
Unconventional Invited Talks 2008

David Corne

Heriot-Watt University, Edinburgh, UK

dwcorne@macs.hw.ac.uk

Some Predictions for the Future

of Optimisation Research

David Corne

Heriot-Watt University, Edinburgh, UK

dwcorne@macs.hw.ac.uk

http://www.macs.hw.ac.uk/~dwcorne/siswarm.pdf

• About HW

Eighth oldest educational institution in UK (1821)

First to educate the working classes

First to allow women onto degree studies (1861)

Fourth to employ me.

• About DC
Head of (Intelligent Systems Lab) at Heriot-Watt

Aspects and applications of EC, multiobjective optimisation,
bioalgorithmics, bioinformatics, data mining, design, applications in
medicine, biosciences, logistics, telecomms, web intelligence

What is my hidden agenda?

Many years ago, Evolutionary Computation conferences (and

much of operations research) was all about single objective optimisation

Single objective optimisation was:

• the norm; unquestioned;

• a problem was often formulated in a true many-objective

from, then authors/speakers would say “so, in order to

optimise this, we combine these into a scalar objective

function like this …” … and that would be accepted without

question.

• tied up with all the machinery being studied in relation to

selection methods, EA theory in general.

But now we know this:

Single objective optimisation is:

• wrong/inappropriate; doesn’t address the real problem

• biassed and suboptimal

• still researched by much of the evolutionary

computation community

What is my other hidden agenda?

In the existing body of published work:

There are striking amounts of:

• reinvention of wheels

• ignorance about related literature

• ignorance about what `related’ means

And consequently:

• wasted time, wasted intellectual effort

• too slow progress

Of course, none of this is true for UC delegates.

Let’s consider a specific

family of optimisation

algorithms …

Particle Swarm Optimisation

1. Initialise: generate set of candidate vectors, each
has a position from some specified distribution,
and each has a velocity.

2. evaluate them (the positions)

3. Each vector updates its position, influenced by:

1. its velocity -- to some extent v

2. its personal best position -- to extent c1

3. Its neighbourhood best position – to extent c2

4. Return to 2

Optimisation Research

1. Initialise: each individual is a scientist or group; its
position is its latest piece of research; its velocity is a
measure of how much it favours incremental research,
exploraty research, etc.

2. Evaluation: reviews, impact, citations, esteem

3. Each individual updates its position (next piece of
research), influenced by:

1. its velocity -- to some extent v

2. its personal best position -- whatever has seemed to generate most
success for this individual

3. Its neighbourhood best position – the individual’s assessment of
and insights from the state of research in their cloud of fields

4. Return to 2

In the world of evolutionary algorithms we

know from both theory and (lots) of

practice that:

1. Low velocity means slow progress

2. Over-influence of “personal best” means slow

overall progress

3. These two combined lead to stagnation in

many poor local optima.

But this is exactly what happens in the “science” algorithm

A Very Very Brief

Multiobjective Optimisation Primer

TV/logistics/Scheduling conflicts

Athletes’ discomfort
Solutions on the

Pareto front

Unsupported solutions

(in a concave region)

Dominated solutions

(not on the Front)

Tangent lines corresponding

to different single-objective

approaches

Cost

Probability of failure

Solutions on the

Pareto front

Paths of single-objective searches

Tangent line corresponding

to optima of a single-

objective search

Proper Multiobjective search:

• tries to find the Pareto front (a set of solutions, not a single ‘best’)h

• gives the problem solver what s/he wants (and much more)

• typically performs at least as good as SO on the SO criterion

• can now be done efficiently with well-known algorithms

• so, now we solve the ‘real’ problem, not a simplification of it

Single objective optimization is a crime

cites per year

NSGA-II (Deb et al)

SPEA (Zitzler & Thiele)

PAES (Knowles & Corne)

MOGA (fonseca &

Fleming)

PESA (Corne et al)

Some of the prominent

`simple’EMO algorithms

google scholar mean cites

per year (NSGA-II = 212)

(there are lots more)

The five most prominent

religions, from

http://www.adherents.com/Religions_By_Adherents.html

(Christianity = 2.1bn)

billion

christian

islam

nonrelgious

hindu

Chinese traditional

Past

Formulate a scalar (single objective)

function that represents solution quality,

and optimise this for a problem instance

• This formulation is an over-

simplifcation that prevents

solution of the real problem

Present

Formulate a vector (multiple objective)

of scalar functions each for a different

quality objective, and aim for the Pareto

set of solutions for a problem instance

F(design) = cost + mass + risk + … F(design) = (cost, mass, risk)

