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Special issues on
Swarm Intelligence: The state of the art in theory and practice

A joint call for papers

Theoretical Computer Science (TCS) - Elsevier
Natural Computing (NACO) - Springer

The journals Theoretical Computer Science (TCS) (Section C) and Natural Computing
(NACO) are focussed on the study of computing using resources occurring in nature as well
as computing techniques that are inspired by nature. In this joint call for papers, the aim is to

produce special issues of TCS and NACO that will reflect the state of the art, along with Im pD rtant dates :

exciting new developments, in, respectively, theoretical issues and practical/empirical issues

In swrm nteligence. Submission deadline: 15™ September 2008

The scope of these joint special issues is broad, covering the latest theoretical and empirical H - . -

research in the many established areas of swarm intelligence (including ant systems, particle Ex DECtEd P u h I 1 Cat on d ate " mi d tD Iate 2 009
swarm optimisation, foraging algorithms, stochastic diffusion search, and so forth), while

welcoming newer developments, novel frameworks and synergies, and so on. The guest

editors will welcome and quickly respond to informal questions about the scope.

We envision that some of the accepted papers will be suitable for either TCS or NACO, and
the guest editors will therefore partition the accepted papers between the two journals in a
suitable way that optimizes coherence. However, if authors have a strong preference for one
or the other journal, we ask that you indicate this at the time of initial submission.

Please send submissions in PDF format (leaving wide margins) to any one of the guest GUESt EditOl’S'
editors via email. The guest editors will enlist the services of reviewers from both journal )
boards, and from others, as appropriate. Note that the final versions of accepted papers will

be handled by the relevant journal, and prepared according to the instructions of that journal. . . .
Eric Bonabeau, Icosystem Corporation, Cambridge, MA, USA
We will make every effort to provide notification of acceptance/rejection within fifteen weeks

of submission. eric@icosystem.com

Important dates:

Submission deadline: 15" September 2008 David Corne, Heriot-Watt University, Edinburgh, UK
Expected Publication date:  mid to late 2009
dwcorne@macs.hw.ac.uk

Riccardo Poli. University of Essex, UK
rpoli@essex.ac.uk

« . http://www.macs.hw.ac.uk/~dwcorne/siswarm.pdf



e About HW
Eighth oldest educational institution in UK (1821)

First to educate the working classes
First to allow women onto degree studies (1861)

Fourth to employ me.

e About DC

Head of E (Intelligent Systems Lab) at Heriot-Watt

Aspects and applications of EC, multiobjective optimisation,
bioalgorithmics, bioinformatics, data mining, design, applications in
medicine, biosciences, logistics, telecomms, web intelligence



Imagel@ 2008 Mhe Gealnformation/'Group
E2008 Tele Atlas

541401572 N IA190031590 W
- .




BSSE dhburgh

- ’ i - ;] Inour

i ) ".}lij bt g

ok : - ver e

; “'ﬂ;"j‘l ¢ & - . - i ™

Wi e

o Broxburn g
B e City,

g

.~1I:|-|:- I r
Lof ___lt:lmr:l.,lr_L_«|h|.I

_.::t '.I.‘

-

o East Ggld_,@.r

L

ST
I r £ 1
ﬂ;c I.T 1‘*;" :

Image @ 2008 The Geolnformation Group
©2008 Tele Atlas
Image & 2008 DigitalGlobe
Image & 2008 TerraMetrics

H0.48% M 318'03.58" glev 97'm

v vPenicuik




Aberdeen

anda

Aﬂsa(hmgf E -
Tk -
A

!

Image & Ztl.‘.ll.‘.lﬁ MerraMetrics
. & 2{:1;05 TelefAtlas
# Image MWAS A
_ i & 2008 IEurepa Technolcgiea : 4
“54'40.50" N 3°19'03.58" W elev 148 m Eye alt 383,




v "
- Bl g

i~ M-limage NAS AT s

“ Image ©:2008/DigitalGlobel s ===

L3

5

Image 2008 TerraMetrics’ =
00.00" N 2°00°00.00" W Eye alt 11001.00 k







What is my hidden agenda?

Many years ago, Evolutionary Computation conferences (and
much of operations research) was all about single objective optimisation

Single objective optimisation was:

 the norm; unquestioned;

e a problem was often formulated in a true many-objective
from, then authors/speakers would say “so, in order to
optimise this, we combine these into a scalar objective
function like this ...” ... and that would be accepted without
question.

e tied up with all the machinery being studied in relation to

selection methods, EA theory in general.



But now we know this:

Single objective optimisation 1s:
e wrong/inappropriate; doesn’t address the real problem

e biassed and suboptimal

e still researched by much of the evolutionary
computation community



What is my other hidden agenda?

In the existing body of published work:

There are striking amounts of:
e reinvention of wheels
 ignorance about related literature
e ignorance about what "related’” means
And consequently:
e wasted time, wasted intellectual effort
* too slow progress

Of course, none of this is true for UC delegates.



Let’s consider a specific
family of optimisation
algorithms ...



Particle Swarm Optimisation

1. Initialise: generate set of candidate vectors, each
has a position from some specified distribution,
and each has a velocity.

