P Systems with Mobile Membranes : A Survey

Shankara Narayanan KRISHNA Indian Institute of Technology, Bombay, Mumbai, INDIA.

Overview

Introduction Mobile Membranes : A variant of active membranes Results

P Systems with Active Membranes

- Introduced by Gh. Păun (Nov 1998)
- Polarized membranes with charges +, -, 0
- Division of elementary membranes based on opposite polarization, no label change
- Very powerful : solves hard problems, universal.

P Systems with Active Membranes

- Polarized Membranes : Remote inspiration from biology
- Price to pay for removing polarizations : division of non-elementary membranes, change labels of membranes, use cooperative rules.
- Improvement : Two polarizations suffice for universality (Alhazov, Freund, Păun)
- Can we remove polarizations and still have the power?

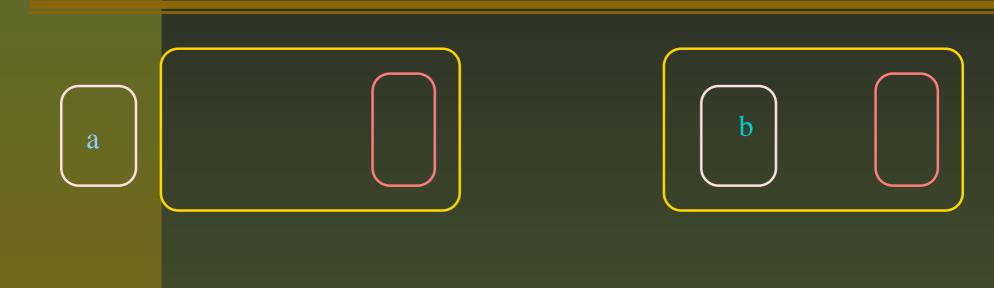
Mobile Membranes

Price to pay in removing polarizations : introducing new operations on membranes

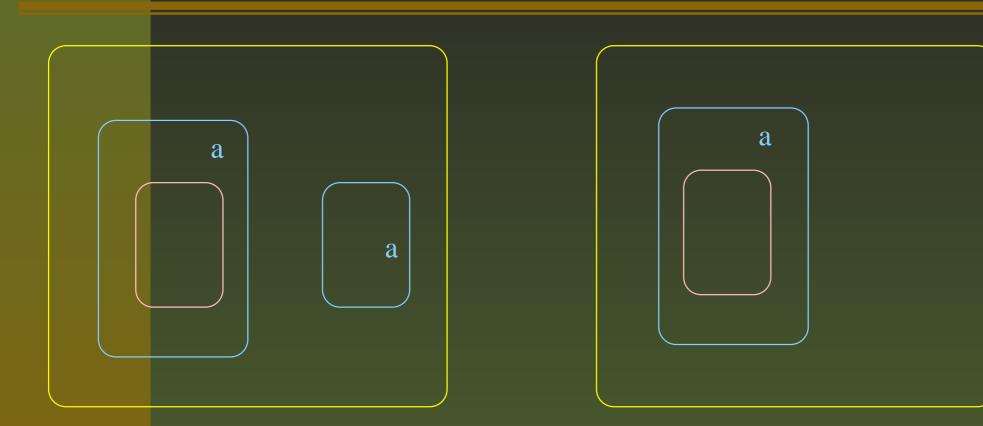
Endocytosis, Exocytosis : movement of elementary membranes in/out of membranes
Elementary membrane division without polarizations

P Systems with Mobile Membranes

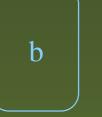
 $\blacksquare \Pi = (V, H, \mu, w_1, \dots, w_n, R)$

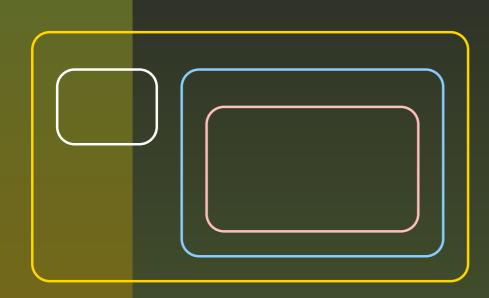

- V is the basic alphabet of *objects*,
- *H* is a finite set of *labels* for membranes,
- μ is the membrane structure,
- w_i are strings over V in regions i, and
- R is a finite set of rules.