Future
Formulate a (often many) component

vector of objectives, and search for a

useful model (covering a distribution of

problem instances) that links design

space to objective space

Present
Formulate a vector (multiple objective)

of scalar functions each for a different

quality objective, and aim for the Pareto

set of solutions for a problem instance

• This formulation is an over-

simplifcation that prevents solution

of the real problem,

•and our algorithms are too dumb.

• we still usually specify

too few objectives

• we throw away immense

amounts of sampled

information that could

help solve this instance

and others

• solve the `whole’ problem

• use much cleverer (and

more elegant) algorithms

that `combine’ evolution

and learning

• in the same process,

produce algorithms that can

quickly solve many

instances

FuturePresent

• we still usually specify

too few objectives

• we throw away immense

amounts of sampled

information that could

help solve this instance

and others

• solve the `whole’ problem

• use much cleverer (and

more elegant) algorithms

that `combine’ evolution

and learning

• in the same process,

produce algorithms that can

quickly solve many

instances

Just as was the case with the “past�present” transition, this

transition is possible because we are beginning to discover

methods that can do these things well.

Alternative views of the future

18 chapters concerned with using

multiobjective techniques for much

more than optimisation. E.g.

- preventing bloat in GP

- promoting understandable rules

- handling constraints

- discovering design principles

- single objective optimisation(!)

…

I could say more, but I prefer it if

you simply buy the book

Kalyan Deb’s view?

NSGA

NSGA-III

FuturePresent

• we still usually specify

too few objectives

• we throw away immense

amounts of sampled

information that could

help solve this instance

and others

• solve the `whole’ problem

• use much cleverer (and

more elegant) algorithms

that `combine’ evolution

and learning

• in the same process,

produce algorithms that can

quickly solve many

instances

Just as was the case with the “past�present” transition, this

transition is possible because we are beginning to discover

methods that can do these things well.

First, Briefly: Many-Objective Methods
Many-O is problematic; many of the traditional EMO methods don’t scale well from 2—20.

A good source for showing this is:

Approaches include:

• Simplification Treat 30-objectives as 2 or 3 (say)

• Exploit information (e.g. identify the correlations, study the dominance graph, etc…)

• New/better selection methods

Why many-objectives is hard

In few-o, we can rank points according to domination-counts

In many-o populations, it’s hard to find any dominated points

But in many-o, most or all points are non-dominated

A new nondominated

point is generated

Suppose we have an archive size of 8 …

A point in a crowded area is

removed to make way

Suppose we have an archive size of 8 …

Eventually,another comes

along around there, but …

The problems are:

• A. In many-o, the proportion of nondominated points is
generally high, so we have little or nothing to favour one
point over another

• B. `Fitness deterioration’ (as coined by Hanne) can occur,
when archive size is fixed. Also this is one of the two of
reasons why there is FL in MO.

• C. Some modern EMOs simply don’t scale to many-o
since they need data or time that grows quickly with o.

ARF, KO, RF, RR, FR, SR, SOTSP 10 / 40

ARF, KO, RF, RR, FR, SO, SRTSP 10 / 20

ARF, KO, RF, RR, FR, SR, SOTSP 10 / 0

ARF, KO, RF, RR, FR, SR, SOTSP 10 /-20

ARF, KO, RF, RR, FR, SR, SOTSP 10 /-40

ARF, KO, FR, RF, RR, SO, SR TSP 5 / 40

ARF, KO, FR, RF, RR, SO, SR TSP 5 / 20

ARF, KO, FR, RF, RR, SO, SR TSP 5 / 0

ARF, FR, KO, RF, RR, SO, SR TSP 5 / -20

ARF, FR, KO, RF, RR, SO, SR TSP 5 / -40

Rank-Ordering

(Best … Worst)

Objectives

/Correlation

Some progress on many-o –

The ARF selection method

Best results were obtained by AR for 5-10 objectives.