2. evaluate them (the positions)

3. Each vector updates its position, influenced by:
1. 1its velocity -- to some extent vy
2. 1its personal best position -- to extent ¢l
3. Its neighbourhood best position — to extent ¢2

4. Returnto 2



.

4.

Optimisation Research

Initialise: each individual 1s a scientist or group; its
position is its latest piece of research; its velocity is a
measure of how muech it favours incremental research,
exploraty research, etc.

Evaluation: reviews, impact, citations, esteem

Each individual updates its position (next piece of
research), influenced by:
its velocity -- to some extent v

2. its personal best position -- whatever has seemed to generate most

success for this individual

Its neighbourhood best position — the individual’s assessment of
and insights from the state of research in their cloud of fields

Return to 2



In the world of evolutionary algorithms we
know from both theory and (lots) of
practice that:

1. Low velocity means slow progress

2. Over-influence of “personal best” means slow
overall progress

3. These two combined lead to stagnation in
many poor local optima.

But this is exactly what happens in the “science” algorithm



A Very Very Brief
Multiobjective Optimisation Primer

oc] The good of the many outweighs the good of the one: evolutionary multi-objective
optimization

D Corne, K Deb, PJ Fleming - IEEE Connections Newsletter 1 (1) - dbkgroup.org

The Good of the Many Outweighs the Good of the One: Evolutionary Multi-Objective

Optimization. David W. Corne, University of Reading, UK. ...

Cited by 13 - Related Articles - View as HTML - Web Search

Solutions on the
Athletes’ discomfort .. Pareto front

A . Unsupported solutions

(in a concave region)

. Dominated solutions
(not on the Front)

. . . e Tangent lines corresponding
- 0 different single-objective
approaches

TV/logistics/Scheduling conflicts



Solutions on the
Probability of failure .. . Pareto front

" Paths of single-objective searches

"™
"

1 angent line corresponding
to optima of a single-
objective search

Cost

Proper Multiobjective search:

 tries to find the Pareto front (a set of solutions, not a single ‘best’)
e gives the problem solver what s/he wants (and much more)

e typically performs at least as good as SO on the SO criterion

e can now be done efficiently with well-known algorithms

* 5o, now we solve the ‘real” problem, not a simplification of it




Single objective optimization 1s a crime




Some of the prominent
“simple’EMO algorithms
google scholar mean cites
per year (NSGA-II =212)

(there are lots more)

The five most prominent
religions, from

cites per year

= NSGA-II (Deb et al)

m SPEA (Zitzler & Thiele)

0O PAES (Knowles & Corne)
O MOGA (fonseca &

Fleming)
m PESA (Corne et al)

billion

@ christian
mislam

0O nonrelgious
O hindu

m Chinese traditional

http://www.adherents.com/Religions By Adherents.html

*(Christianity = 2.1bn)




Past Present

Formulate a scalar (single objective) Formulate a vector (multiple objective)
function that represents solution quality, of scalar functions each for a different
and optimise this for a problem instance quality objective, and aim for the Pareto

set of solutions for a problem instance
e This formulation 1s an over-
simplifcation that prevents
solution of the real problem

F(design) = cost + mass + risk + ... F(design) = (cost, mass, risk)




Present Future

Formulate a vector (multiple objective)
of scalar functions each for a different
quality objective, and aim for the Pareto
set of solutions for a problem instance

Formulate a (often many) component
vector of objectives, and search for a
useful model (covering a distribution of
problem instances) that links design
space to objective space

* This formulation is an over-
simplifcation that prevents solution
of the real problem,

e solve the "'whole’ problem

e use much cleverer (and
more elegant) algorithms
that “combine’ evolution
and learning

eand our algorithms are too dumb.
e we still usually specify
too few objectives
* we throw away immense
amounts of sampled
information that could
help solve this instance
and others

* in the same process,
produce algorithms that can
quickly solve many
instances




Present Future

e solve the "'whole’ problem

e we still usually specify
too few objectives

* we throw away immense
amounts of sampled
information that could
help solve this instance
and others

e use much cleverer (and
more elegant) algorithms
that "combine’ evolution
and learning

e in the same process,
produce algorithms that can

quickly solve many
instances

Just as was the case with the “past present” transition, this
transition is possible because we are beginning to discover
methods that can do these things well.




Alternative views of the future



18 chapters concerned with using
multiobjective techniques for much
more than optimisation. E.g.

- preventing bloat in GP

ﬁomotmg understandable rules

Wdllng constraints
- dlscovermg design principles
- single objective optimisation(!)

Joshua Knowles - David Corne
Kalyanmoy Deb (Eds.)

Multiobjective
Problem Solving

from Nature [ could say more, but I prefer it if
From Concepts to Applications you Slmply bbty the book
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Kalyan Deb’s view?

Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms - all 15

versions »

N Srinivas, K Deb - Evolutionary Computation, 1994 - MIT Press NS GA
Abstract In trylng to solve multiobjective optimization problems, many

traditional methods scalar- ize the objective vector into a single objective. In

those cases, the obtained solution is highly sensitive to the weight vector _..