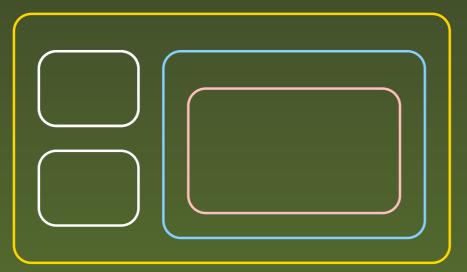
Endocytosis : For $h, m \in H$, h elementary, $a, b \in V$, $[{}_{h}a]_{h}[{}_{m}]_{m} \rightarrow [{}_{m}[{}_{h}b]_{h}]_{m}$ **Exocytosis :** For $h, m \in H, h$ elementary, $a, b \in V$, $[\ _{m} [\ _{h} a] \ _{h}] \ _{m} \rightarrow [\ _{h} b] \ _{h} [\ _{m} \] \ _{m}$ • Object Evolution : For $m \in H, a \in V, v \in V^*$, $[_ [_ a \rightarrow v]_m]$ **Elementary Division :** For $h \in H, a, b, c \in V$, $[a]_{h} \rightarrow [b]_{h} [b]_{h}$



Endocytosis

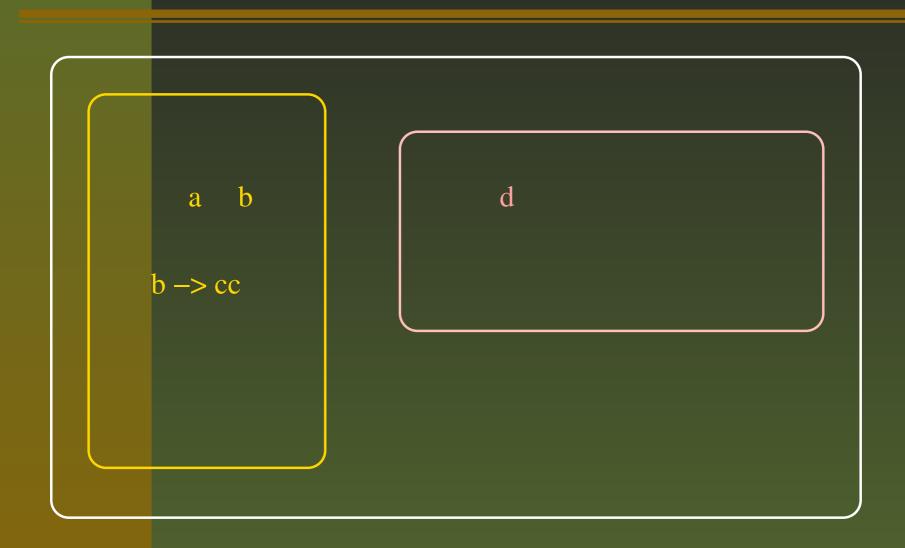






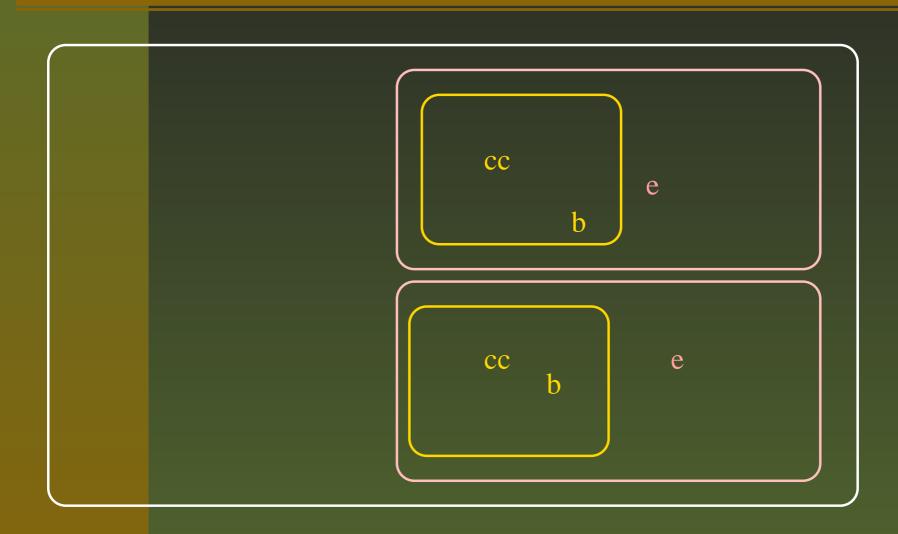
