
Parallel and sequential optical computing

Damien Woods Thomas J. Naughton

Reseach Group on Natural Computing
Department of Computer Science and

Artificial Intelligence
University of Seville

Spain

Department of Computer Science
National University of Ireland, Maynooth

Ireland

University of Oulu
RFMedia Laboratory

Oulu Southern Institute
Ylivieska, Finland

OSC 2008

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Acknowledgement

Research Group on Natural Computing, Seville, Spain

Junta de Andalućıa grant TIC-581

Marie Curie Fellowship through the European Commission
Framework Programme 6

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Motivations

Optical computers been around for some time

Speed: parallelism via 2D complex-valued functions

No inherent noise during transmission

Optical pathways can be placed arbitrarily close together

Photons do not need a conductor to be transmitted (free
space propagation)

High interconnection densities are possible

Optical pathways can be switched at arbitrary data rates

Energy efficient (no heat and no additional energy costs for
cooling down processors)

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Motivations

T. Naughton, et al. Opt. Eng., vol. 38, pp. 1170-1177, 1999.

Applications: matrix-vector multipliers, image processing
e.g. noise removal, edge enhancement, pattern recognition via
correlation, numerical computations

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Motivations

Computational complexity of optical computers has received
relatively little attention in comparison to the resources
devoted to the designs, implementations and algorithms for
physical optical computers

This trend is in contrast to many other models, e.g. quantum
computing, DNA computing, membrane computing

Our work is based on a general optical model inspired by
classical Fourier optics (Naughton, 2000)

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Continuous space machine definition

Images are the basic data units

A (complex-valued) image is a function

f : [0, 1)× [0, 1)→ C

where [0, 1) is the half-open real unit interval

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Continuous space machine definition

An address is a pair (ξ, η) ∈ N+ × N+

continuous space machine

A CSM is a quintuple M = (E, L, I ,P,O), where

E : N→ N is the address encoding function

L = ((sξ, sη) , (aξ, aη) , (bξ, bη)) are the addresses: sta, a, b; a 6= b

I and O are finite sets of input and output addresses, respectively

P = {(ζ1, p1ξ
, p1η

), . . . , (ζr , prξ , prη)} are the r programming

symbols ζj and their addresses where ζj ∈ ({h, v , . . . , hlt} ∪ N) ⊂ I

configuration

A configuration of M is a pair 〈c , e〉 where

c is an address called the control

e is a list of M’s images

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

CSM operations

h : horizontal 1D Fourier transform on in a

v : vertical 1D Fourier transform on image in a

∗ : complex conjugate of image in a

· : pointwise multiplication of a and b

+ : pointwise complex addition of a and b

ρ zl zu : zl, zu ∈ I; filter a by amplitude using zl and zu

as lower and upper amplitude threshold images
st ξ1 ξ2 η1 η2 : ξ1, ξ2, η1, η2 ∈ N; copy the image in a into the

rectangle of images whose bottom left-hand corner
address is (ξ1, η1) and whose top right-hand corner
address is (ξ2, η2)

ld ξ1 ξ2 η1 η2 : ξ1, ξ2, η1, η2 ∈ N; copy into a the rectangle of
images whose bottom left-hand corner address is
(ξ1, η1) and whose top right-hand corner address
is (ξ2, η2)

br ξ η : ξ, η ∈ N; branch to the image at address (ξ, η)

hlt : halt

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

CSM programming language

h(i1;i2) : replace image at i2 with horizontal 1D FT of i1
v(i1;i2) : replace image at i2 with vertical 1D FT of i1
∗(i1;i2) : replace image at i2 with complex conjugate of i1
···(i1,i2;i3) : pointwise multiplication of i1 and i2, result in i3
+(i1,i2;i3) : pointwise addition of i1 and i2, result at i3
ρ(i1,zl,zu;i2) : filter i1 by amplitude using zl, zu as lower & upper

amplitude threshold images

[ξ′
1, ξ

′
2, η

′
1, η

′
2] ← [ξ1, ξ2, η1, η2] : copy the rectangle of images with
• bottom-left address (ξ1, η1) & top-right address (ξ2, η2)
to the rectangle with
• bottom-left address (ξ′

1, η
′
1) top-right address (ξ′

2, η
′
2)

There are also if/else and while control flow instructions with
binary symbol image conditions.

