

IQI Institute for Quantum Optics and Quantum Information Austrian Academy of Sciences

Faculty of Physics University of Vienna, Austria

Quantum experiments can test mathematical undecidability

Časlav Brukner

Unconventional Computation 2008, Vienna

Theory

Johannes Kofler

Peter Klimek

Tomasz Paterek

Experiment

Robert Prevedel

Markus Aspelmeyer

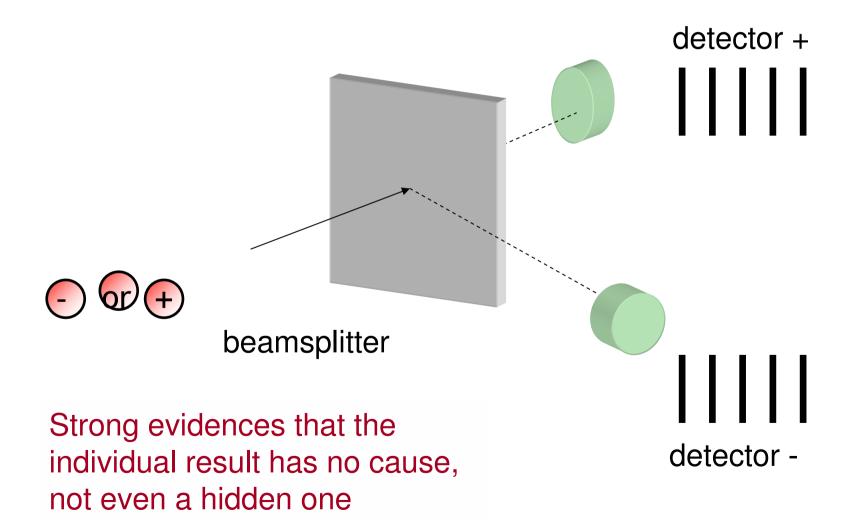
Anton Zeilinger

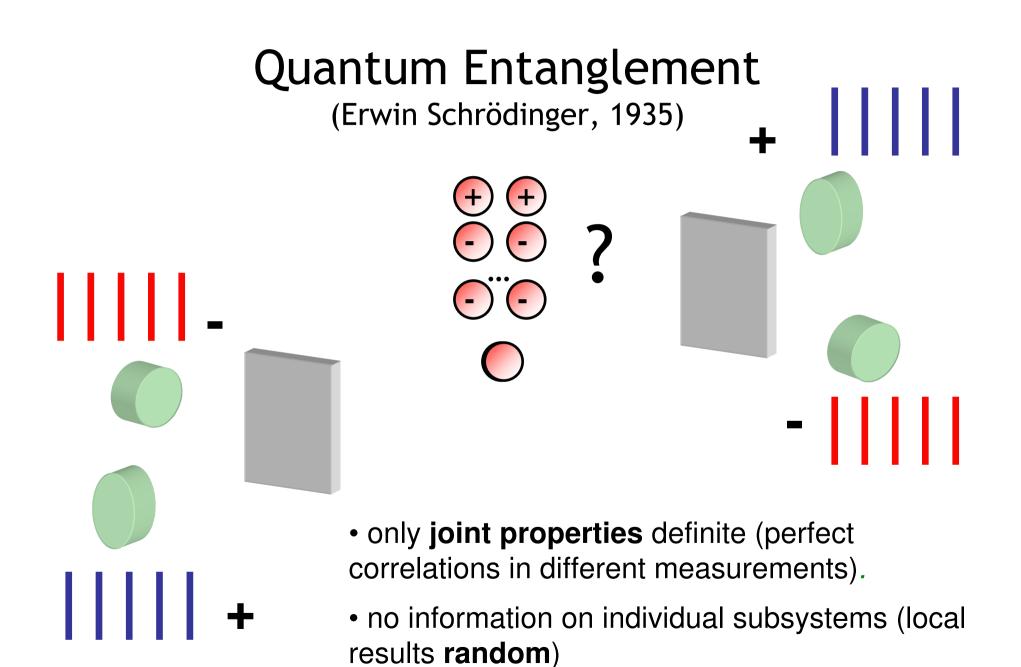
What is the origin of quantum randomness?

