

International Workshop on

Computing with Biomolecules

books@ocg.at
BAND 244

Gedruckt mit Förderung des Bundesministeriums
für Wissenschaft und Forschung in Wien.

Wissenschaftliches Redaktionskomitee

o.Univ.Prof.Dr.G.Chroust
o.Univ.Prof.Dr.G.Haring
Univ.Prof.Dr.G.Kotsis
Univ.Doz.Dr.V.Risak
Dr. N. Rozsenich
o.Univ.Prof.Dr.P.Zinterhof

Erzsébet Csuhaj-Varjú, Rudolf Freund,
Marion Oswald, and Kai Salomaa (eds.)

International Workshop on

Computing with Biomolecules

August 27th, 2008
Wien, Austria

© Österreichische Computer Gesellschaft
Komitee für Öffentlichkeitsarbeit
www.ocg.at

Druck: Druckerei Riegelnik
1080 Wien, Piaristengasse 19

ISBN 978-3-85403-244-1

Preface

The International Workshop on Computing with Biomolecules took place in Vienna on Au-
gust 27th, 2008, in conjunction with the Seventh International Conference on Unconventional
Computation, UC 2008, which was held during the period August 25th to August 28th, 2008.

The venue for the workshop was the Parkhotel Schönbrunn in immediate vicinity of Schönbrunn
Palace, with its beautiful buildings and wide parks being one of the most important cultural
monuments in Austria. Vienna, located in the heart of central Europe, still reflects its former
outstanding historical role as the capital of a great empire and the residence of the Habsburgs
in its architectural monuments, its famous art collections and its rich cultural life, in which
music has always played an important part.

Whereas the International Conference on Unconventional Computation UC 2008, see
http://www.emcc.at/UC2008, was devoted to many aspects of unconventional computation,
especially to quantum computing and molecular computing, the main focus of the Interna-
tional Workshop on Computing with Biomolecules, see http://www.emcc.at/CBM2008/, was
molecular computing with topics mainly related to membrane systems.

The workshop was organized by Erzsébet Csuhaj-Varjú (Hungarian Academy of Sciences, Hun-
gary) and Rudolf Freund (Vienna University of Technology, Austria); the Programme Commit-
tee consisted of

– Artiom Alhazov, Åbo Akademi University, Finland,

– Daniela Besozzi, Università degli Studi di Milano, Italy,

– Erzsébet Csuhaj-Varjú, Hungarian Academy of Sciences (co-chair),

– Giuditta Franco, Università degli Studi di Verona, Italy,

– Rudolf Freund, Vienna University of Technology, Austria (co-chair),

– Marion Oswald, Vienna University of Technology, Austria,

– Francisco J. Romero-Campero, University of Nottingham, UK, and Universidad de Sevilla,
Spain,

– Kai T. Salomaa, Queen’s University, Kingston, Canada,

– Dragoş Sburlan, Ovidius University of Constanţa, Romania,

– Sergey Verlan, Université Paris XII, France, and

– Claudio Zandron, Università degli Studi di Milano-Bicocca, Italy.

Each submission was reviewed by two independent referees, and from eight papers seven were
selected to be presented as regular contributions at the workshop and to be included in this
volume. The refereeing work of the members of the Programme Committee is highly appreci-
ated.

In addition to these regular contributions, three invited talks were given by

– Anirban Bandyopadhyay, Advanced Nano Characterisation Center, National Institute for
Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, Japan 305-0037,

– Giuditta Franco, Università degli Studi di Verona, Italy, and

– Shankara Narayanan Krishna, Department of Computer Science & Engineering, IIT Bom-
bay, Powai, Mumbai, India 400 076.

We are very grateful to the members of the local Organizing Committee, particularly to Aneta
Binder, Franziska Gusel, Marion Oswald, and Gabriel Wurzer from the Vienna University of
Technology for their invaluable organizational work, and to Gernot Salzer and Sergey Verlan
for their support with editing this volume.

The workshop was partially supported by the Institute of Computer Languages of the Vienna
University of Technology, the Kurt Gödel Society, the OCG (Austrian Computer Society), and
the Austrian Federal Ministry of Science and Research. We extend to all our gratitude.