ARF, KO=RF=RR, FR, SO=SRTSP 20 / 40

ARF, KO= RF=RR, FR, SO=SR TSP 20 / 20

ARF, KO=RF=RR, FR=SO=SRTSP 20 / 0

ARF, NSO=RR=SR, RF, KO=FRTSP 20 / -20

SO=RR=SR, RF, ARF, KO=FR TSP 20 / -40

ARF, KO, RF=RR, FR, SR=SO TSP 15 / 40

ARF, KO=RF, RR=FR, SR=SO TSP 15 / 20

ARF, KO=RF, FR, SR = SO= RRTSP 15 / 0

ARF, {all others equally rated}TSP 15 / -20

ARF, {all others equally rated}TSP 15 / -40

Rank-Ordering

(Best … Worst)

Objectives/

Correlation

and more objectives … note how the

alternatives are often no better than random (RR)

Won’t say more

Have slides if time left at the end.

Also see Evan Hughes’ chapter in

Interim summary of the many-o bit

• We still simplify problems from many-o to

few-o

• This is because we are still trying to find out

how best to deal with many-o

• Good such methods are arriving, so in the

future we will be avoiding this

simplification.

FuturePresent

• we still usually specify

too few objectives

• we throw away immense

amounts of sampled

information that could

help solve this instance

• solve the `whole’ problem

• use much cleverer (and

more elegant) algorithms

that `combine’ evolution

and learning

• in the same process,

produce algorithms that can

quickly solve many

instances

Just as was the case with the “past�present” transition, this

transition is possible because we are beginning to discover

methods that can do these things well.

The driver: large-scale and

important problems

• Some problems are important

• and fitness computation is expensive

• often very expensive

• L+O combinations typically achieve
significant savings in number of fitness
evaluations required

• often very significant

• So ManyO(L+O) is clearly the future … (?)

Health, Wealth and Happiness

A learning/optiomisation method compared with a state

of the art benchmark in investment portfolio trading

0

5

10

15

20

25

30

Annualised Return recent

month

Annualised Return recent

month -1

P
e
rc

e
n

t

MO(L+O)

Benchmark

-15

-10

-5

0

5

10

year to date recent month year to date recent month -

1

p
e
rc

e
n

t

MethodA

Benchmark

Vaguely, a many-o L+O approach to a problem attracting a large

amount of investment, with quite expensive fitness function

Optimisation of medical treatment

Health

E.g. Chemotherapy

treatment

schedule

optimisation

Model of

treatment and

response

Treatment plan

Response

Response = f(Treatment plan)

So we can optimise over the space of treatment plans;

The models can be very compute-intense, e.g. ~1hr

But clinical evaluation of a treatment plan can take years …

optimizer

Cellular Automation model

of HIV infection and HAART

Therapy response

HAART Therapy schedule

• delay onset of AIDs

• minimal side effects

Differential equation models

of tumour response

and toxic effects

Chemotherapy Dose Schedule

• reduce tumour size

• minimal side effects

McCall, Petrovski, Shakya (2007)

Evolutionary algorithms for cancer

chemotherapy optimization, in:

Monte Carlo simulation

using RTP system

based on individual patient

Scan data

Radiotherapy treatment plan

(beam angles, widths, collimation, …)

• Dose to target volume

• Organs At Risk stats

Target:

Planetary survival

EAs are making progress in this area –

M. Vasile, a space scientist who knows about EAs, is the main

author. Not yet winning over humans, since the humans are good

Another example of a problem that is:

• naturally highly multiobjective (fuel cost, target distance(s), mission

cost, robustness, …)

• for accurate mission design, an n-body model simulation is needed,

making fitness evaluation highly expensive.

• important, for things like climate-change and climate-existence

• keep watch at: http://code.google.com/p/nmod/

- a packaged version of this is available that allows EA search

for accurate space missions with an accurate simulator; it

is continually improving and getting easier for developers.

Of course there are many many more

important problems with complex fitness

functions; not least:

• in silico drug design; drug docking;

• in vitro protein engineering

• large scale environmental logistics

• … add your own

FuturePresent

• we still usually specify

too few objectives

• we throw away immense

amounts of sampled

information that could

help solve this instance

• solve the `whole’ problem

• use much cleverer (and

more elegant) algorithms

that `combine’ evolution

and learning

• in the same process,

produce algorithms that can

quickly solve many

instances

Just as was the case with the “past�present” transition, this

transition is possible because we are beginning to discover

methods that can do these things well.

