Sorting Omega Networks Simulated with P Systems: Optimal Data Layouts

Rodica Ceterchi, Mario J. Pérez Jiménez, Alexandru I. Tomescu

August 2008

Rodica Ceterchi, Mario J. Pérez Jiménez, Alexandru I. Tomesc Sorting Omega Networks Simulated with P Systems: Optimal

・ 同 ト ・ ヨ ト ・ ヨ ト

- R. Ceterchi, M.J. Pérez Jiménez, A.I. Tomescu, "Simulating the Bitonic Sort Using P Systems", *G. Eleftherakis et al.* (*Eds.*): WMC8 2007, LNCS, vol. 4860, pp. 172-192, 2007.
- R. Ceterchi, M.J. Pérez Jiménez, A.I. Tomescu, "Sorting omega networks simulated with P systems", BWMC'08

・ 同 ト ・ ヨ ト ・ ヨ ト

- one input key on each wire
- ascending / descending comparators between wires
- sorts N keys in $O(\log^2 N)$ time

- 4 同 2 - 4 注 2 - 4 注

- each wire has one associated value
- one wire can communicate with any other wire
- time complexity of the original sorting network, $O(\log^2 N)$
- we want to sort in ascending order the sequence of *distinct* integers

$$\langle x_0, x_1, \cdots x_{N-1} \rangle,$$

codified as the multiset

$$w = v_0^{x_0} v_1^{x_1} \cdots v_{N-1}^{x_{N-1}}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

ascending comparator
 $C_{\oplus} = \{v_0 \rightarrow a, v_1 \rightarrow b\} \cup \{ab \rightarrow c^+d^+, a \rightarrow d^+, b \rightarrow d^+\} \cup \{c^+ \rightarrow v_0, d^+ \rightarrow v_1\}.$ descending comparator
 $C_{\ominus} = \{v_0 \rightarrow a, v_1 \rightarrow b\} \cup \{ab \rightarrow c^-d^-, a \rightarrow c^-, b \rightarrow c^-\} \cup \{c^- \rightarrow v_0, d^- \rightarrow v_1\}$

$$v_0^{x_0}v_1^{x_1} \rightarrow a^{x_0}b^{x_1} \rightarrow c^{+\min(x_0,x_1)}d^{+\max(x_0,x_1)} \rightarrow v_0^{\min(x_0,x_1)}v_1^{\max(x_0,x_1)}$$

$$S^{+} = \{s_{0}^{+}, \cdots, s_{2^{2k}-1}^{+}\}, S^{-} = \dots$$
$$T^{+} = \{t_{0}^{+}, \cdots, t_{2^{2k}-1}^{+}\}, T^{-} = \dots$$

Rodica Ceterchi, Mario J. Pérez Jiménez, Alexandru I. Tomesc Sorting Omega Networks Simulated with P Systems: Optimal

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

One membrane

 Rewrite all symbols of V into start symbols for appropriate comparators, using the sets of rules

$$\{v_{2j} o s_{2j}^+, v_{2j+1} o s_{2j+1}^+ \mid 0 \le j \le 2^{2k-1} - 1$$
, j even $\} \cup$

$$\cup \{v_{2j} \to s_{2j}^{-}, v_{2j+1} \to s_{2j+1}^{-} \mid 0 \leq j \leq 2^{2k-1} - 1$$
, j odd $\}$.

Apply in parallel the rewritings of symbols which correspond to the simulations of the comparators:

$$\begin{split} \{s_{2j}^{+}s_{2j+1}^{+} &\to t_{2j}^{+}t_{2j+1}^{+}, s_{2j}^{+} \to t_{2j+1}^{+}, s_{2j+1}^{+} \to t_{2j+1}^{+} \mid \\ & 0 \leq j \leq 2^{2k-1} - 1 \text{ , j even} \} \bigcup \\ & \cup \{s_{2j}^{-}s_{2j+1}^{-} \to t_{2j}^{+}t_{2j+1}^{-}, s_{2j}^{-} \to t_{2j}^{-}, s_{2j+1}^{-} \to t_{2j}^{-} \mid \\ & 0 \leq j \leq 2^{2k-1} - 1 \text{ , j odd} \}. \end{split}$$

Rewrite back all symbols of T's into V.