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Example

Copying images

a

ξ1 ξ2

η1

η2

[ξ1, ξ2, η1, η2] ← a

a ← [ξ1, ξ2, η1, η2]

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

CSM complexity measures

time

The number of configurations in the computation sequence of M,
beginning with the initial configuration and ending with the first
final configuration.

grid

The minimum number of images, arranged in a rectangular grid,
for M to compute correctly on all inputs.

Let S : I × (N× N)→ I, where S(f (x , y), (Φ,Ψ)) is a raster
image, with ΦΨ pixels arranged in Φ columns and Ψ rows, that
approximates f (x , y).

spatialRes

The minimum ΦΨ such that if each image f (x , y) in the
computation of M is replaced with S(f (x , y), (Φ,Ψ)) then M
computes correctly on all inputs.

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

CSM complexity measures

time

The number of configurations in the computation sequence of M,
beginning with the initial configuration and ending with the first
final configuration.

grid

The minimum number of images, arranged in a rectangular grid,
for M to compute correctly on all inputs.

Let S : I × (N× N)→ I, where S(f (x , y), (Φ,Ψ)) is a raster
image, with ΦΨ pixels arranged in Φ columns and Ψ rows, that
approximates f (x , y).

spatialRes

The minimum ΦΨ such that if each image f (x , y) in the
computation of M is replaced with S(f (x , y), (Φ,Ψ)) then M
computes correctly on all inputs.

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

CSM complexity measures

time

The number of configurations in the computation sequence of M,
beginning with the initial configuration and ending with the first
final configuration.

grid

The minimum number of images, arranged in a rectangular grid,
for M to compute correctly on all inputs.

Let S : I × (N× N)→ I, where S(f (x , y), (Φ,Ψ)) is a raster
image, with ΦΨ pixels arranged in Φ columns and Ψ rows, that
approximates f (x , y).

spatialRes

The minimum ΦΨ such that if each image f (x , y) in the
computation of M is replaced with S(f (x , y), (Φ,Ψ)) then M
computes correctly on all inputs.

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

CSM complexity measures

Recall that f (x , y) = |f (x , y)|ei arg f (x ,y). Let A : I × N+ → I,

A(f (x , y), µ) =

⌊
|f (x , y)|µ+

1

2

⌋
1

µ
ei arg f (x ,y)

The value µ is the cardinality of the set of discrete nonzero
amplitude values that each complex value in A(f , µ) can take, per
half-open unit interval of amplitude.

amplRes

The minimum µ such that if each image f (x , y) in the
computation of M is replaced by A(f (x , y), µ) then M computes
correctly on all inputs.

random values amplRes 1 amplRes 3

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

CSM complexity measures

Let P : I × N+ → I,

P(f (x , y), µ) = |f (x , y)|eibarg(f (x ,y)) µ
2π

+ 1
2c 2π

µ

The value µ is the cardinality of the set of discrete phase values
that each complex value in P(f , µ) can take.

phaseRes

The minimum µ such that if each image f (x , y) in the
computation of M is replaced by P(f (x , y), µ) then M computes
correctly on all inputs.

phaseRes 2 phaseRes 3 phaseRes 5

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

CSM complexity measures

dyRange

The ceiling of the maximum of all the amplitude values stored in
all of M’s images during M’s computation.

freq

The minimum optical frequency such that M computes correctly
on all inputs.

space

The product of all of M’s complexity measures except time.

We have defined complexity of computations, we extend this to
complexity of configurations and images in a straightforward way.

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

CSM complexity measures

dyRange

The ceiling of the maximum of all the amplitude values stored in
all of M’s images during M’s computation.

freq

The minimum optical frequency such that M computes correctly
on all inputs.

space

The product of all of M’s complexity measures except time.