The Essence of O + L

The many ways that optimisation and learning are `combined’

In a basic EA we find the fitness of

each of a population of individuals

Chromosome

3,7,4,5,2,1,5,4,3,7,3,2,1,8

Fitness

2,6,4,4,1,1,6,5,3,6,2,2,2,9

5,5,6,3,4,3,3,6,1,9,1,4,3,6

4,6,5,3,3,4,2,6,2,8,2,4,2,5

7,8,6,2,7,7,5,8,3,7,4,1,7,5

2

3

1

2

4

We then throw most of this

information away

Chromosome Fitness

2,6,4,4,1,1,6,5,3,6,2,2,2,9

7,8,6,2,7,7,5,8,3,7,4,1,7,5

3

4

and then proceed, under basic assumptions of smoothness in

the landscape ….

7,8,6,2,7,7,5,8,3,7,4,1,7,5

In more clever EAs (strategy adaptation,

CMA, adaptive operators, …), we learn things

about the landscape local to the individuals










∂

∂

∂

∂

∂

∂

nc

f

c

f

c

f
,...,,

21










∂

∂

∂

∂

∂

∂

nc

f

c

f

c

f
,...,,

21










∂

∂

∂

∂

∂

∂

nc

f

c

f

c

f
,...,,

21

Chromosome

3,7,4,5,2,1,5,4,3,7,3,2,1,8

Fitness

2,6,4,4,1,1,6,5,3,6,2,2,2,9

5,5,6,3,4,3,3,6,1,9,1,4,3,6

4,6,5,3,3,4,2,6,2,8,2,4,2,5

2

3

1

2

4










∂

∂

∂

∂

∂

∂

nc

f

c

f

c

f
,...,,

21










∂

∂

∂

∂

∂

∂

nc

f

c

f

c

f
,...,,

21

So, search effort is more appropriately guided, because we

know a little about the shape of the landscape….

7,8,6,2,7,7,5,8,3,7,4,1,7,5

In EDAs, we learn probabilistic models of fit

solutions, and generate new sample

chromosomes from the model

Chromosome

3,7,4,5,2,1,5,4,3,7,3,2,1,8

Fitness

2,6,4,4,1,1,6,5,3,6,2,2,2,9

5,5,6,3,4,3,3,6,1,9,1,4,3,6

4,6,5,3,3,4,2,6,2,8,2,4,2,5

2

3

1

2

4

So, information from the whole population is compiled into

the model, with less loss (similar effect in ACO, PSO)

In EDAs, we learn probabilistic models of fit

solutions, and generate new sample

chromosomes from the model

Chromosome Fitness

So, information from the whole population is compiled into

the model, with less loss (similar effect in ACO, PSO)

Probabilistic model of good solutions

0.3, 0.8, 0.2, 01, 0.4, 0.2, …

Maybe gene probabilities;

or bivariate/multivariate

Or a Bayesian network, etc…

good

In LEM, we learn a model that predicts

whether candidate solutions are good,

OK, or bad.

Chromosome Fitness

So, depending on the learning method, very useful

information can be gleaned that will influence the search

7,8,6,2,7,7,5,8,3,7,4,1,7,5

3,7,4,5,2,1,5,4,3,7,3,2,1,8

2,6,4,4,1,1,6,5,3,6,2,2,2,9

5,5,6,3,4,3,3,6,1,9,1,4,3,6

4,6,5,3,3,4,2,6,2,8,2,4,2,5

2

3

1

2

4

In LEM, we learn a model that predicts

whether candidate solutions are good,

OK, or bad.

Chromosome Fitness

So, depending on the learning method, very useful

information can be gleaned that will influence the search

If(c5 == c6) then GOOD

If(c12>c13) AND (c13<c14) then BAD

Classified

into discrete

groups

EDA = EMNAglobal

Joudan-his

Ccwi results

• Integrating our EA with some form of learning is almost always
significantly better

• Almost ALWAYS significantly better

• There is great momentum in neighbouring communities
towards combinations of learning and optimisation.

• From the machine learning community, there is LEM.