$$\{ v_{2j} \leftarrow t_{2j}^+, v_{2j+1} \leftarrow t_{2j+1}^+ \mid 0 \le j \le 2^{2k-1} - 1 \text{ , j even} \} \cup \\ \cup \{ v_{2j} \leftarrow t_{2j}^-, v_{2j+1} \leftarrow t_{2j+1}^- \mid 0 \le j \le 2^{2k-1} - 1 \text{ , j odd} \}$$

Rodica Ceterchi, Mario J. Pérez Jiménez, Alexandru I. Tomesc Sorting (

Sorting Omega Networks Simulated with P Systems: Optimal

- use a P System with Dynamic Communication Graphs
- for an input of size N, take N membranes each holding two objects / values
- membranes are disposed on a 2D mesh architecture $\sqrt{N} \times \sqrt{N}$ (each membrane can communicate only with its four vertical and horizontal neighbors)
- use the *shuffled row-major* indexing on the mesh to minimize communication
- time complexity $O(\sqrt{N})$, optimal for the 2D mesh

(4回) (注) (注) (注) (注)

A P system with dynamic communication graphs is a tuple

$$\Pi = < V, P_0, \cdots, P_{k-1}, R_{\mu} = \{R_i, G_i\}_{i \in I} >,$$

where:

- V is an alphabet of symbols (used to codify integers contained in membranes).
- P_0, \cdots, P_{k-1} are elementary membranes.
- $R_{\mu} = \{R_i, G_i\}_{i \in I}$ is a sequence of pairs [*rules*, graph].
 - If graph \subseteq G_{Id} , its rules are *rewriting rules*.
 - If $graph \subseteq G_{total} \setminus G_{Id}$, its rules are *communication rules*.

A P system with dynamic communication graphs with *finite* sequential support if R_{μ} if a finite sequence.

・ 同 ト ・ ヨ ト ・ ヨ ト

Bitonic sorting on a 2D mesh of 4×4

Rodica Ceterchi, Mario J. Pérez Jiménez, Alexandru I. Tomesc Sorting Omega Networks Simulated with P Systems: Optimal

Bitonic sorting on a 2D mesh of 4×4

Rodica Ceterchi, Mario J. Pérez Jiménez, Alexandru I. Tomesc Sorting Omega Networks Simulated with P Systems: Optimal

イロト イヨト イヨト イヨト

æ

compare-interchange-membr(a, i, order)forall $i \leftarrow 0$ to $2^{i-1} - 1$ in parallel do // route right one unit in the *B* registers - (rAB) rule $E(Id_1^t) \leftarrow E(Id_1^t) \cup \{(j,j)\}; rules_{0,1}^t((j,j)) \leftarrow \{a \rightarrow a^*\}$ $E(G_0^t) \leftarrow E(G_0^t) \cup \{(j, j+1)\}; rules_0^t((j, j+1)) \leftarrow \{(a^*, out)\}$ $E(Id_2^t) \leftarrow E(Id_2^t) \cup \{(j+1, j+1)\};\$ $rules_{0,2}^{t}((j+1,j+1)) \leftarrow \{a^* \rightarrow b\}$ for $k \leftarrow 1$ to $2^{i-1} - 1$ do // shift the values to the second half of the array - (rBB) rule forall $j \leftarrow 0$ to $2^{i-1} - 1$ in parallel do $| E(G_k^t) \leftarrow E(G_k^t) \cup \{(j+k, j+1+k)\}$ $| rules_k^t((j+k,j+1+k)) \leftarrow \{(b,out)\}$ forall $j \leftarrow 2^{i-1}$ to $2^i - 1$ in parallel do // compare internally - (C) rule $E(Id_{C}^{t}) \leftarrow E(Id_{C}^{t}) \cup \{(i, j)\}$ if order is ascending then $| rules_C^t((j, j)) \leftarrow \{ab \rightarrow ab, a \rightarrow b, b \rightarrow b\}$ else for $k \leftarrow 2^{i-1} - 1$ downto 1 do // shift back the results - (rBB) rule forall $i \leftarrow 0$ to $2^{i-1} - 1$ in parallel do | // final routing back in the A registers - (rBA) rule ▲□ ▶ ▲ □ ▶ ▲ □ ▶ … end

Rodica Ceterchi, Mario J. Pérez Jiménez, Alexandru I. Tomesc Sorting Omega Networks Simulated with P Systems: Optimal

Advantages:

 preserve the time complexity of the original parallel architecture

Disadvantages:

- the evolution rules depend on the size of the input
- the number of membranes depends on the size of the input
- the communication graphs depend on the size of the input
- big communication overhead

・ 同 ト ・ ヨ ト ・ ヨ ト

Suppose we have a system of fixed size n

- ▶ to sort N numbers use P = N/n such systems and "combine" the results
- the evolution rules do not depend on the size of the input
- "combination" of results is done according to easy-to-compute communication graphs

(4月) (3日) (3日) 日

Framework:

- ▶ sort N values using P = N/n systems, according to a bitonic sorting algorithm (N > P)
- ▶ we call *data layout* a function $\mathcal{D}: \{0, \dots, N-1\} \rightarrow \{0, \dots, P-1\}.$
- $\mathcal{D}(i) = j$ iff wire *i* is mapped to system *j*.
- comparisons are allowed only between wires assigned to the same system

Goal:

 find a sequence of data layouts such that communication between systems is minimized

at each step s of the omega network we have comparators between wires differing on bit s

・ 同 ・ ・ ヨ ・ ・ ヨ ・

- at each step s of the omega network we have comparators between wires differing on bit s
- ► the 1st data layout: wire i = a₁...a_na_{n+1}...a_{log N} is mapped to system j = a_{n+1}...a_{log N}

- at each step s of the omega network we have comparators between wires differing on bit s
- ► the 1st data layout: wire i = a₁... a_na_{n+1}... a_{log N} is mapped to system j = a_{n+1}... a_{log N}
- perform log n steps of the sorting algorithm internally

- at each step s of the omega network we have comparators between wires differing on bit s
- ► the 1st data layout: wire i = a₁... a_na_{n+1}... a_{log N} is mapped to system j = a_{n+1}... a_{log N}
- perform log n steps of the sorting algorithm internally
- ▶ remap values according to the 2nd data layout: wire $i = a_1 \dots a_n a_{n+1} \dots a_{2n} a_{2n+1} \dots a_{\log N}$ is mapped to system $j = a_1 \dots a_n a_{2n+1} \dots a_{\log N}$

- at each step s of the omega network we have comparators between wires differing on bit s
- ► the 1st data layout: wire i = a₁... a_na_{n+1}... a_{log N} is mapped to system j = a_{n+1}... a_{log N}
- perform log n steps of the sorting algorithm internally
- remap values according to the 2nd data layout: wire i = a₁...a_na_{n+1}...a_{2n}a_{2n+1}...a_{log N} is mapped to system j = a₁...a_na_{2n+1}...a_{log N}
- sort internally

- at each step s of the omega network we have comparators between wires differing on bit s
- ► the 1st data layout: wire i = a₁... a_na_{n+1}... a_{log N} is mapped to system j = a_{n+1}... a_{log N}
- perform log n steps of the sorting algorithm internally
- ▶ remap values according to the 2nd data layout: wire $i = a_1 \dots a_n a_{n+1} \dots a_{2n} a_{2n+1} \dots a_{\log N}$ is mapped to system $j = a_1 \dots a_n a_{2n+1} \dots a_{\log N}$
- sort internally
- and so on ...

Rodica Ceterchi, Mario J. Pérez Jiménez, Alexandru I. Tomesc Sorting Omega Networks Simulated with P Systems: Optimal

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Omega networks

Let D_k , $k \ge 1$ be a one-step network of $N = 2^k$ lines with a device between the pair of lines (i, i + N/2), for $i = 0 \dots N/2 - 1$. Then the omega network OM_k is recursively defined as $OM_k = D_k(OM_{k-1} \circ OM_{k-1})$.

Rodica Ceterchi, Mario J. Pérez Jiménez, Alexandru I. Tomesc Sorting Omega Networks Simulated with P Systems: Optimal

・ 同 ト ・ ヨ ト ・ ヨ ト

Optimal data layouts for Omega networks

- We have to sort N = 2^k keys using P processors, N > P, each processor holding n = N/P keys.
- ► The number of parallel steps of OM_k is k, and step t of the omega network OM_k contains devices linking lines whose bit representations differ of bit t, with 1 ≤ t ≤ k.
- ▶ $bc_t : \{0, 1, \dots, 2^k 1\} \longrightarrow \{0, 1, \dots, 2^k 1\}$, the bit complement of the *t*-th bit,

$$bc_t(a_1a_2\cdots a_t\cdots a_k)=a_1a_2\cdots \overline{a}_t\cdots a_k$$

An omega network of size 32. Three data layouts for the omega network OM_5 .

