Sorting Omega Networks Simulated with P Systems: Optimal Data Layouts

Rodica Ceterchi, Mario J. Pérez Jiménez, Alexandru I. Tomescu

August 2008

- R. Ceterchi, M.J. Pérez Jiménez, A.I. Tomescu, "Simulating the Bitonic Sort Using P Systems", G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS, vol. 4860, pp. 172-192, 2007.
- R. Ceterchi, M.J. Pérez Jiménez, A.I. Tomescu, "Sorting omega networks simulated with P systems", BWMC'08

Bitonic Sorting

- one input key on each wire
- ascending / descending comparators between wires
- sorts N keys in $O\left(\log ^{2} N\right)$ time

One membrane

- each wire has one associated value
- one wire can communicate with any other wire
- time complexity of the original sorting network, $O\left(\log ^{2} N\right)$
- we want to sort in ascending order the sequence of distinct integers

$$
\left\langle x_{0}, x_{1}, \cdots x_{N-1}\right\rangle,
$$

codified as the multiset

$$
w=v_{0}{ }^{x_{0}} v_{1}{ }^{x_{1}} \cdots v_{N-1}{ }^{x_{N-1}} .
$$

One membrane

- ascending comparator

$$
\begin{aligned}
& C_{\oplus}=\left\{v_{0} \rightarrow a, v_{1} \rightarrow b\right\} \cup\left\{a b \rightarrow c^{+} d^{+}, a \rightarrow d^{+}, b \rightarrow d^{+}\right\} \cup \\
& \left\{c^{+} \rightarrow v_{0}, d^{+} \rightarrow v_{1}\right\} .
\end{aligned}
$$

- descending comparator

$$
\begin{aligned}
& C_{\ominus}=\left\{v_{0} \rightarrow a, v_{1} \rightarrow b\right\} \cup\left\{a b \rightarrow c^{-} d^{-}, a \rightarrow c^{-}, b \rightarrow c^{-}\right\} \cup \\
& \left\{c^{-} \rightarrow v_{0}, d^{-} \rightarrow v_{1}\right\}
\end{aligned}
$$

$$
\begin{aligned}
v_{0}^{x_{0}} v_{1}^{x_{1}} \rightarrow a^{x_{0}} b^{x_{1}} & \rightarrow c^{+\min \left(x_{0}, x_{1}\right)} d^{+\max \left(x_{0}, x_{1}\right)} \rightarrow v_{0}^{\min \left(x_{0}, x_{1}\right)} v_{1} \max \left(x_{0}, x_{1}\right) \\
S^{+} & =\left\{s_{0}^{+}, \cdots, s_{2^{2 k}-1}^{+}\right\}, S^{-}=\ldots \\
T^{+} & =\left\{t_{0}^{+}, \cdots, t_{2^{2 k}-1}^{+}\right\}, T^{-}=\ldots
\end{aligned}
$$

One membrane

- Rewrite all symbols of V into start symbols for appropriate comparators, using the sets of rules

$$
\begin{aligned}
& \left\{v_{2 j} \rightarrow s_{2 j}^{+}, v_{2 j+1} \rightarrow s_{2 j+1}^{+} \mid 0 \leq j \leq 2^{2 k-1}-1, j \text { even }\right\} \cup \\
& \cup\left\{v_{2 j} \rightarrow s_{2 j}^{-}, v_{2 j+1} \rightarrow s_{2 j+1}^{-} \mid 0 \leq j \leq 2^{2 k-1}-1, j \text { odd }\right\} .
\end{aligned}
$$