Krishna.S, IIT Bombay – p.8/17

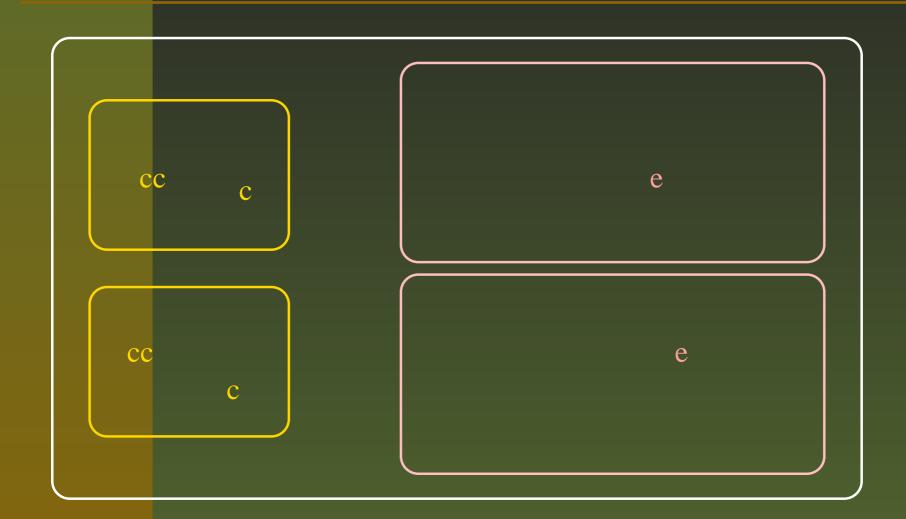
Elementary Membrane Division



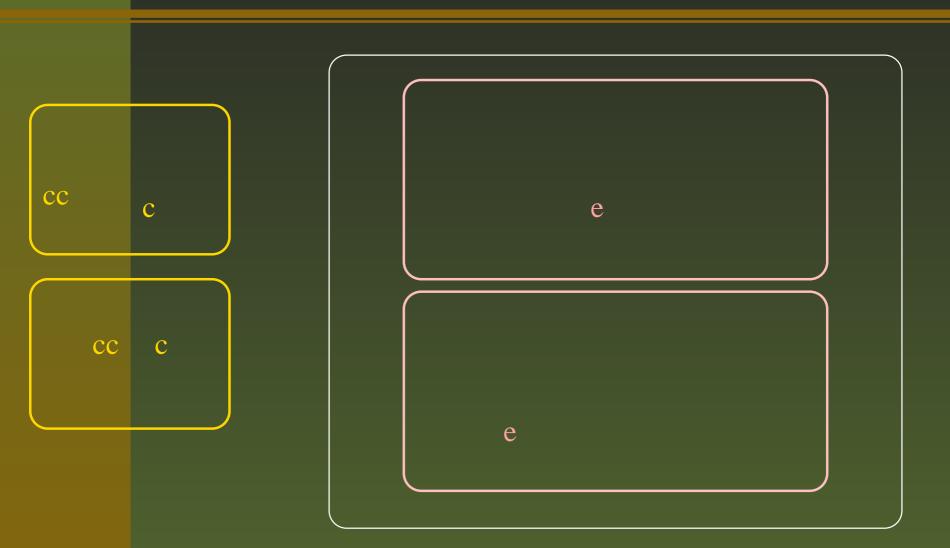
Output and Language Generated

- At the end of a halting configuration, observe all membranes sent out of Π by exocytosis.
- All vectors describing multiplicity of all objects from all such membranes forms the output vector.
- The set of all output vectors of Π is denoted by $Ps(\Pi)$.
- The family of all sets $Ps(\Pi)$ generated by systems Π of degree $\leq n$, using the operations endo, exo is denoted by $PsMP_n(endo, exo)$.




