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What is the origin of quantum randomness?

Quantum randomness (in certain experiments)
IS a manifestation of mathematical undecidability.

Svozil [1990], Calude & Stay [2005] ...



Quantum Randomness
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Quantum Entanglement
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« only joint properties definite (perfect
correlations in different measurements).

| | | | | + * no information on individual subsystems (local
results random)



Realism:

The measurement results are determined by properties the
particles carry prior to and independent of observation.




Locality:

The results obtained at one location are independent of any
actions performed at space-like separation.




Violation of local realism
(John Bell 1964, GHZ 1989)
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Nature 403, 515 (2000)




What is wrong?

e Locality (Tension with Special Relativity)

e Realism

Realism requires enormous amount of informaton.
What if only a finite amount of info is available?



Finite information content

Zeilinger: The most elementary system can give a definite
answer to one question only, i.e. it carries only 1 bit of info
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Proposition: “The spin is up along z”

The answers to other questions
must be random




Product & entangled states

1.“The spin of particle 1 is up along x”.
2.“The spin of particle 2 is up along x”.

W)=[x+)|x+)
2 bits define (local) properties of individual spins.

1 1
|y >=ﬁ(IX+>Ix->+Ix->IX+>)= ﬁ(|y+>ly+>-ly->ly->)

1. “The two spins are different along x”.
2. “The two spins are the same along y”.

2 (nonlocal) bits define correlations. No bits left to
define individual spins & Randomness



Mutually complementary measurements
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Is there any relation to mathematical undecidability?



Chaitin‘s mathematical undecidability

A proposition is undecidable within a set of axioms,
if it can neither be proved nor disproved within the set.

Undecidability arises whenever a proposition
and a given set of axioms together contain
more information than the axioms themselves.




The one-bit axiom
Boolean functions of a binary argument
x€{0,1} —y=f(x) €4{0,1}

Single bit axiom: f(0) =0
Proposition to be proved: f(0) = f(1)?

Undecidable!
Requires two bits, but the axiom contains only one.

Similarly, f(1) =7 is undecidable within the axiom.



Logical complementarity

Given limited information resources, propositions
which cannot be simultaneously ascribed definite
truth values are logically complementary.

Given 1 bit of information:

(A) f(0)=0



From math to physics

A black box encodes the Boolean functions
(2 bits of info)
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Extracting info from the box
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Extracting complementary bits

Z

z4) | ] = 6/V/(V) | iy (] f(0)=?

xt) w—p | ] =/ O/ —-)X@ (1) =2

yt) m—p | [ =/ Vo]V | mmpp d—ply  f(0) = £(1)?

Quantum complementary states answer
logically complementary questions.



Experimental test

(photonic polarization)

Measurement in z basis
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Normalized count rates
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Randomness and undecidability
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Whenever the proposition“n f(0)+m f(1)=0 "~
(within the 1-bit axiom system) is decidable, the
measurement outcome is definite, and whenever

It is undecidable, the outcome will be random.



The N-Bit Axiom

N Boolean functions f,(x) numbered by j=1,....N
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N Bits: Testing Propositions

Final state encode N-bit axiom

(Hp,) “The value of Z;”J(p)ff O)+m (p)f,1)=0".

m;(p),n;(p)e{0l} p = 1. N

Final state is an eigenstate of N independent and mutually commuting
tensor products of Pauli operators: o.® o, Ro, -

Measurement is a test of proposition
() “Thevalueof 3" B, f,(0)+a, f,(1)=0"

Measurement is a product of Pauli operators:0, ® 0, & 0 ..

(J) is decidable within (H,) iff measurement outcomes are definite
(measurement operator commute with all the operators defining the initial state)



The 2-bit axiom

Axiom:  £,(0)= £,(0) f(1)=f5(1)

global properties, requires entangled states

Undecidable:  f,(0)=0 f,(1)=0

local properties

Partially“ Undecidable: f,(0)=0 f,(0)=0



Full and partial undecidability

Normalized count rates
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Quantum randomness from
mathematical undecidability

1. When measured, quantum systems inevitable give
results, e.g. ,,clicks® in the detectors

2. The clicks must not contain any information whatsoever
about the truth value of the undecidable proposition.

They must be random



What is the truth value?

IGHZ) = (|z+)1|z+)2]z+)3 + [z=)1|z—)2|z—)3) / V2

A0 +AM+ L0+ LD+ A(1)=1 06,80,R0;
AH0)+ A1)+ £(D)+40)+A(1) =1 0,80,®0,
A1)+ £0)+ (1) + 0)+ (1) =1 0,80,80,

Logic: fi(1)+ fa(1) + f3(1)

1
Quantum: A+ AL +£(1)=0 ©,80,80, |

Decidable propositions may have ,,wrong“ values!



Conclusions & Future

Quantum experiments can be used to test (un)decidability of
mathematical propositions

Decidable propositions may have “wrong” truth values

Quantum randomness is a physical manifestation of
mathematical undecidability (in Pauli product measurements)

What about other measurements?
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Realism & Locality

Realism: the measurement results are determined by “hidden variables”
which exist prior to and independent of observation.

/g
3 ,,Passive* Observer

Locality: the results obtained at one location are independent of any
measurements or actions performed at space-like separated regions.




Testing the truth-value

Initial state Black box action
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Checking the truth value of the proposition:
“The value of n f(0)+m f(1) = 0