• From the operations research community, there is the Cross
Entropy method

• From the statistical physics and game theory communities there
is Probability Collectives

• From the EA community there is `super’-heuristics

• From the EA community, of course, there is EDA

• There are more, but that’s enough for present purposes

• Let’s have a closer look at CE, EDA, LEM, PC, SH …

Arguably, from the probability/OR communities

Arguably, from the statistical physics / control / game theory

Arguably, from (symbolic) machine learning / AI

Arguably, from evolutionary computation

The Cross-Entropy method

From

Estimation of Distribution Algorithms

• We’ve already seen it!

• CE has its roots in methods to improve analysis of

rare events / this is tweaked in CE towards optimal

updating of the model towards capturing the

distribution of good solutions

• In EDAs, there are now a variety of ways to

update the model, sometimes theoretically

justified in some way, sometimes not

Probability Collectives
• Fortunately, this is what David Wolpert chose to

talk about at CEC’05

1. Start with initial uniform probability distribution over gene values.

2. Sample and evaluate individuals from the distribution and

calculate certain information theoretic measures for each gene.

3. Update the distribution

4. Return to 2.

Step 2 is sophisticated and steeped in information-theoretic game theory. It is maximising a function of

the distribution concerned competition between genes -- prevents overfitting?

Step 2 seems heavy on maths, which puts many people off.

But, we have important problems to solve …

Learnable Evolution Model

Evolve for a few

generations
Learn

Evolve for a few

generations
Learn

Evolve for a few

generations
Learn

-Learning influences production of next generation

-variety of ways

Any learning strategy: C4.5, KNN, Evolving rules,

AQ, LCS, Naïve Bayes, etc …

FuturePresent

• we still usually specify

too few objectives

• we throw away immense

amounts of sampled

information that could

help solve this instance

and others

• solve the `whole’ problem

• use much cleverer (and

more elegant) algorithms

that `combine’ evolution

and learning

• in the same process,

produce algorithms that can

quickly solve many

instances

Just as was the case with the “past�present” transition, this

transition is possible because we are beginning to discover

methods that can do these things well.

Hyper-Heuristics / Super-Heuristics

The idea emerges from a kind of encoding in evolutionary computation:

Example in talk-timetabling:

4,8,2,9,6,…

Means “first talk in session 4, second talk in session 8, etc …”

This is a simple `hyper-heuristic’ way:

1 = earliest fit, 2 = best fit in terms of room capacity, 3 = best fit in terms

of talker preference, 4 = etc …

4,8,2,9,6, …

Means “use heuristic 4 to schedule the first talk, 8 for the second, etc…”

This is (almost) an algorithm that can be applied to any problem instance

Hyper-Heuristics vs

Super-Heuristics
HH is often used in EA applications, since it typically provides better solutions to

individual problem instances.

In this sense it is really just another encoding, and many other encodings are of the
same nature but have not been called HH.

The much more interesting use of this idea is to evolve algorithms on a set of
problem instances, where the fitness of an algorithm is its performance on a
different set of instances.

Think about this for a moment; if it works, this means you can evolve a
constructive algorithm based on (for example) the last ten daily job scheduling
problems at your factory. Maybe it takes a few hours. At the end, you have an
algorithm that solves tomorrows problem well, and very fast. The same
algorithm solves the next day’s problem, and the next, and the next…

Well, it seems to work! Partly I think this is because it is a tight integration of
learning and evolution, which reduces the overfitting that happens in any
`ordinary’ approach.

SuperID3

ID3 builds a decision tree by repeatedly adding nodes/splits to the tree, until all data have

been classified. It uses the Information Gain heuristic (G) to decide what data attribute

to use in the next node. An alternative version of ID3 uses Information Gain Ratio (GR)

instead of G.

Super-ID3 (my curent PhD student Alan Vella)

[G] [3] [GR] [2] [GR] [1] [G] [2] … [GR] [1]

100% 99% 98% 97% 1%

This is basically a set of rules, indicating what criterion (G or GR) to use for

choosing the data attribute, when a given percentage of the dataset remains to

be classified.

Almost the simplest way to produce a Superheuristic data mining

algorithm

First Results Snapshot

2.13%77.49%3.95%81.59%1.69%88.64%0.49%95.14%

HC1810 5P InitB

[G][GR]

HC1810 5P InitB

[G][GR]

HC1810 5P InitB

[G][GR]

HC1810 5P InitB

[G][GR]
Super-heuristics

4 Data Set Exp.

1.86%75.71%--1.22%91.60%1.36%93.60%

GA 1P Init [GR]-GA 1P Init [GR]GA 1P Init [GR]
Super-Heuristics

3 Data Set Exp.

2.52%76.94%3.00%81.07%1.92%92.19%0.55%94.87%

GA 5P NoInit VF [GR]GA 5P Init VF [G][GR]GA 1P Init VF [GR]CBF1810 InitB [GR]
Single Data Set

Exp.