 $[a] [] \rightarrow [[b]] [d] \rightarrow [e][e]$

Krishna.S, IIT Bombay – p.11/17


[b]] — [] [c]

We had
$$V = \{a, b, c, d, e\}$$

$Ps(\Pi) = \{(0, 0, 3, 0, 0), (0, 0, 3, 0, 0)\}$

Krishna.S, IIT Bombay – p.11/17

Universality

Simulating a known variant of P systems
P systems with replicated rewriting
Direct universality without using division
PsMP₉(endo, exo) = PsRE.

Universality

Replicated Rewriting - string objects

- Mobile Membranes symbol objects
- Simulation of a system with symbol objects using a system with string objects

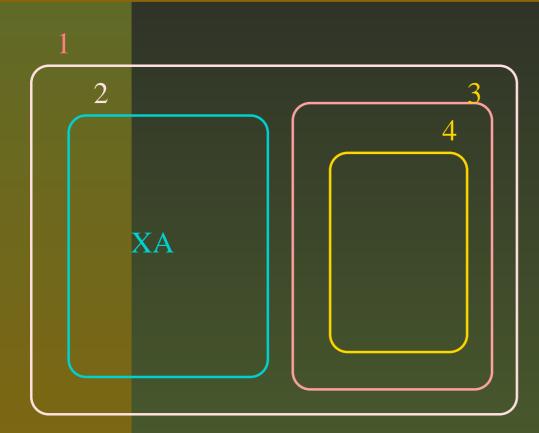
P Systems Replicated Rewriting

P Systems with Replicated Rewriting $\Pi = (V, \mu, M_1, \dots, M_n, R_1, \dots, R_n) \text{ with}$ $M_1, \dots, M_n \text{ are finite languages over } V,$ $R_i \text{ rules of the form}$ $a \rightarrow (u_1, tar_1) || \dots || (u_k, tar_k), k \ge 1,$ $a \in V, u_i \in V^* \text{ and } tar_i \in \{in, here, out\}$ $x_1 a x_2 \text{ transformed into } x_1 u_1 x_2 \text{ in } tar_1, \dots$ $x_1 u_k x_2 \text{ in } tar_k.$

P Systems Replicated Rewriting

- Parikh images of set of strings sent out of the system $Ps(\Pi)$ at the end of a halting computation : output
- $PsSP_n(repl_d)$: Family of all sets $Ps(\Pi)$ computed by systems with $\leq n$ membranes and using dreplication.
- $\blacksquare PsSP_3(repl_2) = PsRE.$

using Mobile Membranes


- Every replicated P system Π with 2 replication can be simulated by a P system with mobile membranes Π' with local division such that each transition in Π is simulated in Π' in at most 3 steps, such that $Ps(\Pi) = Ps(\Pi').$
- Replicated rewriting P systems with 2 replication are universal. This gives the universality of P systems with mobile membranes.

 $\blacksquare PsMP_4(endo, exo) = PsRE$

- Universality obtained by simulation of a matrix grammar G = (N, T, S, M, F) in *improved strong binary normal form*.
 - $N = N_1 \cup N_2 \cup \{S, \#\} \text{ with matrices of the form}$ (S \rightarrow XA), with $X \in N_1, A \in N_2$, (X \rightarrow Y, A \rightarrow x), with X, Y $\in N_1, A \in N_2, x \in (N_2 \cup T)^*, |x| \leq 2$, (X \rightarrow Y, B^(j) \rightarrow #), with X, Y $\in N_1, j = 1, 2$, (X $\rightarrow \lambda, A \rightarrow x$), X $\in N_1, A \in N_2, x \in T^*$.

Krishna.S, IIT Bombay – p.15/17

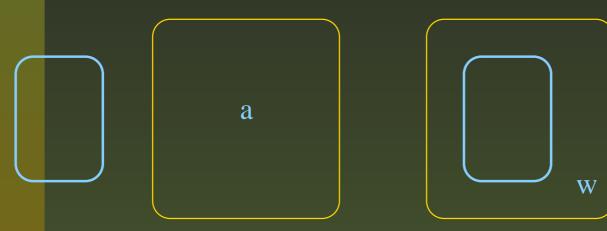
Simulation of a type 2 matrix $(X \to Y, A \to x)$

- A symbol $A \in N_2$ is replaced by an indexed symbol using an *endo* rule making an entry into membrane 3.
- X is rewritten in parallel in membrane 2 into an indexed symbol
- The indices of both symbols are checked for equality, using *endo/exo* rules of membranes 2,4.
- If unequal, membrane 2 gets blocked inside membrane 3 or 4.