Quantum randomness (in certain experiments) is a manifestation of mathematical undecidability.

Svozil [1990], Calude & Stay [2005] ...

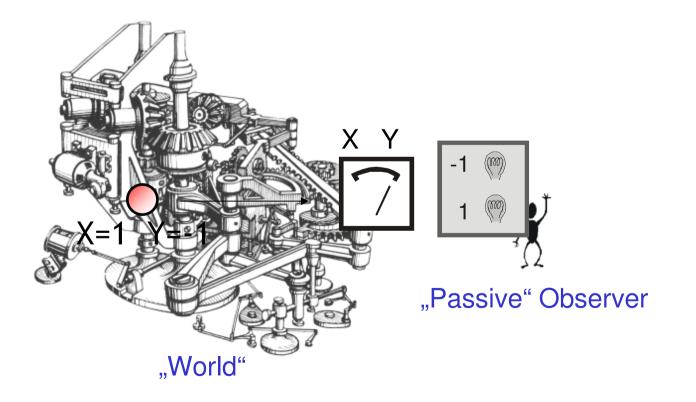
Quantum Randomness





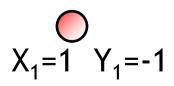
Realism:

The measurement results are determined by properties the particles carry **prior to and independent** of observation.



Locality:

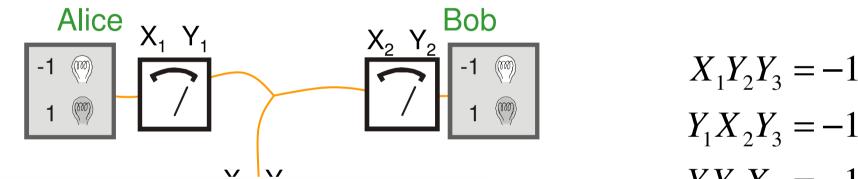
The results obtained at one location are **independent** of any actions performed at space-like separation.



 $X_2 Y_2$

Violation of local realism (John Bell 1964, GHZ 1989)

 $|GHZ\rangle = (|z+\rangle_1|z+\rangle_2|z+\rangle_3 + |z-\rangle_1|z-\rangle_2|z-\rangle_3)/\sqrt{2}$



 $Y_{1}X_{2}Y_{3} = -1$ $Y_{1}Y_{2}X_{3} = -1$ $Y_{1}Y_{2}X_{3} = -1$ $Y_{1}X_{2}X_{3} = -1$ $Y_{1}X_{2}X_{3} = -1$ $X_{1}X_{2}X_{3} = -1$ $Quantum: X_{1}X_{2}X_{3} = 1$

Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement

Jian-Wei Pan*, Dik Bouwmeester†, Matthew Daniell*, Harald Weinfurter‡ & Anton Zeilinger*

Nature 403, 515 (2000)

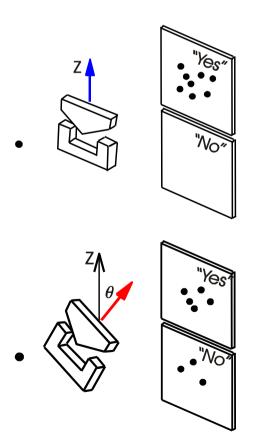
What is wrong?

- Locality (Tension with Special Relativity)
 - Realism

Realism requires enormous amount of informaton. What if only a finite amount of info is available?

Finite information content

Zeilinger: The most elementary system can give a definite answer to **one** question only, i.e. it carries only 1 bit of info



Proposition: "The spin is up along z"

The answers to other questions must be random

Product & entangled states

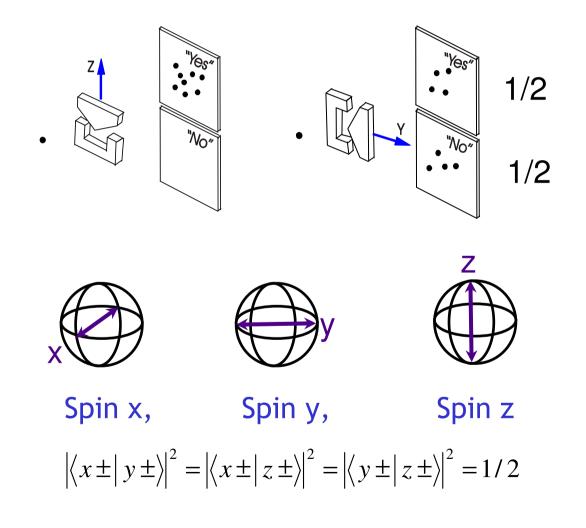
 $|\psi\rangle = |x+\rangle |x+\rangle$ 1. "The spin of particle 1 is up along x". 2. "The spin of particle 2 is up along x".