2.13%75.46%1.81%78.66%1.35%90.03%0.57%95.10%ID3 (gain ratio)

2.65%74.75%1.74%79.64%1.48%88.47%0.48%94.94%ID3 (gain)

spectflagsdermacars

So, MO � SHManyO(L+O)

We are already seeing MO-EDA; MO-LEM;

probably SH-MO somewhere etc…

The argument

Future of Optimisation = Many-objective superheuristics that
tightly integrate evolution and learning

• from few-o to many-o (less simplification)

• using better learning strategies to get faster and better
solutions

• using super-heuristics approaches to get even better
solutions, and much faster solutions to future instances

• Driven by the fact that methods are slowly maturing for
each of the above, and by the needs of important
optimisation challenges.

That’s the future;

• I knew someone would ask that question

– Yes, I would agree that there are a small number

of problems that are really single objective; so,

SO can happily remain as a subfield of EC. But,

even these may often be better addressed with a

multiobjective formulation – see the new book.

Ways to rank nondominated points

Four nondominated 5-objective points

A: 0, 10, 5, 5, 3

B: 7, 7, 7, 7, 7

C: 10, 4, 4, 3, 8

D: 1, 2, 3, 4, 8

Single-Objective Sum (SO)

Couldn’t be simpler:

A: 0, 10, 5, 5, 3 -- rank = 23

B: 7, 7, 7, 7, 7 -- rank = 35

C: 10, 4, 4, 3, 8 -- rank = 29

D: 1, 2, 3, 4, 8 -- rank = 18

The favour relation (Dreschler2)

Let X beat Y on x objectives

Let Y beat X on y objectives

X is favoured over Y iff x >y

A: 0, 10, 5, 5, 3

B: 7, 7, 7, 7, 7

C: 10, 4, 4, 3, 8

D: 1, 2, 3, 4, 8

Let A B mean A is favoured over B

We can then draw a graph …

The favour relation (Dreschler2)

A: 0, 10, 5, 5, 3

B: 7, 7, 7, 7, 7

C: 10, 4, 4, 3, 8

D: 1, 2, 3, 4, 8

A B

C

D

From this we can get a rank-ordering: D, C, A, B

NOTE: this differs from the ranking with SO

NOTE: there may be cycles in this graph – it may partition the points into anything

from 1 to numpoints ranks.

K – Optimality (di Pierro)

If X is on the PF for each z-dimensional subset of the objectives, then it is efficient
order z

If k is the smallest value for which this is true, X is k-optimal

By definition, these are all efficient of order 5.

A is efficient order 4 (check it), but not order 2

(it is dominated by C and D for objectives 2 and 3)

A: 0, 10, 5, 5, 3 -- rank = 4

B: 7, 7, 7, 7, 7 -- rank = 5

C: 10, 4, 4, 3, 8 -- rank = 5

D: 1, 2, 3, 4, 8 -- rank = 3

NOTE: This is relatively time-intensive to calculate.

Many Objectives

Four non-dominated five-objective points

A: 10, 0, 5, 5, 7 --- 27 (Rank 2: 2nd)

B: 3, 3, 3, 3, 3 --- 15 (Rank 4: Worst)

C: 0, 6, 6, 8, 2 --- 22 (Rank 3: 3rd)

D: 9, 10, 8, 6, 2 --- 35 (Rank 1: Best)

Modified for the maximization problem from Corne’s GECCO 2007

Unmodified from Ishibuchi’s CEC 2007

Combining(?) learning and

optimisation: assorted notes

• Optimisation and learning (in the usual CI sense) are the
same thing.

• Learning means optimising a predictive model.

• The difference between optimising a predictive model, and
optimising a function is one of degree.

• When we call it learning, this is because we don’t know
the fitness function, we only know an approximation
based on the training set

• When we call it optimisation, we think we know the fitness
function exactly – but actually we rarely do

• Even if we know it, we still overfit, and we call that
premature convergence

Single objective optimization is a crime

