Cylindrical

Lenses, Holographic Media)



Optical Neural Networks

“Learn” 1s slower and requires more complex and costly hardware.

e [teratively adjust synaptic weights toward values that minimize errors.

e Performed by a Learning Algorithm, such as the well-known Backpropagation of
Errors

e Analogous to long-term memory in biology.

AW =—77x><y><(1—y)><(y—T)

Multiply a signal by a another signal: higher-order
synapses, more hardware

Changing Synaptic Weights is a slow process: milliseconds
(SLM) to hours (film)



Fixed-Weight Learning Neural Networks
FWL-NN

Most Optical NNs use standard “von Neumann” CPU-based computations
to perform learning.

We believe the learning speed issue is major reason for the lack of common
use of Optical NNss.

FWL-NNs are our solution to this problem.
— “Learning” takes place at “thinking” speeds.
— First order synapses
— Don’t ever need to change weights
— Analogous to short-term working memory in biology.
— Adaptive



Optical Neural Network
Laboratory Test Apparatus

Spatial Filter

LASER

Spatial Light
Modulator: DMD

Presynaptic
Optics

Iris




Optical Neural Network

Laboratory Test Apparatus

Designed for flexibility, not speed.

Digital Micromirror Device (DMD) for electronic-to-optical signal
Pulse based - stochastic (SP) or duty cycle (PWM)

Typical timing: 1 exemplar cycle=>4 phases—> 4 x 256 pulses
35mm film for Synaptic Media.

— Opaque/Clear pixel density encoding of synaptic medium.
CCD Camera for optical-to-electronic signal conversion
Software-based summation and squashing.
Synchronous operation of neurons.

Intensity Calibration every cycle or every phase.
Software-based distortion corrections.



Optical Neural Network
Laboratory Test Apparatus




Fixed-Weight Learning Neural Networks

Standard neural networks learn new function mappings by the
changing of their synaptic weights. However, the FWL-NNs learn
new mappings by dynamically changing recurrent neural signals.

The (fixed) synaptic weights of the FWL-NN implement learning
"algorithm" which adjusts the recurrent signals toward their proper
values.

That is, instead of encoding a particular mapping, the synaptic
weights of a FWL-NN encode how to learn any mapping.
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FWL-NN:
Some History

Not a new 1dea, application to Optical NN 1s new.

Also called “Adaptive Behavior with Fixed Weights™ and/or
“Accommodative Neural Networks”

Cotter, Conwell, Prokhorov, Feldkamp, Hochreiter, Younger, Redd, Lo
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Fixed-Weight Learning Theorem

Cotter and Conwell 1990 — 1991

For any (changing weight) neural network and its attendant learning
algorithm, there exists a FWL-NN that can learn the same functional
mappings without changing any of its synaptic weights.

Existence theorem
Based on Universal Approximation.

Must be recurrent. Usually larger than equivalent non-fixed-weight
NN.

Analogous to short-term working memory in biology.
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FWL NN 1s Equivalent to a standard Neural
Network and Learning Algorithm

FWL-NN
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Generating FWL-NNs:

The sub-network method.
Decide the equivalent FENN topology

Determine the function mapping for the learning algorithm (planapse or
the teacher equation).

Train a planapse sub-network to learn the planapse equation.
Determine the tranapse (sometimes called the model) formula.
Train a tranapse sub-network to learn the tranapse formula.

Replace each FFNN synapse with the appropriate planapse-tranapse pair.
Provide new connections as necessary.

Test/Validate the FWL-NN.
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Method for Generating FWL-NNs:
sub-network training.

Scaling considerations.
Unipolar signals.
Limited range synaptic weights

Limited range signals.
Signal propagation timing: cycles/phases/pulses
Train on random inputs over wide range.

Alternate squashing can simplify!

Large training set (>25,000) many epochs (>100,000) on MATLAB

traingdx.m
15



Generating FWL-NNs:
Alternatives

Analytical: same as sub-network method, but generate the sub-networks
by analytically design instead of training.

We used it on the Bool.ean network.

Meta-learning: optimize the (initially random) synaptic weights of a
FWL-NN to be an efficient learner of function mappings from a given
set of mappings.

Requires optimizing over many examples of many mappings from
the given set of mappings.

Can combine methods.
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Experimental Results

Several networks were created. Results from 3 reported here.

uMULT - Unsigned Multiplication. Building block.

PlanTran — A single planapse/tranapse pair.

BooLean — Can learn linearly separable Boolean functions
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Neural Network NN08jan04uMULT Plotted on 05-Aug-2008
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uMULT: Unsigned Multiplication
Training and Simulation Results

Large training set (25,000) many epochs (100,000) on MATLAB traingdx.m

Hidden Layer Size MSE Sig Bits
3 6.5003x10~ 5.3
4 3.6876 x10+ 5.7
5 3.0794x10~ 5.8
6 3.1636x107 7.5
7 2.1617x107 7.7
8 4.0069%x10> 7.3
9 5.4367x107 7.1




PlanTran FWL-NN:

Equivalent FFNN

M
x(t) vy«@
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Feed-Forward Network that can learn Linearly
Separable Boolean Functions

(a single neuron)
0

Bias

A® 2 i

B(t)

y(t-1)

Weights for Various Functions

Function 0 W, W,
AND -1 2/3 2/3
OR -1/2 1 1
NAND 1 -2/3 -2/3

TRUE | 0 0



Recurrent Fixed-Weight-Learning Separable Boolean Neural Network
One synapse of the above network has been expanded into its sub-network(s);

weights replaced with potencies.