- Apply in parallel the rewritings of symbols which correspond to the simulations of the comparators:

$$
\begin{gathered}
\left\{s_{2 j}^{+} s_{2 j+1}^{+} \rightarrow t_{2 j}^{+} t_{2 j+1}^{+}, s_{2 j}^{+} \rightarrow t_{2 j+1}^{+}, s_{2 j+1}^{+} \rightarrow t_{2 j+1}^{+}\right. \\
\left.0 \leq j \leq 2^{2 k-1}-1, j \text { even }\right\} \bigcup \\
\cup\left\{s_{2 j}^{-} s_{2 j+1}^{-} \rightarrow t_{2 j}^{+} t_{2 j+1}^{-}, s_{2 j}^{-} \rightarrow t_{2 j}^{--}, s_{2 j+1}^{-} \rightarrow t_{2 j}^{-}\right. \\
\left.0 \leq j \leq 2^{2 k-1}-1, j \text { odd }\right\} .
\end{gathered}
$$

- Rewrite back all symbols of T 's into V.

$$
\begin{aligned}
& \left\{v_{2 j} \leftarrow t_{2 j}^{+}, v_{2 j+1} \leftarrow t_{2 j+1}^{+} \mid 0 \leq j \leq 2^{2 k-1}-1, \text { j even }\right\} \cup \\
& \cup\left\{v_{2 j} \leftarrow t_{2 j}, v_{2 j+1} \leftarrow t_{2 j+1}-\mid 0 \leq j \leq 2^{2 k-1}-1, \text { j odd }\right\}
\end{aligned}
$$

One membrane for each wire

- use a P System with Dynamic Communication Graphs
- for an input of size N, take N membranes each holding two objects / values
- membranes are disposed on a 2D mesh architecture $\sqrt{N} \times \sqrt{N}$ (each membrane can communicate only with its four vertical and horizontal neighbors)
- use the shuffled row-major indexing on the mesh to minimize communication
- time complexity $O(\sqrt{N})$, optimal for the 2D mesh

P Systems with Dynamic Communication Graphs

A P system with dynamic communication graphs is a tuple

$$
\Pi=<V, P_{0}, \cdots, P_{k-1}, R_{\mu}=\left\{R_{i}, G_{i}\right\}_{i \in I}>,
$$

where:

- V is an alphabet of symbols (used to codify integers contained in membranes).
- P_{0}, \cdots, P_{k-1} are elementary membranes.
- $R_{\mu}=\left\{R_{i}, G_{i}\right\}_{i \in I}$ is a sequence of pairs [rules, graph].
- If graph $\subseteq G_{l d}$, its rules are rewriting rules.
- If graph $\subseteq G_{\text {total }} \backslash G_{l d}$, its rules are communication rules.

A P system with dynamic communication graphs with finite sequential support if R_{μ} if a finite sequence.

Bitonic sorting on a 2D mesh of 4×4

Stage 3

Bitonic sorting on a 2D mesh of 4×4

compare-interchange-membr $(a, i$, order $)$
forall $j \leftarrow 0$ to $2^{i-1}-1$ in parallel do
// route right one unit in the B registers - (rAB) rule
$E\left(I d_{1}^{t}\right) \leftarrow E\left(I d_{1}^{t}\right) \cup\{(j, j)\} ;$ rules $s_{0,1}^{t}((j, j)) \leftarrow\left\{a \rightarrow a^{*}\right\}$
$E\left(G_{0}^{t}\right) \leftarrow E\left(G_{0}^{t}\right) \cup\{(j, j+1)\} ;$ rules $_{0}^{t}((j, j+1)) \leftarrow\left\{\left(a^{*}\right.\right.$, out $\left.)\right\}$
$E\left(I d_{2}^{t}\right) \leftarrow E\left(I d_{2}^{t}\right) \cup\{(j+1, j+1)\} ;$
rules $_{0,2}^{t}((j+1, j+1)) \leftarrow\left\{a^{*} \rightarrow b\right\}$
for $k \leftarrow 1$ to $2^{i-1}-1$ do
// shift the values to the second half of the array - (rBB) rule forall $j \leftarrow 0$ to $2^{i-1}-1$ in parallel do $E\left(G_{k}^{t}\right) \leftarrow E\left(G_{k}^{t}\right) \cup\{(j+k, j+1+k)\}$ $\operatorname{rules}_{k}^{t}((j+k, j+1+k)) \leftarrow\{(b$, out $)\}$
forall $j \leftarrow 2^{i-1}$ to $2^{i}-1$ in parallel do
// compare internally - (C) rule $E\left(I d_{C}^{t}\right) \leftarrow E\left(I d_{C}^{t}\right) \cup\{(j, j)\}$ if order is ascending then rules $_{C}^{t}((j, j)) \leftarrow\{a b \rightarrow a b, a \rightarrow b, b \rightarrow b\}$ else

