Multi-Electrode Approach for Interfacing Optical Computing Devices

School of Electrical Engineering Tel Aviv University, Israel

Yossef Ehrlichman, Ofer Amrani and Shlomo Ruschin

Outline

- Motivation
- The Interfacing Problem
- Multi-Electrode Intensity Optical Digital Modulator
- Optical IQ Modulator
- Conclusions

Motivation

- Future optical computing devices will have to interface to electronic systems.
- "Casting" of digital signals on optical waveforms requires complex analog conversion circuits.

The Interfacing Problem

•Raymond Arrathoon "Optical Computing, Digital and Symbolic"

Integrated optical intensity modulator based on a MZM

Intensity Transmission

$$T = \cos^2 \left(\frac{\pi V_{in}}{2 V_{\pi}}\right)$$

Optical Digital Modulator using Multi-Electrode MZM

■M. Papuchon, C. Puech, and A. Schnapper, "4-bits digitally driven integrated amplitude modulator for data processing," *Electronics Letters*, vol. 16, pp. 142–144, Feb. 1980.

$$T(\mathbf{B_i}) = \cos^2 \left(\frac{\pi}{2} \sum_{j=1}^{M} B_{ij} 2^{-j} + \phi_{bias} \right) \approx \sum_{j=1}^{M} B_{ij} 2^{-j}$$

8-bit Digital Optical Modulator

• Wasted dynamic range!

Full-Dynamic Range Digital Optical Modulator

How to design a good Digital Optical Modulator?

- Convert a digital value into its corresponding analog representation.
- For *N*-bit digital input: $b = (b_1, b_2, ..., b_N)$
- The output of the modulator is an analog value: $I_{out} = f(D)$
- where *f(.)* is (preferably) a linear function of *D* : $D = \frac{b_1}{2} + \frac{b_2}{2^2} + \dots + \frac{b_N}{2^N}$
- Integral Non-Linearity (INL) Measures deviation, in units of LSB, or how close is the output to being a straight line.

How do we find the DDC and the electrode lengths?

• Minimize goal function:

$$\min g(\mathbf{B}, \mathbf{L}) = \sqrt{\frac{1}{2^{N}} \sum_{i=1}^{2^{N}} \left[U_{i} - \cos^{2} \left(\frac{\pi}{2} \sum_{j=1}^{M} B_{ij} L_{j} \right) \right]}, \ U_{i} = \frac{i}{2^{N}}$$

- RMSE (Root Mean Square Error) Criterion.
- Optimization Variables:
 - B : Binary (0,1) Matrix.
 - L : Real Vector.

Optimization of B

• Optimization of **B**: - Start with $L = 2^{-j}$ - $\hat{\mathbf{B}}_{\mathbf{i}} = Dec 2Bin_M \left(\frac{2}{\pi} \arccos\left(\sqrt{U_i}\right)\right)$

Optimization of L

• Optimization of L: – Assuming: $\cos^2\left(\frac{\pi}{2}\sum_{j=1}^M B_{ij}L_j\right) \approx U_i; \forall i$

- Equivalent cost function:

$$h(\mathbf{L}) = \left\{ \sum_{i=1}^{2^{N}} \left[\frac{2}{\pi} \operatorname{arccos}\left(\sqrt{U_{i}} \right) - \sum_{j=1}^{M} \hat{B}_{ij} L_{j} \right] \right\}$$

– Differentiate h(L) with respect to **L** and get:

$$\mathbf{L} = \left(\hat{\mathbf{B}}^T \hat{\mathbf{B}}\right)^{-1} \frac{2}{\pi} \left[\arccos\left(\sqrt{U_i}\right) \hat{\mathbf{B}} \right]^T$$

Theoretical Performance 4 bit Digital Optical Modulator

Theoretical Performance 4 bit Digital Optical Modulator

■N=4, M=5 One excess electrode

Theoretical Performance 8 bit Digital Optical Modulator

Theoretical Performance 8 bit Digital Optical Modulator

Results

Ν	Μ		INL(LSB)	RMSE	aggregate electrodes length
4	4	U	1.6	12.06	0.937
4	4	0	0.72	0.39	0.942
4	5	0	0.16	0.10	0.961
8	8	U	27.52	19.31	0.996
8	8	0	0.77	0.35	0.996
8	9	0	0.41	0.18	0.998

INL is a measure for the output's linearity

IQ Representation of Signals

- Digital Communication
- Amplitude and\or phase can be used to represent a binary symbol $s_i = r_i e^{j\theta_i}$

Digital 16-QAM Optical Modulator

Amplitude and phase are used to represent a binary symbol

IQ Map

■N=4, M=5 One excess electrode

Conclusions

- Multi-Electrode approach for optical computing allows
 - the recruitment of physical light-related quantities, such as intensity, phase.
 - Multi-Level Logic.
- Multi-Electrode approach for interfacing with optical computing device shall consist of
 - Digital pre-distortion (Digital-to-Digital converter).
 - Non-conventional follow-by-2 electrode sectioning.
 - Number of electrodes may be higher than the number of bits.

Conclusions

- Modulate other physical quantities such as polarization and wavelength
- Different goal functions and logic schemes.
- Application to other types of optical modulators: EAM, DCM, Direct Modulation.

The END

Linearity and Dynamic Range

When trying to increase the dynamic-range, linearity quickly deteriorates.

FDR vs. Biased