Cited by 1000 - Related Articles - Web Search

A fast and elitist multiobjective genetic algorithm: NSGA-II - all 11 versions »

K Deb, A Pratap, S Agarwal, T Meyarivan - Evolutionary Computation, IEEE Transactions on, 2002 -
ieeexplore ieee.org

Abstract—Multiobjective evolutionary algorithms (EAs) that use nondominated

sorting and sharing have been criti- cized mainly for their: 1) (3 )

computational complexity (where is the number of objectives and is the ...

Cited by 1270 - Related Articles - Web Search - BL Direct

NSGA-III




Present Future

e solve the ‘whole’ problem

e we still usually specify
too few objectives

* we throw away immense
amounts of sampled
information that could
help solve this instance
and others

e use much cleverer (and
more elegant) algorithms
that ‘combine’ evolution
and learning

e in the same process,
produce algorithms that can

quickly solve many
instances

Just as was the case with the “past present” transition, this
transition is possible because we are beginning to discover
methods that can do these things well.




First, Briefly: Many-Objective Methods

Many-O is problematic; many of the traditional EMO methods don’t scale well from 2—20.

A good source for showing this is:
On the Evolutionary Optimization of Many Conflicting Objectives
RC Purshouse, PJ Fleming - Evolutionary Computation, IEEE Transactions on, 2007 - ieeexplore.ieee.org
Abstract—This study explores the utility of multiobjective evolu- tionary
algorithms (using standard Pareto ranking and diversity- promoting selection
mechanisms) for solving optimization tasks with many conflicting ...

Related Articles - Web Search - BL Direct
Approaches incluae:

. Simplification Treat 30-objectives as 2 or 3 (say)

. Exploit information (e.g. identify the correlations, study the dominance graph, etc...)

Dimensionality Reduction in Multiobjective Optimization: The Minimt

Problem - all 2 versions »

D Brockhoff, E Zitzler - Proc. of Operations Research, 2006 - Springer ] _ _ _ _ _
Summary. The number of objectives in a multiobjective optimization probler Non-linear Dimensionality Reduction Procedures for Certain Larg

strorjgly influences both the performance of gen.erating metlhoc?s and the de objective ...
making process in general. On the one hand, with more objectives, more ... DK Saxena, K Deb - Proceedings of the 4th International Conference on ..., :

Cited by 3 - Related Articles - Web Search Abstract. In our recent publication [1], we began with an understanding that
many real-world applications of multi-objective optimization involve a large
num- ber (10 or more) of objectives but then, existing evolutionary multi- ...

o New/better selection methods Cited by 4 - Related Articles - Web Search - BL Direct

Techniques for highly multiobjective optimisation: some nhondominated points are better

than others - all 2 versions »

DW Corne, JD Knowles - Proceedings of the 9th annual conference on Genetic and ..., 2007 - portal.acm
ABSTRACT The research area of evolutionary multiobjective optimization (EMO) is

reaching better understandings of the properties and capabilities of EMO

algorithms, and accumulating much evidence of their worth in practical ...

Cited by 5 - Related Articles - Web Search




Why many-objectives 1s hard




Quantifying the Effects of Objective Space Dimension in Evolutionary Multiobjective

Optimization

J Knowles, D Corne - Proc. 4th Int. Conf. Evol. Multi-Criterion Optim.(EMO 2007) - Springer
... Page 3. Quantifying the Effects of Objective Space Dimension 759 ... Page 5.
Quantifying the Effects of Objective Space Dimension 761 ...

Cited by 1 - Related Articles - Web Search - BL Direct
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Fig. 1. Empirical distributions of the number of mternally nondominated points in a sample of p
points for 5 and 10 objectives and three correlations arising from the use of different covariance
matrices. For a correlation of 0.0, a curve of O(In?~!(p)) has been fitted through the largest four
values, using least squares estimation

In many-o populations, it’s hard to find any dominated points






Suppose we have an archive size of 8 ...




Suppose we have an archive size of 8 ...




The problems are:

 A. In many-o, the proportion of nondominated points is
generally high, so we have little or nothing to favour one
point over another

e B. Fitness deterioration’ (as coined by Hanne) can occur,
when archive size 1s fixed. Also this 1s one of the two of
reasons why there i1s FLL in MO.

e C.Some modern EMOs simply don’t scale to many-o
since they need data or time that grows quickly with o.



Some progress on many-o —
The ARF selection method

Objectives Rank-Ordering
/Correlation (Best ... Worst)
TSP 5/-40  ARF, FR, KO, RF, RR, SO, SR
TSP 5/-20 ARF, FR, KO, RF, RR, SO, SR
TSPS5/ 0 ARF, KO, FR, RF, RR, SO, SR
TSP5/20  ARF, KO, FR, RF, RR, SO, SR
TSP5/40  ARF, KO, FR, RF, RR, SO, SR
TSP 10/-40 | ARF, KO, RF, RR, FR, SR, SO
TSP 10/-20 | ARF, KO, RF, RR, FR, SR, SO
TSP 10/0  ARF, KO, RF, RR, FR, SR, SO
TSP 10/20 | ARF, KO, RF, RR, FR, SO, SR
TSP 10/40 | ARF, KO, RF, RR, FR, SR, SO

=-~Best results were obtained by AR for 5-10 objectives.




and more objectives ... note how the
alternatives are often no better than random (RR)

Objectives/ Rank-Ordering
Correlation (Best ... Worst)