2 bits define (local) properties of individual spins.

$$\begin{split} |\Psi^{+}\rangle = \frac{1}{\sqrt{2}} (|\mathbf{x}+\rangle|\mathbf{x}-\rangle+|\mathbf{x}-\rangle|\mathbf{x}+\rangle) = \frac{1}{\sqrt{2}} (|\mathbf{y}+\rangle|\mathbf{y}+\rangle-|\mathbf{y}-\rangle|\mathbf{y}-\rangle) \\ 1. \text{ "The two spins are different along x".} \\ 2. \text{ "The two spins are the same along y".} \end{split}$$

2 (nonlocal) bits define correlations. No bits left to define individual spins **U** Randomness

Mutually complementary measurements



Is there any relation to mathematical undecidability?

Chaitin's mathematical undecidability

A proposition is **undecidable** within a set of axioms, if it can neither be proved nor disproved within the set.

Undecidability arises whenever a proposition and a given set of axioms together contain **more information** than the axioms themselves.

The one-bit axiom

Boolean functions of a binary argument $x \in \{0,1\} \rightarrow y = f(x) \in \{0,1\}$

Single bit axiom: f(0) = 0Proposition to be proved: f(0) = f(1)?

Undecidable! Requires two bits, but the axiom contains only one.

Similarly, f(1) = ? is undecidable within the axiom.

Logical complementarity

Given **limited information resources**, propositions which cannot be simultaneously ascribed definite truth values are **logically complementary**.

Given 1 bit of information:

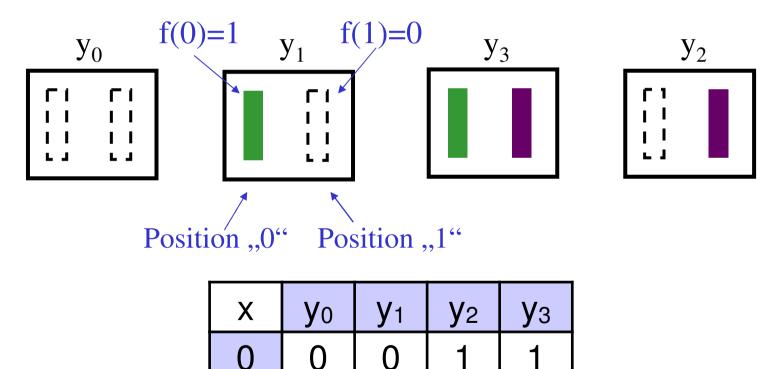
(A) f(0) = 0

(B) f(1) = 0

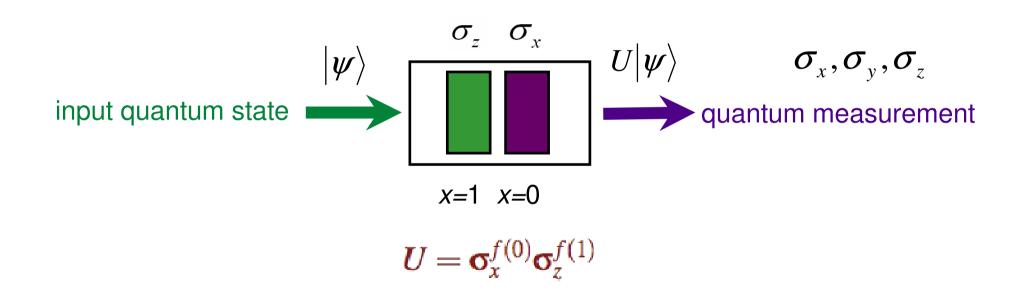
(C) f(0) = f(1)