$$
\operatorname{rules}_{C}^{t}((j, j)) \leftarrow\{a b \rightarrow a b, a \rightarrow a, b \rightarrow a\}
$$

for $k \leftarrow 2^{i-1}-1$ downto 1 do
L // shift back the results - (rBB) rule
forall $j \leftarrow 0$ to $2^{i-1}-1$ in parallel do
// final routing back in the A registers - (rBA) rule
end

Analysis of proposed models

Advantages:

- preserve the time complexity of the original parallel architecture
Disadvantages:
- the evolution rules depend on the size of the input
- the number of membranes depends on the size of the input
- the communication graphs depend on the size of the input
- big communication overhead

Something in between

Suppose we have a system of fixed size n

- to sort N numbers use $P=N / n$ such systems and "combine" the results
- the evolution rules do not depend on the size of the input
- "combination" of results is done according to easy-to-compute communication graphs

Framework:

- sort N values using $P=N / n$ systems, according to a bitonic sorting algorithm $(N>P)$
- we call data layout a function
$\mathcal{D}:\{0, \ldots, N-1\} \rightarrow\{0, \ldots, P-1\}$.
- $\mathcal{D}(i)=j$ iff wire i is mapped to system j.
- comparisons are allowed only between wires assigned to the same system
Goal:
- find a sequence of data layouts such that communication between systems is minimized

Sequences of data layouts at work

- at each step s of the omega network we have comparators between wires differing on bit s

Sequences of data layouts at work

- at each step s of the omega network we have comparators between wires differing on bit s
- the 1st data layout: wire $i=a_{1} \ldots a_{n} a_{n+1} \ldots a_{\log N}$ is mapped to system $j=a_{n+1} \ldots a_{\log N}$

Sequences of data layouts at work

- at each step s of the omega network we have comparators between wires differing on bit s
- the 1st data layout: wire $i=a_{1} \ldots a_{n} a_{n+1} \ldots a_{\log N}$ is mapped to system $j=a_{n+1} \ldots a_{\log N}$
- perform $\log n$ steps of the sorting algorithm internally

Sequences of data layouts at work

- at each step s of the omega network we have comparators between wires differing on bit s
- the 1st data layout: wire $i=a_{1} \ldots a_{n} a_{n+1} \ldots a_{\log N}$ is mapped to system $j=a_{n+1} \ldots a_{\log N}$
- perform $\log n$ steps of the sorting algorithm internally
- remap values according to the 2nd data layout: wire $i=a_{1} \ldots a_{n} a_{n+1} \ldots a_{2 n} a_{2 n+1} \ldots a_{\log N}$ is mapped to system $j=a_{1} \ldots a_{n} a_{2 n+1} \ldots a_{\log N}$

Sequences of data layouts at work

- at each step s of the omega network we have comparators between wires differing on bit s
- the 1st data layout: wire $i=a_{1} \ldots a_{n} a_{n+1} \ldots a_{\log N}$ is mapped to system $j=a_{n+1} \ldots a_{\log N}$
- perform $\log n$ steps of the sorting algorithm internally
- remap values according to the 2nd data layout: wire $i=a_{1} \ldots a_{n} a_{n+1} \ldots a_{2 n} a_{2 n+1} \ldots a_{\log N}$ is mapped to system $j=a_{1} \ldots a_{n} a_{2 n+1} \ldots a_{\log N}$
- sort internally

Sequences of data layouts at work

- at each step s of the omega network we have comparators between wires differing on bit s
- the 1st data layout: wire $i=a_{1} \ldots a_{n} a_{n+1} \ldots a_{\log N}$ is mapped to system $j=a_{n+1} \ldots a_{\log N}$
- perform $\log n$ steps of the sorting algorithm internally
- remap values according to the 2nd data layout: wire $i=a_{1} \ldots a_{n} a_{n+1} \ldots a_{2 n} a_{2 n+1} \ldots a_{\log N}$ is mapped to system $j=a_{1} \ldots a_{n} a_{2 n+1} \ldots a_{\log N}$
- sort internally
- and so on ...