TSP 15/-40. ARF, {all others equally rated }
TSP 15/-20 ARF, {all others equally rated }

TSP 15/0 ARF, KO=RF, FR, SR =S0O=RR
TSP 15/20 ARF, KO=RF, RR=FR, SR=SO
TSP 15/40 ARF, KO, RF=RR, FR, SR=SO
TSP 20/-40 | SO=RR=SR, RF, ARF, KO=FR
TSP 20/-20 | ARF, NSO=RR=SR, RF, KO=FR
TSP20/ 0 | ARF, KO=RF=RR, FR=SO=SR
TSP 20/20 ARF, KO=RF=RR, FR, SO=SR
TSP 20/40 ARF, KO=RF=RR, FR, SO=SR
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Also see Evan Hughes’ chapter in

Multiobjective
=/ Problem Solving

z| from Nature
3 From Cencepts to Applications




Interim summary of the many-o bit

e We still simplify problems from many-o to
few-o

e This 1s because we are still trying to find out
how best to deal with many-o

e Good such methods are arriving, so in the
future we will be avoiding this
simplification.



Present Future

e solve the "'whole’ problem

e we still usually specify
too few objectives

* we throw away immense
amounts of sampled
information that could
help solve this instance

e use much cleverer (and
more elegant) algorithms
that “combine’ evolution
and learning

e in the same process,
produce algorithms that can

quickly solve many
instances

Just as was the case with the “past present” transition, this
transition is possible because we are beginning to discover
methods that can do these things well.




The driver: large-scale and
important problems

Some problems are important
and fitness computation 1s expensive
often very expensive

L+0O combinations typically achieve
significant savings in number of fitness
evaluations required

often very significant
So ManyO(L+O) 1s clearly the future ... (?)



Health, Wealth and Happiness

Percent

30
25
20
15
10

Alearning/optiomisation method compared with a state
of the art benchmark in investment portfolio trading

o MO(L+0O)
m Benchmark

B

Annualised Return recent Annualised Return recent
month month -1

percent

10

-10

-15

year to date

onth year to date

_| |@ MethodA

@ Benchmark

amount of investment, with quite expensive fitness function

Vaguely, a many-o L+O approach to a problem attracting a large




Optimisation of medical treatment



Health

E.g. Chemotherapy

~ treatment.
schedule
optimisation
MTD pulsatile chemotherapy (every 3 weeks)
e e L R
| E
b Metronomic chemotherapy — lower dose on a weekly basis

Metronomic chemotherapy — lower dose on a daily basis

e

Nature Reviews | Cancer




optimize

Response = f(Treatment plan)
So we can optimise over the space of treatment plans;
The models can be very compute-intense, e.g. ~1hr

*.-. But clinical evaluation of a treatment plan can take years ...

LS L



Evolving Novel and Effective Treatment Plans in the Context of Infectior

-R;Haines, D Corne - LECTURE NOTES IN COMPUTER SCIENCE, 2006 - Springer
.. continuous therapy. We Page 2. 414 R. Haines and D. Corne fiind that, insofar ... ir
captunng Page 4. 416 R. Haines and D. Corne the multi-timescale ..

s F-u Related Articles - Web Search - BL Direct

.




COMPUTATIONAL
INTELLIGENCE IN
BIOINFORMATICS

McCall, Petrovski, Shakya (2007)
Evolutionary algorithms for cancer
._‘gfzemothempy optimization, in:




Multiobjective evolutionary optimization of the number of beams, their orientations and

weights for ... - all 7 versions »

E Schreibmann, M Lahanas, L Xing, D Baltas - Physics in Medicine and Biology, 2004 - iop.org
... Abstract We propose a hybrid multiobjective (MQO) evolutionary optimization algorithm
(MOEA) for intensity-modulated radiotherapy inverse planning and apply it ...

_ Cited by 31 - Related Articles - Web Search - BL Direct
-2 Y

. -




Evolutionary drug scheduling models with different toxicity
metabolism in cancer chemotherapy

Yong Liang **, Kwong-Sak Leung ", Tony Shu Kam Mok®

arget: N-2.56 x 10% cells.

Applied —o:
Computing

warae alcorior ooaillineades facne

Table 4

The mostefhicient drug scheduling policies obtamed by the renewed model with

the Gompertz drog toxicity metabolism function

Mo, The optimal solutions Index
lxy )

Mo, of

cells ( %107

(1) [423.03,13.04, 1294, 12.78, 12.56,0, (78  10.02)} 2246

(2} 153.72,0,25.75,0,40 x (20.03,07} 22.43
(3 428 % (30,02, (2 = 0))} 21.99
() 121 % (37.68, (3 = 0))) 20.63

.76

|.82
311

1().76




Planetary survival

3D Space Simulator.can be fo Ind at
www.celestiamotherlode.net
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EAs are making progress in this area —
M. Vasile, a space scientist who knows about EAs, is the main
author. Not yet winning over humans, since the humans are good

Another example of a problem that 1s:

* naturally highly multiobjective (fuel cost, target distance(s), mission
cost, robustness, ...)

e for accurate mission design, an n-body model simulation is needed,
making fitness evaluation highly expensive.

e important, for things like climate-change and climate-existence

* keep watch at: http://code.google.com/p/nmod

- a packaged version of this 1s available that allows EA search
for accurate space missions with an accurate simulator; it
1s continually improving and getting easier for developers.