From math to physics

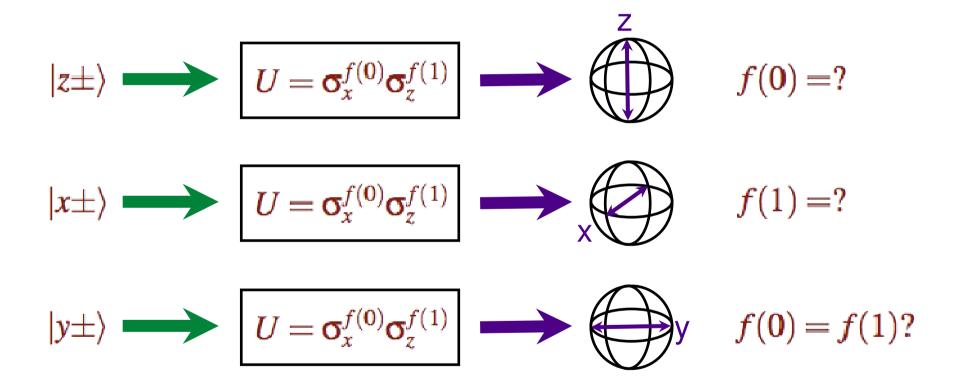
A black box encodes the Boolean functions (2 bits of info)



Extracting info from the box

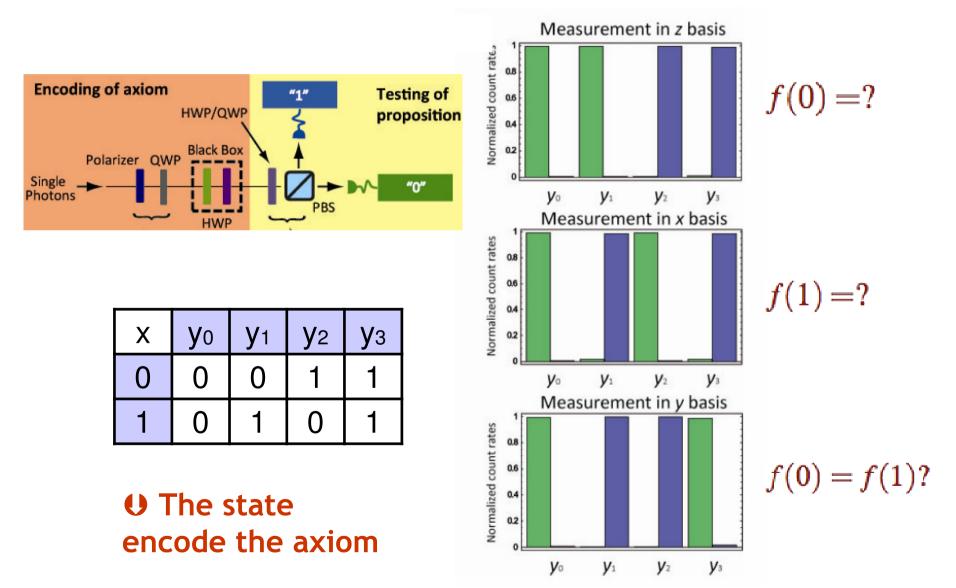


Extracting complementary bits

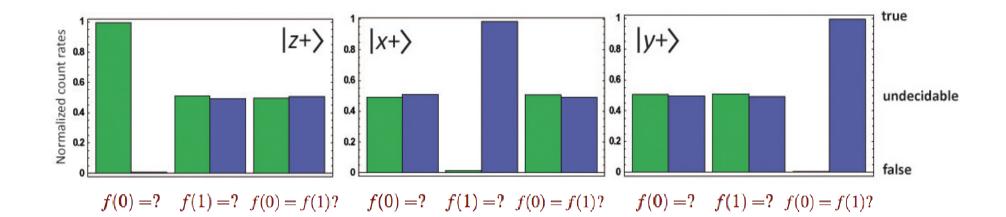


Quantum complementary states answer logically complementary questions.