Rodica Ceterchi, Mario J. Pérez Jiménez, Alexandru I. Tomesc Sorting Omega Networks Simulated with P Systems: Optimal

Lemma

At each step $1 \le t \le k$ of OM_k , and for any $0 \le i < 2^k$, line i is linked by a device only with line $bc_t(i)$.

Lemma

In OM_k , for any $0 \le i < 2^{k-m}$, $1 \le m \le k$ and $0 \le t \le k-m$, in steps $t + 1, \ldots, t + m$ there is no device linking lines in the set $P_i^{t,m} = \{a_1a_2\cdots a_k \mid a_1\cdots a_ta_{t+m+1}\cdots a_k = i, where a_1\cdots a_k \text{ is a bit representation}\}$ with lines from $\{0, \ldots, 2^k - 1\} \setminus P_i^{t,m}$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Definition

Given $N = 2^k$ keys and $P = 2^{k-m}$ processors, which can store $n = 2^m$ values, $m \ge 1$, the sequence of optimal data layouts consists of $\lceil \log N / \log n \rceil = \lceil k/m \rceil$ data layouts. In each data layout \mathcal{D}_s , $0 \le s \le \lceil k/m \rceil - 1$, values in the set $P_i^{sm,m}$ are mapped to processor P_i , for all $0 \le i \le 2^{k-m}$. More formally, for any $0 \le u < 2^k$ such that $u \in P_i^{sm,m}$, we have $\mathcal{D}_s(u) = i$.

Lemma

The maximum number of successive steps of the omega network that can be executed locally, under any data layout is $\log n$, where n = N/P.

Inside one processor, several comparisons are performed, in parallel, between the n pieces of data

```
for t \leftarrow 1 to m do
forall i < bc_t(i) in parallel do
compare(a_i, a_{bc_t(i)});
```

Algorithm 1: A parallel algorithm for the bitonic merger

同 ト く ヨ ト く ヨ ト -

The parallel comparisons at each step t

forall $i < bc_t(i)$ in parallel do compare $(a_i, a_{bc_t(i)})$;

will be simulated in a membrane P by the rules

$$\{a_i \rightarrow s_i \mid i = 0, 1, \cdots, n-1\} \cup$$
$$\cup \{s_i s_j \rightarrow t_i t_j, s_i \rightarrow t_j, s_j \rightarrow t_j \mid i = 0, 1, \cdots, n-1, i < j = bc_t(i)\} \cup$$
$$\cup \{t_i \rightarrow a_i \mid i = 0, 1, \cdots, n-1\}.$$

Rodica Ceterchi, Mario J. Pérez Jiménez, Alexandru I. Tomesc Sorting Omega Networks Simulated with P Systems: Optimal

・ 回 と ・ ヨ と ・ ヨ と

A P System with dynamic communication graphs which simulates the Omega Network

$$\begin{split} \Pi = &< V = \{a_0, \dots, a_{n-1}\} \cup \mathcal{A}, \\ &\langle [a_0^{x_0^0}, a_1^{x_1^0}, \dots, a_{n-1}^{x_{n-1}^{0}}]_0, \dots, [a_0^{x_0^{P-1}}, a_1^{x_1^{P-1}}, \dots, a_{n-1}^{x_{n-1}^{P-1}}]_{P-1} \rangle, R_{\mu} > \\ &R_{\mu} \text{ sequence of pairs } [graph, rules]. \ R_{\mu} \text{ is generated algorithmically.} \end{split}$$

Rodica Ceterchi, Mario J. Pérez Jiménez, Alexandru I. Tomesc Sorting Omega Networks Simulated with P Systems: Optimal

・日・ ・ ヨ・ ・ ヨ・

Lemma

Given $N = 2^k$ keys and $P = 2^{k-m}$ membranes, which can store $n = 2^m$ values, $m \ge 1$, after the computation for the data layout \mathcal{D}_s is finished, symbol a_i of membrane j codifies the value corresponding to wire $u \in \{0, \ldots, N-1\}$, where the bit representation of u is $u = j_1 \ldots j_{sm} i_1 \ldots i_m j_{sm+1} \ldots j_{k-m}$. By $j_1 \ldots j_{k-m}$ and by $i_1 \ldots i_m$ we denoted the bit representations of j, and i, respectively.