Of course there are many many more
important problems with complex fitness
functions; not least:

* in silico drug design; drug docking;
* 1n vitro protein engineering
 large scale environmental logistics

e ... add your own



Present Future

e solve the "'whole’ problem

e we still usually specify
too few objectives

* we throw away immense
amounts of sampled
information that could
help solve this instance

e use much cleverer (and
more elegant) algorithms
that “combine’ evolution
and learning

e in the same process,
produce algorithms that can

quickly solve many
instances

Just as was the case with the “past present” transition, this
transition is possible because we are beginning to discover
methods that can do these things well.




The Essence of O + L

The many ways that optimisation and learning are combined’



In a basic EA we find the fitness of
each of a population of individuals

Chromosome Fitness
3,7,4,5,2,1,5,4,3,7,3,2,1,8 2
2,6,4,4,1,1,6,5,3,6,2,2,2,9 3
55,6,3,4, #%3,6,1,9,1,4,3,6 1
4,0 805,3,4,2,6,2,8,2,4,2,5 2

7.8,0,2,7,57, DAl S8, a5 4



We then throw most of this
information away

Chromosome Fitness
2,0,4,4,1,1,6,5, 3000 L8N s/ e 5
. 8,06,2, 7,5, SN NS 4

and then proceed, under basic assumptions of smoothness in
the landscape ....



In more clever EAs (strategy adaptation,
CMA, adaptive operators, ...), we learn things
about the landscape local to the individuals

Chromosome Fitness

3,7,4,5,2,1,5,4,3,7,3,2,1,8@8i 7) z
dc, dc, o,

2,6,4,4,1,1,6,5, 3 200 i e

Zz. %)

dc, dc,  Oc

5,5,6,3,4,3,3,6,1,9,1,4,3,6(af v o 1
ot

4,6,5,3,3,4,2,6,2,8,2,4,2,5, . . 2
a_cl’a_cz ..... a_cn

7,8,6,2,7,7,5,8,3,7,4,1,7,5(af vx 4
a_cl’a_cz ..... 8_cn

So, search effort is more appropriately guided, because we
know a little about the shape of the landscape....



In EDAs, we learn probabilistic models of fit
solutions, and generate new sample
chromosomes from the model

Chromosome Fitness
3,7,4,5,2,1,5,4,3,7,3,2,1,8 -
2,6,4,4,1,1,6,5,3,6,2,2,2,9 3
55,6,3,4,#%3,6,1,9,1,4,3,6 1
4,0 805,3,4,2,6,2,8,2,4,2,5 2
».8,6,2,7,57, S8Rt siiad 8, UL 5 4

So, information from the whole population is compiled into
the model, with less loss (similar effect in ACO, PSO)



In EDAs, we learn probabilistic models of fit
solutions, and generate new sample
chromosomes from the model

Chromosome Fitness

Probabilistic model of good solutions
0.3,0.8,0.2,01,04,0.2, ...
Maybe gene probabilities;
or bivariate/multivariate
Or a Bayesian network, etc...

good

So, information from the whole population is compiled into
the model, with less loss (similar effect in ACO, PSO)



In LEM, we learn a model that predicts
whether candidate solutions are good,

OK, or bad.

Chromosome Fitness
3,7,4,5,2,1,5,4,3,7,3,2,1,8 Z
2,0,4,4,1,1,6,5,3,6,2,2,2,9 3
55,6,3,4, 33,6,1,9,1,4,3,6 1
4,6,8,095,3,4,2,6,2,8,2,4,2,5 2
».8,0,2,7,57, S5 el 18 5 4

So, depending on the learning method, very useful
information can be gleaned that will influence the search



In LEM, we learn a model that predicts

whether candidate solutions are good,
OK, or bad.

Chromosome Fitness

If(c5 == ¢6) then GOOD Classifed

into discrete
groups

If(c12>c13) AND (c13<c14) then BAD

So, depending on the learning method, very useful
information can be gleaned that will influence the search



The LEM3 implementation of learnable evolution model and its testing on complex function
...-all 7 versions »

J Wojtusiak, RS Michalski - Proceedings of the 8th annual conference on Genetic and ..., 2006 -
portal.acm_org

Page 1. The LEM3 Implementation of Learnable Evolution Model ... 2. DESCRIPTION OF

LEM3 This section describes the top-level structure of LEM3. ...

Cited by 9 - Related Articles - Web Search

Table 2: Comparison of LEM3 with EDA on the Rastrigin,
Griewangk, and Rosenbrock functions.

Function Method | Best fitness | Evolution LEM3/EDA
# vars. Value Length Speedup
Griewangk | LEM3 0 1,305 331
10 vars. EDA 0.051166 301.850

Griewangk | LEM3 0 4,005 Y
50 vars. EDA 8.7673E-6 216,292 )

Rosenbrock | LEM3 1.2 1,389 118
10 vars. EDA 8.6807 164,519

Rosenbrock | LEM3 46.74 7.875 15
50 vars. EDS 48.8234 275,663 )
EDA = EMNA ;010




Preliminary Investigation of the ‘Learnable Evolution Model'for Faster/Better Multiobjective

Water ... - all 3 versions »
L Jourdan, D Corne, D Savic, G Walters - Proceedings of The Third Int. Conference on Evolutionary ... -
Springer

... Evolution Model’ for Faster/Better Multiobjective Water Systems Design Laetitia
Jourdan, David Corne, Dragan Savic, and Godfrey Walters ...