Simulation of type 3 matrices (X → Y, B^(j) → #)
An endo rule is made from membrane 2 to 3, replacing X by an intermediate symbol;
If the corresponding symbol of N₂ (B^(j)) is present, an endo rule is used, entering membrane 4; the intermediate symbol evolves in parallel in membrane 2;

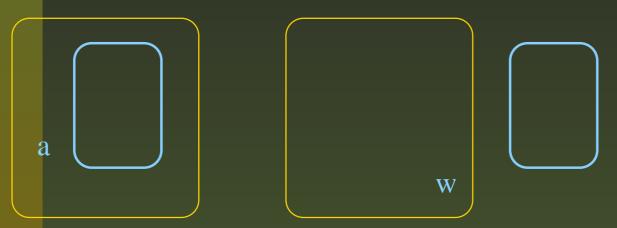
If membrane 2 is adjacent to membrane 4, then $B^{(j)}$ is absent

 $\blacksquare PsMP_2(exo) - PsMAT \neq \emptyset$ $\blacksquare PsMP_2(exo) \subseteq PsRC_{p,f} \subset PsRE$ $\blacksquare Ps0L \subseteq PsMP_2^{\lambda}(exo)$ $\blacksquare P sMP_3(endo, exo) = PsRE.$ Best known universality result - proved by simulating 2 counter machines • Open : How expressive is $PsMP_2(endo, exo)$?

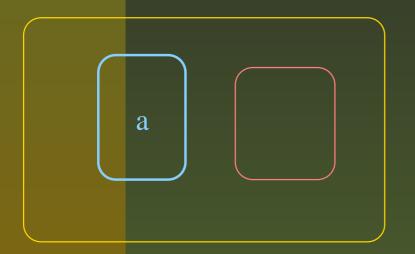


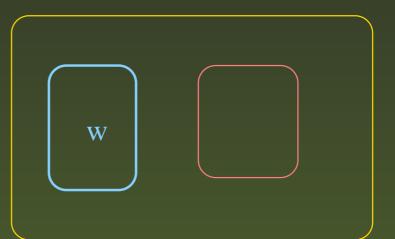
 $\Pi = (V, H, \mu, w_1, \dots, w_n, R, i), \text{ with rules of the kind}$

 $[a \rightarrow v]_m$ (object evolution) $[a]_{h}[]_{m} \rightarrow [[w]_{h}]_{m}$ (endocytosis) $[[a]_h]_m \to [w]_h[]_m \text{ (exocytosis)}$ $[]_h[a]_m \rightarrow [[]_hw]_m$ (forced endocytosis) $[a[]_h]_m \to []_h[w]_m \text{ (forced exocytosis)}$ $[[a]_{j}[b]_{h}]_{k} \rightarrow [[w]_{j}[b]_{h}]_{k} \text{ (contextual evolution)}$ $[a]_{h} \rightarrow [b]_{h} [c]_{h}$ (elementary membrane division)



Forced Endocytosis


Forced Exocytosis



Krishna.S, IIT Bombay – p.17/1'

Contextual Evolution

Krishna.S, IIT Bombay - p.17/1'

- At the end of a halting configuration, observe the output membrane. Vectors describing the multiplicity of objects in that membrane form the output.
- The family of all sets Ps(Π) generated by systems of degree ≤ n, using operations
 α ⊆ {endo, exo, fendo, fexo, cevol} is denoted
 PsEM_n(α).

 $PsEM_{12}(endo, exo, fendo, fexo) = PsRE$ $PsEM_3(cevol) = PsRE$ $PsE0L \subseteq PsEM_7(endo, exo, fendo, fexo)$ $LEM_8(endo, exo, fendo, fexo) - ET0L \neq \emptyset$ $PsEM_3(endo, exo) = PsEM_3(fendo, fexo)$ $PsEM_3(endo, exo, fendo, fexo) \subseteq PsMAT$

- Applications : Modelling the immune system, Mobile Ambients (G. Ciobanu, B. Aman)
- Questions
 - further applications
 - what is a useful and decidable sub class of enhanced mobile membranes
 - optimality of theoretical results obtained