Omega networks

Let $D_{k}, k \geq 1$ be a one-step network of $N=2^{k}$ lines with a device between the pair of lines $(i, i+N / 2)$, for $i=0 \ldots N / 2-1$. Then the omega network $O M_{k}$ is recursively defined as $O M_{k}=D_{k}\left(O M_{k-1} \circ O M_{k-1}\right)$.

Optimal data layouts for Omega networks

- We have to sort $N=2^{k}$ keys using P processors, $N>P$, each processor holding $n=N / P$ keys.
- The number of parallel steps of $O M_{k}$ is k, and step t of the omega network $O M_{k}$ contains devices linking lines whose bit representations differ of bit t, with $1 \leq t \leq k$.
- $b c_{t}:\left\{0,1, \ldots, 2^{k}-1\right\} \longrightarrow\left\{0,1, \ldots, 2^{k}-1\right\}$, the bit complement of the t-th bit,

$$
b c_{t}\left(a_{1} a_{2} \cdots a_{t} \cdots a_{k}\right)=a_{1} a_{2} \cdots \bar{a}_{t} \cdots a_{k}
$$

An omega network of size 32. Three data layouts for the

 omega network $O M_{5}$.
(c) An omega network of size 32. Lines marked with same shape are assigned to the same processor in one data layout.
$\left.\begin{array}{|l|llll}\hline 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & =8 \\ 1 & 1 & 0 & 0 & 0\end{array}\right)=24$
$00000=0$
$00100=4$
$00010=2$
$00110=6$
$00000=0$
$00010=2$
$00001=1$
$00011=3$
(d) Keys
mapped to
processor 0

More formally...

Lemma

At each step $1 \leq t \leq k$ of $O M_{k}$, and for any $0 \leq i<2^{k}$, line i is linked by a device only with line $b c_{t}(i)$.

Lemma
In $O M_{k}$, for any $0 \leq i<2^{k-m}, 1 \leq m \leq k$ and $0 \leq t \leq k-m$, in steps $t+1, \ldots, t+m$ there is no device linking lines in the set $P_{i}^{t, m}=\left\{a_{1} a_{2} \cdots a_{k} \mid a_{1} \cdots a_{t} a_{t+m+1} \cdots a_{k}=i\right.$, where $a_{1} \cdots a_{k}$ is a bit representation $\}$ with lines from $\left\{0, \ldots, 2^{k}-1\right\} \backslash P_{i}^{t, m}$.

More formally...

Definition

Given $N=2^{k}$ keys and $P=2^{k-m}$ processors, which can store $n=2^{m}$ values, $m \geq 1$, the sequence of optimal data layouts consists of $\lceil\log N / \log n\rceil=\lceil k / m\rceil$ data layouts. In each data layout $\mathcal{D}_{s}, 0 \leq s \leq\lceil k / m\rceil-1$, values in the set $P_{i}^{s m, m}$ are mapped to processor P_{i}, for all $0 \leq i \leq 2^{k-m}$. More formally, for any $0 \leq u<2^{k}$ such that $u \in P_{i}^{s m, m}$, we have $\mathcal{D}_{s}(u)=i$.

Lemma

The maximum number of successive steps of the omega network that can be executed locally, under any data layout is $\log n$, where $n=N / P$.