Cited by 8 - Related Articles - Web Search
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Ccwi results



Integrating our EA with some form of learning is almost always
significantly better

Almost ALWAYS significantly better

There 1s great momentum in neighbouring communities
towards combinations of learning and optimisation.

From the machine learning community, there 1s LEM.

From the operations research community, there 1s the Cross
Entropy method

From the statistical physics and game theory communities there
1s Probability Collectives

From the EA community there is “super’-heuristics
From the EA community, of course, there 1s EDA

There are more, but that’s enough for present purposes
Let’s have a closer look at CE, EDA, LEM, PC, SH ...



The Cross-Entropy Method for Combinatorial and Continuous Optim

»

R Rubinstein - Methodology and Computing in Applied Probability, 1999 - Springer
... Manufactured in The Netherlands. The Cross-Entropy Method for Combinatoria
Continuous Optimization REUVEN RUBINSTEIN ... THE CROSS-ENTROPY METH

Cited by 103 - Related Articles - Web Search - BL Direct
Arguably, from the probability/OR communities

Discrete, continuous, and constrained optimization using collectives - all 7 versions »
S Bieniawski, DH Wolpert, | Kroo - Proceedings of 10th AIAA/ISSMO Multidisciplinary Analysis ..., 2004
pdf.aiaa.org

... have been used for a number of distributed optimization problems in computer science,

recent developments based upon Probability Collectives (PC) theory ...

Cited by 20 - Related Articles - Web Search
Arguably, from the statistical physics / control / game theory

LEARNAELE EVOLUTION MODEL: Evolutionary Processes Guided by Machine Learning

all 7 versions »
RS Michalski - Machine Learning, 2000 - Springer
... given an H-group and an L-group, a machine learning method generates a description

that discriminates between these groups (Michalski, 1953). In LEM, one can ...
Cited by 70 - Related Articles - Web Search - BL Direct

Arguably, from (symbolic) machine learning / Al

The Equilibrium Genetic Algorithm and the Role of Crossover - all 2 versions »
A Juels, 5 Baluja, A Sinclair - Unpublished manuscript, 1993 - citeseer.ist.psu.edu

... Algonthm and the Role of Crossover (1993) (Make Corrections) Ari Juels, Shumeet

Baluja ... of the GA, which we call the Equilibrium Genetic Algorithm (EGA). ...

Cited by 6 - Related Articles - Cached - Web Search

Arguably, from evolutionary computation




The Cross-Entropy method

practical tool 10T solving INFP-nard problems.
The CE method involves an iterative procedure where each iteration can be
broken down into two phases:

1. Generate a random data sample (trajectories, vectors, ete.) according to
a specified mechanism.

2. Update the parameters of the random mechanism based on the data to
produce “better” sample in the next iteration.

The significance of the CE method is that it defines a precise mathematical
framework for deriving fast, and in some sense “optimal” updating/learning
rules, based on advanced simulation theory. Other well-known randomized

A Tutorial on the Cross-Entropy Method - all 17 versions »

From PT de Boer, DP Kroese, S Mannor, RY Rubinstein - Annals of Operations Research, 2005 - Springer
... A Tutorial on the Cross-Entropy Method ... Keywords: cross-entropy method, Monte-Carlo
simulation, randomized optimization, machine learning, rare events ...

Cited by 93 - Related Articles - Web Search
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Estimation of Distribution Algorithms

 We’ve already seén it!

e CE has its roots 1n methods to improve analysis of
rare events / this 1s tweaked in CE towards optimal
updating of the model towards capturing the
distribution ‘of good solutions

* In EDAs, there are now a variety of ways to
update the model, sometimes theoretically
justified 1n some way, sometimes not



Probability Collectives

e Fortunately, this 1s what David Wolpert chose to
talk about at CEC’03

Discrete, continuous, and constrained optimization using collectives - all 8 versions »
S Bieniawski, DH Wolpert, | Kroo - Proceedings of 10th AIAA/ISSMO Multidisciplinary Analysis ..., 2004

pdf aiaa.org
FPage 1. Discrete, Continuous, and Constrained ... Stanford University, Stanford, CA 94305

David H. Wolpert £ NASA Ames Research Center, Moffett Field, CA 94035 _..
Cited by 20 - Related Articles - Web Search

1. Start with 1nitial uniform probability distribution over gene values.
2. Sample and evaluate individuals from the distribution and
calculate certain information theoretic measures for each gene.

3. Update the distribution

4. Return to 2.

Step 2 is sophisticated and steeped in information-theoretic game theory. It is maximising a function of

the distribution concerned competition between genes -- prevents overfitting ?

Step 2 seems heavy on maths, which puts many people off.

But, we have important problems to solve ...




I_earnable Evolution Model

-Learning influences production of next generation
-variety of ways

Any learning strategy: C4.5, KNN, Evolving rules,
AQ, LCS, Naive Bayes, etc ...