Tranapse
Planapse
Bias Polt-1)
twn | oy y(t-1)
A(t) Tranapse 2 >
Planapse
P,(t-1)
T(t-1) T T y(t-1) |
B Tranapse
4 < A >
Delay
P,(t-1
B(L1) H(t-1)
\ <&
Planapse 1
T(t-1) ‘ ) yt-l
T ‘ T 22
T(t-1) <




Generating Test Data for FWL-NNs.

Algorithm to generate training/test data for a FWL-NN:

repeat Number-of-Mappings times
Randomly select a mapping M from a set S.
repeat Number-of-Exemplars—per—-Mapping times
Generate a random input vector x
Use x with mapping M generate target vector T
Output training pair (x,T)
end repeat
end repeat
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Generating Test Data for FWL-NNs

Data Sets

* For PlanTran, set § 1s all function mappings,

T =logsig(M -x), —4<M <+4 where the real index M
specifies the particular mapping.

e For BooLean, S 1s the set of all 14 of the
Linearly Separable Boolean functions with two
logical arguments and one logical result. The
integer index M specities the particular

mapping.
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Boolean Problem Set Truth Table

Index AB AB AB AB Function Mapping

M 00 01 10 11 Name

1 0 0 0 0 ALWAYS FALSE

2 0 0 0 1 AND

3 0 0 1 0 A AND NOT (B)

4 0 0 1 1 A ignore B
5 0 1 0 0 NOT (A) AND B

6 0 1 0 1 B ignore A
7 0 1 1 0 XOR Disallowed
8 0 1 1 1 OR

9 1 0 0 0 NOR

10 1 0 0 1 NOT XOR Disallowed
11 1 0 1 0 NOT (B) ignore A
12 1 0 1 1 A OR NOT (B)

13 1 1 0 0 NOT (A) ignore B
14 1 1 0 1 NOT (A) OR B

15 1 1 1 0 NAND

16 1 1 1 1 ALWAYS TRUE




Experimental Results on Optical Hardware.

L- Number of Layers, N-number of neurons, W--—number of synapses, ¢ - Phases per
Exemplar, Pulses — Number of pulse timeslots in one Phase. Learn — Number of
Exemplars required to learn mapping (for FWL-NN) , MSE — mean squared error (after
learning), SigBits — Number of Significant Bits

NN L| N | W | ¢ |Pulses| Learn | MSE | SigBits | Notes

uMULT | 3 | 13 | 30 | 2 | 128 n/a 0.0013 ~6

PlanTran | 4 | 29 | 100 | 6 256 11 0.0083 ~4

Boolean | 5 | 33 56 | 4 256 21 0.0076 ~4 M=16
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FWL-NN PlanTran

Hardware-Based Learning Curve
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[Lessons Learned: FWL-NN

It works!
— Sub-network and analytic approaches are valid.
Sufficient signal resolution (significant bits) is was hard to achieve.

Synaptic weight resolution was sufficient with 35mm film ~16 bits. (However,
repeatability was a problem.)

“Opaque” areas on a slide aren’t.

Both pulse encoding schemes have methods of trading-off other resources for more
signal resolution.

— Stochastic pulse: More bits are slower.

— Intensity: More bits require more neurons.
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Future Work

e Faster Hardware
— More functions moved to optical path.

e Expanded Neuralware

— Larger Networks

— FWL-NNSs that are equivalent to 3 layer FFNNs (Universal
Approximation)

— Improved Learning
e Reduce overhead
e Off-line or Batch learning.
e Applications

— Real-World problems: Speech, Vision, Data Mining, Adaptive
Robotics

— APIs
— Promotion
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Neural Network NNO7feb12Recurron Plotted on 05-Aug-2008
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Neural Network NNO7aug31Boolean Plotted on 05-Aug-2008
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Neural Network NNO7feb21TranPlan Plotted on 08-Aug-2008
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STOCHASTIC PULSE PLANAFPSE




STOCHASTIC PULSE TRANAFPSE




Meta-Learning

Alternative method of deriving FWL-NN:Zs.

Optimize the (initially randomized) synaptic weights
of a FWL-NN to be an efficient learner of function
mappings from a given set of mappings.

Requires optimizing over many examples of many
mappings from the given set of mappings.

Slow to converge, but has derived FWL-NNs that are
very efficient learners.
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uMULT: Unsigned Multiplication
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Stochastic Pulse Neural Networks

A stochastic bit-stream is a sequence of equally weighted bits where the
probability of each being set is proportional to the value that the bit-stream
represents.

Maps rational number x into random variable A with generating probability:
p=P(A=1)=x
For a signal bitstream of length N, the expected number of bits that are on is : px N

For two such streams, A and B. The probability of a given bit poistion being set for both
streamsis: P(A=D)AP(B=1)<>p,Xpg=x,Xx,

e Thatis, multiplication can be done by an AND operation!

We do the AND with a small squash-each-pulse neural network.
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Stochastic Pulse Multiplication NN

y=x1><x2

Update-each-phase
0=—1 neuron (256 pulses)

Bias

Update-each-pulse
neuron
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Lessons Learned: Opto-Electronics

Practical:
— Windows is not real time. This causes problems. S-1-o-w

— MATLAB Rules!
— Intensity must be tightly controlled (drift).

“Opaque” areas on a slide aren’t.

Slide gray areas are not repeatable enough, even when on/off pixel
encoding 1s used.

— LCD-based Spatial Light Modulators

— Laser-cut masks
Stochastic Pulse Coding works well. It greatly reduces FWL-NN sizes.
DMD works well, except slow compared to Laser Diodes.
Software-based alignment and distortion correction works well.
Diffraction may limit spatial resolution in free-space optics.

Random noise was not much of a problem.
— Windows is not real time. This causes problems. S-1-o-w
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M (1)=M (1=1)—-nx(t=1)x y(r=1)x[1=y(t=1) [x[ y(t=1) =T (1=1)]
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