Inside one processor/membrane

Inside one processor, several comparisons are performed, in parallel, between the n pieces of data
for $t \leftarrow 1$ to m do
forall $i<b c_{t}(i)$ in parallel do
compare $\left(a_{i}, a_{b c_{t}(i)}\right)$;
Algorithm 1: A parallel algorithm for the bitonic merger

Inside one membrane

The parallel comparisons at each step t
forall $i<b c_{t}(i)$ in parallel do
$\left\lfloor\right.$ compare $\left(a_{i}, a_{b c_{t}(i)}\right)$;
will be simulated in a membrane P by the rules

$$
\begin{gathered}
\left\{a_{i} \rightarrow s_{i} \mid i=0,1, \cdots, n-1\right\} \cup \\
\cup\left\{s_{i} s_{j} \rightarrow t_{i} t_{j}, s_{i} \rightarrow t_{j}, s_{j} \rightarrow t_{j} \mid i=0,1, \cdots, n-1, i<j=b c_{t}(i)\right\} \cup \\
\cup\left\{t_{i} \rightarrow a_{i} \mid i=0,1, \cdots, n-1\right\}
\end{gathered}
$$

A P System with dynamic communication graphs which simulates the Omega Network

$$
\begin{gathered}
\Pi=<V=\left\{a_{0}, \ldots, a_{n-1}\right\} \cup \mathcal{A}, \\
\left\langle\left[a_{0}^{x_{0}^{0}}, a_{1}^{x_{1}^{0}}, \ldots, a_{n-1}^{x_{n-1}^{0}}\right]_{0}, \ldots,\left[a_{0}^{x_{0}^{P-1}}, a_{1}^{x_{1}^{P-1}}, \ldots, a_{n-1}^{x_{n-1}^{P-1}}\right]_{P-1}\right\rangle, R_{\mu}>
\end{gathered}
$$

R_{μ} sequence of pairs [graph, rules]. R_{μ} is generated algorithmically.

Lemma

Given $N=2^{k}$ keys and $P=2^{k-m}$ membranes, which can store $n=2^{m}$ values, $m \geq 1$, after the computation for the data layout \mathcal{D}_{s} is finished, symbol a_{i} of membrane j codifies the value corresponding to wire $u \in\{0, \ldots, N-1\}$, where the bit representation of u is $u=j_{1} \ldots j_{s m} i_{1} \ldots i_{m} j_{s m+1} \ldots j_{k-m}$. By $j_{1} \ldots j_{k-m}$ and by $i_{1} \ldots i_{m}$ we denoted the bit representations of j, and i, respectively.

Algorithmic generation of the communication graph

```
\(E\left(C_{s}^{j}\right) \leftarrow \emptyset ;\)
for \(j \leftarrow 0\) to \(P-1\) do
for \(i \leftarrow 0\) to \(n-1\) do
let \(j\) have bit representation \(j_{1} \cdots j_{s m} j_{s m+1} \cdots j_{k-m}\);
let \(i\) have bit representation \(i_{1} \cdots i_{m}\);
// the destination membrane of value encoded by
    \(a_{i}\) in membrane \(j\)
    \(z \leftarrow j_{1} \cdots j_{s m} i_{1} \cdots i_{m} j_{(s+1) m+1} \cdots j_{k-m} ;\)
    // the destination symbol of value encoded by
    \(a_{i}\) in membrane \(j\)
    \(t \leftarrow j_{s m+1} \cdots j_{s m+m} ;\)
    \(E\left(C_{s}^{j}\right):=E\left(C_{s}^{j}\right) \cup\{(j, z)\} ;\)
    rules \(_{C_{s}^{j}}((j, z)):=a_{i} \rightarrow a_{t}^{\prime} ;\)
```

Algorithm 2: Generation of the sequence of P communication graphs when passing from data layout \mathcal{D}_{s-1} to \mathcal{D}_{s}, with $0 \leqq s \leqq$