Present Future

e solve the "'whole’ problem

e we still usually specify
too few objectives

* we throw away immense
amounts of sampled
information that could
help solve this instance
and others

e use much cleverer (and
more elegant) algorithms
that “combine’ evolution
and learning

* in the same process,
produce algorithms that can

quickly solve many
instances

Just as was the case with the “past present” transition, this
transition is possible because we are beginning to discover
methods that can do these things well.




Hyper-Heuristics / Super-Heuristics

The idea emerges from a kind of encoding 1n evolutionary computation:
Example in talk-timetabling:

4,8,2,9,6,...
Means “first talk in session 4, second talk in session 8, etc ...”

This is a simple “hyper-heuristic’ way:
1 = earliest fit, 2 = best fit in terms of room capacity, 3 = best fit in terms
of talker preference, 4 = etc ...
4,8,2,9.6, ...
Means ‘“use heuristic 4 to schedule the first talk, 8 for the second, etc...”

This is (almost) an algorithm that can be applied to any problem instance



Hyper-Heuristics vs
Super-Heuristics

HH is often used in EA applications, since it typically provides better solutions to
individual problem instances.

In this sense it is really just another encoding, and many other encodings are of the
same nature but have not been called HH.

The much more interesting use of this idea is to evolve algorithms on a set of
problem instances, where the fitness of an algorithm is its performance on a
different set of instances.

Think about this for a moment; if it works, this means you can evolve a
constructive algorithm based on (for example) the last ten daily job scheduling
problems at your factory. Maybe it takes a few hours. At the end, you have an
algorithm that solves tomorrows problem well, and very fast. The same
algorithm solves the next day’s problem, and the next, and the next...

Well, it seems to work! Partly I think this is because it is a tight integration of
learning and evolution, which reduces the overfitting that happens in any
“ordinary’ approach.



SuperlD?3

ID3 builds a decision tree by repeatedly adding nodes/splits to the tree, until all data have
been classified. It uses the Information Gain heuristic (G) to decide what data attribute
to use in the next node. An alternative version of ID3 uses Information Gain Ratio (GR)
instead of G.

Super-ID3 (my curent PhD student Alan Vella)
[G]1[3]: [GR][2] [GR][1] [G][2] ... [GR][1]
100%  99% 98% 97% 1%
This 1s basically a set of rules, indicating what criterion (G or GR) to use for

choosing the data attribute, when a given percentage of the dataset remains to

be classified.

Almost the simplest way to produce a Superheuristic data mining

algorithm



First Results Snapshot

ID3 (gain)

ID3 (gain ratio)

Single Data Set
Exp.

Super-Heuristics
3 Data Set Exp.

Super-heuristics
4 Data Set Exp.

cars derma flags spect
94.94% | 0.48% 88.47% | 1.48% 79.64% | 1.74% 74.75% | 2.65%
95.10% | 0.57% 90.03% | 1.35% 78.66% | 1.81% 75.46% | 2.13%

CBF1810 InitB [GR]

GA 1P Init VF [GR]

GA 5P Init VF [G][GR]

GA 5P Nolnit VF [GR]

'94.87% | 0.55% 92.19% | 1.92% 81.07% | 3.00% 76.94% | 2.52%
GA 1P Init [GR] GA 1P Init [GR] GA 1P Init [GR]
93.60% | 1.36% 91.60% | 1.22% = = 75.71% | 1.86%
HC1810 5P InitB HC1810 5P InitB HC1810 5P InitB HC1810 5P InitB

[GIIGR] [GIIGR] [GIIGR] [GIIGR]
95.14% | 0.49% 88.64% | 1.69% 81.59% | 3.95% 77.49% | 2.13%




ipoF] Hyper-heuristics: learning to combine simple heuristics in bin-packing problems -
16 versions »

P Ross, 5 Schulenburg, JG Marin-Blazquez, E Hart - Proceedings of the Genetic and Evolutionary
Computation ___, 2002 - cs.bham.ac.uk

Hyper-heunistics: learning to combine simple heuristics in bin-packing problems

Peter Ross School of Computing Mapier University Edinburgh EH10 5DT peter@dcs ...

Cited by 38 - Related Aricles - View as HTML - Web Search

A chromosome 1s composed of blocks. and each block j contains six numbers
lj,lj,my, s, 15, a;. The first five essentially represent an instance of the problem
state. Here /i; corresponds to the proportion of huge items that remain to be
packed, and similarly [;, m; and s; refer to large medium and small items,
and i; corresponds to the proportion of items remaining to be packed. The
sixth number, a;, is an integer in the range 0---7 indicating which heuristic is
assoclated with this instance. An example of a set of 12 rules obtained with the
GA can be seen in figure 1.