・吊り ・ヨン ・ヨン ・ヨ

Algorithmic generation of the communication graph

$$\begin{split} E(C_s^j) &\leftarrow \emptyset; \\ \text{for } j \leftarrow 0 \text{ to } P-1 \text{ do} \\ & \text{for } i \leftarrow 0 \text{ to } n-1 \text{ do} \\ & \text{let } j \text{ have bit representation } j_1 \cdots j_{sm} j_{sm+1} \cdots j_{k-m}; \\ & \text{let } i \text{ have bit representation } i_1 \cdots i_m; \\ & // \text{ the destination membrane of value encoded by} \\ & a_i \text{ in membrane } j \\ & z \leftarrow j_1 \cdots j_{sm} i_1 \cdots i_m j_{(s+1)m+1} \cdots j_{k-m}; \\ & // \text{ the destination symbol of value encoded by} \\ & a_i \text{ in membrane } j \\ & t \leftarrow j_{sm+1} \cdots j_{sm+m}; \\ & E(C_s^j) \coloneqq E(C_s^j) \cup \{(j,z)\}; \\ & \text{rules}_{C_s^j}((j,z)) \coloneqq a_i \rightarrow a'_t; \end{split}$$

Rodica Ceterchi, Mario J. Pérez Jiménez, Alexandru I. Tomesc Sorting Omega Networks Simulated with P Systems: Optimal

Algorithm 3: Generation of the sequence *SimOM* which simulates the omega network of size *n*.

向下 イヨト イヨト

$$\begin{array}{l} R_{\mu} \leftarrow \lambda; \\ \textbf{for } s \leftarrow 1 \textbf{ to } \lceil k/m \rceil - 1 \textbf{ do} \\ & \begin{matrix} R_{\mu} \leftarrow R_{\mu} \cdot SimOM; \\ \textbf{ for } j \leftarrow 0 \textbf{ to } P - 1 \textbf{ do} \\ & & \lfloor R_{\mu} \leftarrow R_{\mu} \cdot [C_{s}^{j}, \text{ rules}_{C_{s}^{j}}]; \\ & R_{\mu} \leftarrow R_{\mu} \cdot [Id, \text{ rules-endcomm}]; \\ R_{\mu} \leftarrow R_{\mu} \cdot SimOM; \\ \textbf{Algorithm 4}: \text{ Generation of the sequence } R_{\mu} \text{ which guides the computation.} \end{array}$$

æ

Computation Complexity

- we have $\frac{\log N}{\log n}$ data layouts;
- in each data layout we have
 - 3 log n steps are needed for SimOM;
 - $P + 1 = \frac{N}{n} + 1$ steps are needed for communication;
- hence the length of R_{μ} is $3 \log N + \frac{N \log N}{n \log n}$;
- a sorting network can be obtained by a serial connection of log N omega networks, giving a time complexity of

$$O(\log^2 N + \frac{N\log^2 N}{n\log n})$$

- for n = N the complexity is $O(\log^2 N)$;
- for n = 2 the complexity increases to $O(N \log^2 N)$.

(本間) (本語) (本語) (語)

Bibliography

- R. Ceterchi, M.J. Pérez Jiménez, A.I. Tomescu, "Simulating the Bitonic Sort Using P Systems", *G. Eleftherakis et al.* (*Eds.*): WMC8 2007, LNCS, vol. 4860, pp. 172-192, 2007.
- R. Ceterchi, M.J. Pérez Jiménez, A.I. Tomescu, "Sorting omega networks simulated with P systems", BWMC'08
- M.F. Ionescu, "Optimizing Parallel Bitonic Sort", Tech. Report TRCS96-14, Dept. of Comp. Sci., Univ. of California, Santa Barbara, July 1996.
- M.F. Ionescu, K.E. Schauser, "Optimizing parallel bitonic sort", Proc. 11th Int'l Parallel Processing Symp., pp. 303-309, 1997.
- D.E. Knuth, *The art of computer programming*, volume 3: sorting and searching, second ed. Redwood City, CA: Addison Wesley Longman, 1998.
- K.E. Batcher, "Sorting networks and their applications", Proc. AFIPS Spring Joint Comput. Conf., vol. 32, pp. 307-314, Apr. 1968

Rodica Ceterchi, Mario J. Pérez Jiménez, Alexandru I. Tomesc Sorting Omega Networks Simulated with P Systems: Optimal