We have defined complexity of computations, we extend this to
complexity of configurations and images in a straightforward way.

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

C2-CSM

Motivated by a desire to apply standard complexity theory tools to
the model, we define a restricted class of CSM.

C2-CSM
amplRes and phaseRes have constant value of 2

at time t each of grid, spatialRes, dyRange is O(2t)

h and v compute horizontal and vertical DFT respectively
(space is redefined to be the product of all complexity
measures except time and freq)

the address encoding function E : N→ N is decidable by a
logspace Turing machine (given a reasonable binary word
representation of the set of addresses N)

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

2005: lower and upper bounds on C2-CSM power

The C2-CSM verifies the parallel computation thesis

⇔ C2-CSM time is (polynomially) equivalent to sequential space

⇔ C2-CSM–TIME(SO(1)(n)) = NSPACE(SO(1)(n))

For example, C2-CSM–TIME(nO(1)) = PSPACE
For example, C2-CSMs solve NP-complete problems polynomial
time, but (naturally) use exponential space.

Poly space, polylog time C2-CSMs accept exactly NC
i.e. C2-CSM–SPACE,TIME(nO(1), logO(1) n) = NC

These characterisations are robust wrt variations in the C2-CSM
definition

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

2005: lower and upper bounds on C2-CSM power

The C2-CSM verifies the parallel computation thesis

⇔ C2-CSM time is (polynomially) equivalent to sequential space

⇔ C2-CSM–TIME(SO(1)(n)) = NSPACE(SO(1)(n))

For example, C2-CSM–TIME(nO(1)) = PSPACE
For example, C2-CSMs solve NP-complete problems polynomial
time, but (naturally) use exponential space.

Poly space, polylog time C2-CSMs accept exactly NC
i.e. C2-CSM–SPACE,TIME(nO(1), logO(1) n) = NC

These characterisations are robust wrt variations in the C2-CSM
definition

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

2005: lower and upper bounds on C2-CSM power

The C2-CSM verifies the parallel computation thesis

⇔ C2-CSM time is (polynomially) equivalent to sequential space

⇔ C2-CSM–TIME(SO(1)(n)) = NSPACE(SO(1)(n))

For example, C2-CSM–TIME(nO(1)) = PSPACE
For example, C2-CSMs solve NP-complete problems polynomial
time, but (naturally) use exponential space.

Poly space, polylog time C2-CSMs accept exactly NC
i.e. C2-CSM–SPACE,TIME(nO(1), logO(1) n) = NC

These characterisations are robust wrt variations in the C2-CSM
definition

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Pixels, pixels, pixels,...

We already know that:

PSPACE = C2-CSM poly-time, exp-spatialRes

Result holds for constant O(1) usuage of the other resources:
dyRange, grid, amplRes, phaseRes

parallelism ≈ pixels

Backed up by existing intuition through many, many examples
of optical algorithms

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Pixels, pixels, pixels,...

We already know that:

PSPACE = C2-CSM poly-time, exp-spatialRes

Result holds for constant O(1) usuage of the other resources:
dyRange, grid, amplRes, phaseRes

parallelism ≈ pixels

Backed up by existing intuition through many, many examples
of optical algorithms

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Pixels, pixels, pixels,...

We already know that:

PSPACE = C2-CSM poly-time, exp-spatialRes

Result holds for constant O(1) usuage of the other resources:
dyRange, grid, amplRes, phaseRes

parallelism ≈ pixels

Backed up by existing intuition through many, many examples
of optical algorithms

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Pixels, pixels, pixels,...

We already know that:

PSPACE = C2-CSM poly-time, exp-spatialRes

Result holds for constant O(1) usuage of the other resources:
dyRange, grid, amplRes, phaseRes

parallelism ≈ pixels

Backed up by existing intuition through many, many examples
of optical algorithms

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Parallelism without pixels?

What if we fix the number of pixels?

i.e. O(1) spatialRes

Our previous highly parallel algorithms don’t work

Have we crippled the system?

No!