Fig. 1. Example of a final set with 12 rules

.70 -2.16 -1.10 .56 1.81 -->
.12 1.37 -0.54 .12 0.58 -->

1 2.34 0.67 0.19 1.93 2.76 -->
1
.13 1.43 -1.27 0.13 -2.18 -->
1
1

-1.93 -2.64 -1.89 2.17 -1.46 -->
-1.30 0.11 2.00 -1.85 0.84 -->
0.32 1.94 2.24 0.99 -0.53 -->
0.58 0.87 0.23 -2.11 0.47 -->
1.21 0.11 2.00 0.09 0.84 -->

.87 -0.91 1.30 -1.34 1.93 -->
.60 1.30 -0.54 .12 0.58 -->
.25 2.09 -1.50 -1.46 -2.56 -->

O MNP O OO
= o= O e W

o D Wk ;e



Table 2. Extra bins compared to best of four heurstics (EFH)

HH Methods Heuristics
A NC5s XCSm LFD NFD DJD I DIT
Bins| Trn | Tst | Trn [ Tst | Trn | Tst | Tm [ Tst | Trn | Tst | Tim [ Tst | Trn | T'st
-4 0.4
3 10308
2113121030503 049
1 1425527122123 36
0 [O=2.3(97 6108 3|97 3|08 8(97.3|71.1|73.9 01.2(01.7]95.4(94.1
1 | D00 [ 100100 100 | 100 [ 100 |23.8182.6] 0.1 OT.3(O7.6]90.7(99.6
2 SEO(E8.5]10.1 O8 198,41 100 | 100
3 91090025111 2 |99.6[02.8
4 Q380331 3.7 | 4 | 100 [99.6
5 5809611 7.2 |59 100
10 07 4(96.5]|25.3|24.5
20 0.7 [99.6|45.1|47.8
30 100100 |61.1|60.5




So, MO - SHManyO(L+0O)

We are already seeing MO-EDA; MO-LEM;
probably SH-MO somewhere etc...

[EEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 12, NO. |, FEERUARY 2008 41

RM-MEDA: A Regularity Model-Based
Multiobjective Estimation of Distribution Algorithm

Qingfu Zhang, Senior Member, IEEE. Aimin Zhou, and Yaochu Jin, Senior Member, IEEE

Hybrid Estimation of Distribution Algorithm for
Global Optimization

Qingfu Zhang, Jianyong Sun, Edward Tsang and John Ford *
Department of Computer Science, University of Essex,
Wivenhoe Park, Colchester, CO4 350, U K
E-mail: gqzhang@essex.ac.uk



The argument

Future of Optimisation = Many-objective superheuristics that
tightly integrate evolution and learning

e from few-o to many-o (less sitmplification)

e using better learning strategies to get faster and better
solutions

e using super-heuristics approaches to get even better
solutions, and much faster solutions to future instances

e Driven by the fact that methods are slowly maturing for
each of the above, and by the needs of important
optimisation challenges.



That’s the future;



e I knew someone would ask that question

— Yes, I would agree that there are a small number
of problems that are really single objective; so,
SO can happily remain as a subfield of EC. But,
even these may often be better addressed with a
multiobjective formulation — see the new book.



Ways to rank nondominated points

Four nondominated 5-objective points

A: 0,10,5,5,3
B g
C. 10,4,4,3,8
172 3 4.8



Single-Objective Sum (SO)

Couldn’t be simpler:

A: 0,10,5,5,3 --rank =23
B: #. 7,7,7,7 --rank =35
C: 10,4,4,3,8 -- rank =29
D: 1, 2,3,4,8-- rank =18



The favour relation (Dreschler?)

Let X -beat Y on X objectives
Let Y beat X on y objectives
X 1s favoured over Y 1iff x>y

A: 0,10,5,5,3
B ] ]
C. 10,4,4,3,8
D L, 2, 3,408
Let A B mean A 1s favoured over B
We can then draw a graph ...



The favour relation (Dreschler?)
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From this we can get a rank-ordering: D, C, A, B

NOTE: this differs from the ranking with SO
NOTE: there may be cycles in this graph — it may partition the points into anything
from 1 to numpoints ranks.




K — Optimality (di Pierro)

If X is on the PF for each z-dimensional subset of the objectives, then it is efficient
order 7

If k is the smallest value for which this is true, X is k-optimal
By definition, these are all efficient of order 5.

A 1s efficient order 4 (check it), but not order 2
(it 1s dominated by C and D for objectives 2 and 3)

A: 0,10,5,5,3 --rank=4
B: 7, 7,7,7,7 --rank=35
C: 10,4,4,3,8 -- rank=5
ey 1, 23,4, 8- _rank=3

NOTE: This is relatively time-intensive to calculate.



Four non-dominated five-objective points

A: (10, 0O, 5, 5, 7| --- 27 (Rank 2: 2nd)
B: 3, 3, 3| --- 15 (Rank 4: Worst)
C. 10, 6,6, 8, 2| --- 22 (Rank 3: 3rd)
D: 8, 6, 2| --- 35 (Rank 1: Best)

Modified for the maximization problem from Corne’s GECCO 2007
“*5... Unmodified from Ishibuchi’s CEC 2007



Combining(?) learning and
optimisation: assorted notes

Optimisation and learning (in the usual CI sense) are the
same thing.

Learning means optimising a predictive model.

The difference between optimising a predictive model, and
optimising a function 1s one of degree.

When we call it learning, this i1s because we don’t know
the fitness function, we only know an approximation
based on the training set

When we call it optimisation, we think we know the fitness
function exactly — but actually we rarely do

Even 1f we know 1it, we still overfit, and we call that
premature convergence



Single objective optimization 1s a crime
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