Experimental test (photonic polarization)



Randomness and undecidability



Mathematics/Logic	Quantum Physics
Axioms of limit info	State
Boolean functions	Unitary transformation
Question about proposition	Measurement
Decidability/Undecidability	Definiteness/Randomness

Whenever the proposition "n f(0) + m f(1) = 0" (within the 1-bit axiom system) is **decidable**, the measurement outcome is **definite**, and whenever it is **undecidable**, the outcome will be **random**.

The N-Bit Axiom

N Boolean functions $f_j(x)$ numbered by j = 1, ..., Ninput quantum state j = N $\sigma_z \sigma_x$ j = 1 $\sigma_z \sigma_x$ j = 2 $\sigma_y \otimes \sigma_x \otimes \sigma_y \cdots$

Black box action:
$$U_N = \sigma_x^{f_1(0)} \sigma_z^{f_1(1)} \otimes \cdots \otimes \sigma_x^{f_N(0)} \sigma_z^{f_N(1)}$$

N Bits: Testing Propositions

Final state encode N-bit axiom

(H_p) "The value of
$$\sum_{j=1}^{N} n_j(p) f_j(0) + m_j(p) f_j(1) = 0$$
".
 $m_j(p), n_j(p) \in \{0,1\} \quad p = 1, ..., N$

Final state is an eigenstate of *N* independent and mutually commuting tensor products of Pauli operators: $\sigma_x \otimes \sigma_v \otimes \sigma_v \cdots$

Measurement is a test of proposition

(J) "The value of $\sum_{j=1}^{N} \beta_j f_j(0) + \alpha_j f_j(1) = 0$ " Measurement is a product of Pauli operators: $\sigma_y \otimes \sigma_x \otimes \sigma_y$...

(J) is **decidable** within (H_p) iff measurement outcomes are **definite** (measurement operator commute with all the operators defining the initial state)

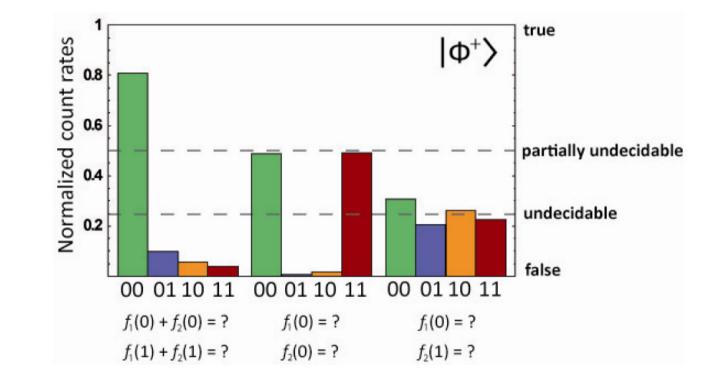
The 2-bit axiom

Axiom: $f_1(0) = f_2(0)$ $f_1(1) = f_2(1)$ global properties, requires entangled states

Undecidable: $f_1(0) = 0$ $f_2(1) = 0$ local properties

"Partially" Undecidable: $f_1(0) = 0$ $f_2(0) = 0$

Full and partial undecidability



Quantum randomness from mathematical undecidability

- 1. When measured, quantum systems inevitable give results, e.g. "clicks" in the detectors
- 2. The clicks must not contain any information whatsoever about the truth value of the undecidable proposition.

They must be random

What is the truth value?

 $|GHZ\rangle = (|z+\rangle_1|z+\rangle_2|z+\rangle_3 + |z-\rangle_1|z-\rangle_2|z-\rangle_3)/\sqrt{2}$