Algorithmic generation of internal computation rules

$\operatorname{SimOM} \leftarrow \lambda ;$
for $t \leftarrow 1$ to $m=\log n$ do
forall $p \leftarrow 0$ to $P-1$ in parallel do

$$
\operatorname{rules}_{t, 1}((p, p)) \leftarrow\left\{a_{i} \rightarrow s_{i} \mid i=0,1, \ldots n-1\right\}
$$

$$
\operatorname{rules}_{t, 2}((p, p)) \leftarrow\left\{s_{i} s_{j} \rightarrow t_{i} t_{j}, s_{i} \rightarrow t_{j}, s_{j} \rightarrow t_{j} \mid i=\right.
$$

$$
\left.0,1, \ldots, n-1, i<j=b c_{t}(i)\right\}
$$

$$
\operatorname{rules}_{t, 3}((p, p)) \leftarrow\left\{t_{i} \rightarrow a_{i} \mid i=0,1, \cdots n-1\right\}
$$

$\operatorname{SimOM} \leftarrow \operatorname{SimOM} \cdot\left[I d\right.$, rules $\left._{t, 1}\right] \cdot\left[I d\right.$, rules $\left._{t, 2}\right] \cdot\left[I d\right.$, rules $\left._{t, 3}\right] ;$
Algorithm 3: Generation of the sequence SimOM which simulates the omega network of size n.

Algorithmic generation of R_{μ}

$$
\begin{aligned}
& R_{\mu} \leftarrow \lambda ; \\
& \text { for } s \leftarrow 1 \text { to }\lceil k / m\rceil-1 \text { do } \\
& \qquad \begin{array}{l}
R_{\mu} \leftarrow R_{\mu} \cdot \operatorname{SimOM} ; \\
\text { for } j \leftarrow 0 \text { to } P-1 \text { do } \\
\quad R_{\mu} \leftarrow R_{\mu} \cdot\left[C_{s}^{j}, \text { rules } C_{s}^{j}\right] ; \\
R_{\mu} \leftarrow R_{\mu} \cdot[I d, \text { rules-endcomm }] ; \\
R_{\mu} \leftarrow R_{\mu} \cdot \operatorname{SimOM} ;
\end{array}
\end{aligned}
$$

Algorithm 4: Generation of the sequence R_{μ} which guides the computation.

Computation Complexity

- we have $\frac{\log N}{\log n}$ data layouts;
- in each data layout we have
- $3 \log n$ steps are needed for SimOM;
- $P+1=\frac{N}{n}+1$ steps are needed for communication;
- hence the length of R_{μ} is $3 \log N+\frac{N \log N}{n \log n}$;
- a sorting network can be obtained by a serial connection of $\log N$ omega networks, giving a time complexity of

$$
O\left(\log ^{2} N+\frac{N \log ^{2} N}{n \log n}\right)
$$

- for $n=N$ the complexity is $O\left(\log ^{2} N\right)$;
- for $n=2$ the complexity increases to $O\left(N \log ^{2} N\right)$.

Bibliography

- R. Ceterchi, M.J. Pérez Jiménez, A.I. Tomescu, "'Simulating the Bitonic Sort Using P Systems", G. Eleftherakis et al. (Eds.): WMC8 2007, LNCS, vol. 4860, pp. 172-192, 2007.
- R. Ceterchi, M.J. Pérez Jiménez, A.I. Tomescu, "Sorting omega networks simulated with P systems", BWMC'08
- M.F. Ionescu, "Optimizing Parallel Bitonic Sort", Tech. Report TRCS96-14, Dept. of Comp. Sci., Univ. of California, Santa Barbara, July 1996.
- M.F. Ionescu, K.E. Schauser, "Optimizing parallel bitonic sort", Proc. 11th Int'l Parallel Processing Symp., pp. 303-309, 1997.
- D.E. Knuth, The art of computer programming, volume 3: sorting and searching, second ed. Redwood City, CA: Addison Wesley Longman, 1998.
- K.E. Batcher, "Sorting networks and their applications", Proc. AFIPS Spring Joint Comput. Conf., vol. 32, pp. 307-314, Anr 1968