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Constant number of pixels

Theorem

PSPACE is characterised by C2-CSMs that are restricted to use
polynomial time T = O(nk), spatialRes O(1), grid O(1), and

generalised to use amplRes O(22T
), dyRange O(22T

).

Proof (upperbound). Extend previous upperbound, swapping
the roles of spatialRes and the other resources.

Proof (lowerbound). Via simulation of RAM(×,+,←). Such
RAMs are known to characterise PSPACE in polynomial time.

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Constant number of pixels

Theorem

PSPACE is characterised by C2-CSMs that are restricted to use
polynomial time T = O(nk), spatialRes O(1), grid O(1), and

generalised to use amplRes O(22T
), dyRange O(22T

).

We can get “high parallelism” with a fixed number of pixels!

However, not a realistic way to do optical computing: using
large amplRes and dyRange is more expensive and
unrealistic than large spatialRes and/or grid

Using multiplication, rather than pixels

Intuition — there are at least two ways to compute quickly in
optics: use pixels or generate large numbers

So what happens if we dissallow (such unrealistic)
multiplication?

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

What happens if we remove the multiplication operation?

Theorem

C2-CSMs without multiplication, that compute in polynomial
time, polynomial grid O(nk), and constant spatialRes O(1),
characterise P.

Theorem

C2-CSMs without multiplication, that compute in polynomial
time, constant grid O(1), polynomial spatialRes O(nk),
characterise P.

Significant reduction in power

These results are general in the sense that the other resources
are arbitrary (i.e. unrestricted grid, dyRange, phaseRes,
amplRes)

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Searching in log time

Definition (Needle in haystack problem)

Let L = {w : w ∈ 0∗10∗}. Let w ∈ L be written as
w = w0w1 . . .wn−1 where wi ∈ {0, 1}. Given such a w , the needle
in haystack problem asks what is the index of the symbol 1 in w .
The solution to the needle in haystack problem for a given w is the
index i , expressed in binary, where wi = 1.

Grover’s quantum algorithm: O(
√

n)

CSM algorithm: O(log(n))

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Searching in log time

Represent w = 0i−110|w |−i as a binary valued image, with value 1
at horizontal position i , and value 0 elsewhere

Repeat log2 n times

1 FT, square, FT left half of image
2 If centre is nonzero

append 0 to address
discard right half of image

3 Else

append 1 to address
discard left half of image

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Searching in log time

CSM algorithm to search for a single 1 in a string of 0s.

i1 i2 f0 f1 sta a b c d e

99 br 0 3

w ld e st de br 0 d̂

3 ld i2 st e ld f0 st c br 0 w

2 h v st b ∗ · h v br 8 â

1 ld i1 st ab br 0 2 ld i1 st ab st i1 ld f0 st b ld bc st c br 0 w

0 ld c hlt ld i1 st ab ld b st i1 ld f1 st b ld bc st c br 0 w

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 . . .

F
ig.

9.
C

SM
to

perform
a

Θ
(log

2
n)

search
on

an
unordered

binary
list.

35

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Searching in log time

Optical apparatus to search for a single 1 in a string of 0s.

A

F

B

D

C

Convex lens (12)

OASLM (2)

Laser with spatial filter (3)

Beam splitter (5)

Mirror (6)

On/off control electronics (4)

Single-pixel intensity detector (1)

Light block (2)

Fourier transform (9)

E

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Conclusions

Two ways in which we get huge parallelism from optics:

Characterise PSPACE in poly time, but exp spatialRes

Char. PSPACE in poly time, but exp amplRes & dyRange

Remove multiplication ⇒ characterise P

Corollaries: characterisations of NC via optical machines that
run in polylog time & polynomial space

So we can take existing, fast parallel algorithms and compile
to fast parallel optical algorithms

log time searching algorithm & implementation design

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

Conclusions

NC: problems solved in polylog time, and poly space

NC ⊆ P,

Rather than focus on (presumed) hard problems, perhaps the
optical computing community can get more out of optical
computers by finding NC problems that are well-suited to
optical architectures

Damien Woods, Thomas J. Naughton Parallel and sequential optical computing, OSC’08