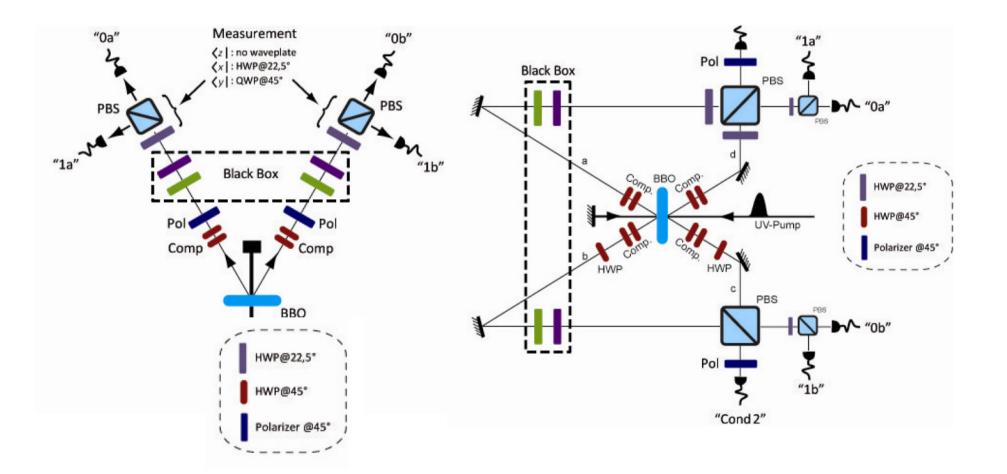
 $f_{1}(0) + f_{1}(1) + f_{2}(0) + f_{2}(1) + f_{3}(1) = 1 \qquad \sigma_{y} \otimes \sigma_{y} \otimes \sigma_{x}$ $f_{1}(0) + f_{1}(1) + f_{2}(1) + f_{3}(0) + f_{3}(1) = 1 \qquad \sigma_{y} \otimes \sigma_{x} \otimes \sigma_{y}$ $f_{1}(1) + f_{2}(0) + f_{2}(1) + f_{3}(0) + f_{3}(1) = 1 \qquad \sigma_{x} \otimes \sigma_{y} \otimes \sigma_{y}$ $Logic: f_{1}(1) + f_{2}(1) + f_{3}(1) = 1$ Quantum: $f_{1}(1) + f_{2}(1) + f_{3}(1) = 0 \qquad \sigma_{x} \otimes \sigma_{x} \otimes \sigma_{x}$

Decidable propositions may have "wrong" values!

Conclusions & Future

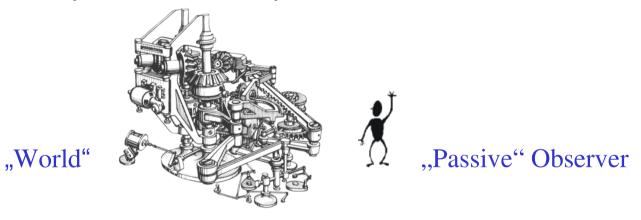
- Quantum experiments can be used to test (un)decidability of mathematical propositions
- Decidable propositions may have "wrong" truth values
- Quantum randomness is a physical manifestation of mathematical undecidability (in Pauli product measurements)
- What about other measurements?

Set-ups



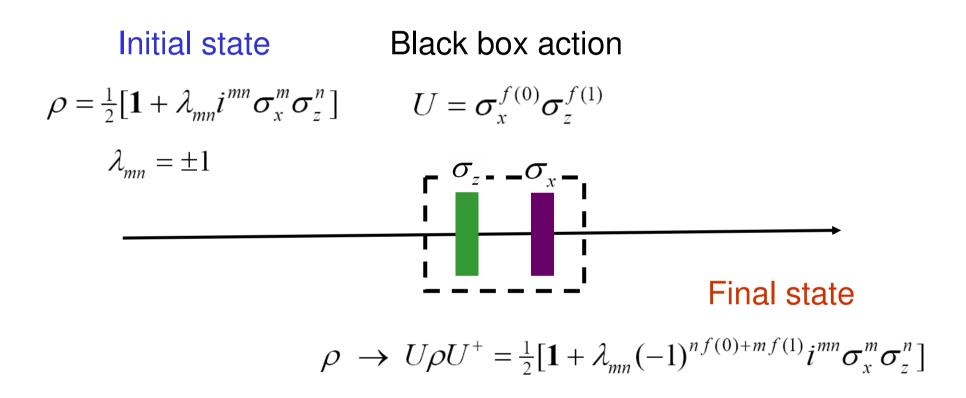
Realism & Locality

Realism: the measurement results are determined by "hidden variables" which exist prior to and independent of observation.



Locality: the results obtained at one location are independent of any measurements or actions performed at space-like separated regions.

Testing the truth-value



Checking the truth value of the proposition: "The value of n f(0) + m f(1) = 0"