Vienna, August 2008

Erzsébet Csuhaj-Varjú

Rudolf Freund

Marion Oswald

Kai Salomaa

Table of Contents

Invited Papers

MASSIVE PARALLEL PROCESSING OF PATTERNS ON AN ORGANIC
MONOLAYER: TECHNICAL CHALLENGES IN REALISING AN ARTIFICIAL
BIO-PROCESSOR . 9

Anirban Bandyopadhyay

DNA COMPUTATION: RESULTS, TRENDS, AND PERSPECTIVES 11

Giuditta Franco

ON THE COMPUTATIONAL POWER OF P SYSTEMS WITH WORM OBJECTS . . 15

Shankara Narayanan Krishna

Regular Contributions

MEMBRANE SYSTEMS WITH SURFACE OBJECTS . 17

Bogdan Aman and Gabriel Ciobanu

SORTING OMEGA NETWORKS SIMULATED WITH P SYSTEMS: OPTIMAL
DATA LAYOUTS . 29

Rodica Ceterchi, Mario J. Pérez-Jiménez, and Alexandru Ioan Tomescu

(TISSUE) P SYSTEMS WORKING IN THE k-RESTRICTED MINIMALLY
PARALLEL DERIVATION MODE . 43

Rudolf Freund and Sergey Verlan

ONE-SIDED INSERTION AND DELETION: TRADITIONAL AND P SYSTEMS
CASE . 53

Alexander Krassovitskiy, Yurii Rogozhin, and Sergey Verlan

A SMALL UNIVERSAL SPIKING NEURAL P SYSTEM . 65

Turlough Neary

AN EXTENDED DOT-BRACKET-NOTATION FOR FUNCTIONAL NUCLEIC
ACIDS . 75

Effirul I. Ramlan and Klaus-Peter Zauner

A SOFTWARE TOOL FOR GENERATING GRAPHICS BY MEANS OF P SYSTEMS 87

Elena Rivero-Gil, Miguel A. Gutiérrez-Naranjo, Álvaro Romero-Jiménez, Agust́ın
Riscos-Núñez

Author Index . 101

MASSIVE PARALLEL PROCESSING OF
PATTERNS ON AN ORGANIC

MONOLAYER: TECHNICAL CHALLENGES
IN REALISING AN ARTIFICIAL

BIO-PROCESSOR

Anirban Bandyopadhyay
Advanced Nano Characterisation Center
National Institute for Materials Science

1-2-1 Sengen, Tsukuba, Ibaraki, Japan 305-0037
Email: anirban.bandyo@gmail.com

Neuron-like bio-systems process data in a multilevel way – in terms of 0, 1, 2, 3, To realize a
neuron-like multilevel switch (0, 1, 2, 3, . . . n) in a single molecule we need to control molecular
orbital transition between these levels, which has not been realized yet. Once generated, we need
to control transport of information through molecules even in atomic scale packing, where wiring
is impossible. We have realized such a large flexible connectivity and information processing
capabilities in a bi-molecular layer of a quinone derivative on gold (111). The monolayer is
found to be extremely flexible towards surviving incredible memory density during transport
and logical operation processes. But the existence of natural communication and information
exchange among these switching molecules is largely ignored – the enormous possibility hidden
in its structure remains unexplored. Several theories like Artificial Neural Networks (ANN),
Artificial Intelligence (AI) are developed in the last century but mostly CMOS based giant
architectures are used to mimic a few of such basic principles. Prospects of these systems
are fairly limited because information processing path is very well defined and connectivity
is far less inferior to any biological systems. As an alternative option we have realized tuning
molecular properties, and when it survived in ultra-dense packing, then made wireless transport
of information to the destination by weak interaction (weak forces of nature serves as connecting
wire). As generation and transport occurred at a time, in several parts of the monolayer we
created unique memory patterns in a controlled way and observed interaction between these
patterns – given the fact that creation of new pattern by interaction is the key to many complex
logical and computational features of bio-systems. By pattern manipulation, DDQ monolayer
can adapt with situation, organize information by itself, survive under faults – repair without
any external help and realize decision making machines (cybernetics, artificial intelligence).

DNA COMPUTATION: RESULTS, TRENDS,
AND PERSPECTIVES

Giuditta Franco
Department of Computer Science,

University di Verona, Italy
Email: giuditta.franco@univr.it

An introduction to DNA computing along its most recent trends will open the talk. The issues
related to solving NP-complete problems and to DNA encoding yet seem overseen. By DNA
self-assembly the three vertex colorability problem has been solved in linear time, and even a
programmable transducer was recently built up [1]. Encoding problems were tackled by indirect
and more efficient methods, namely in [5], where a set was proposed of non-cross-hybridizing
DNA molecules as basic elements, and in [9] where viral sequencing has been used to fold DNA
origami of several shapes.

New trends mainly include applications of self-assembly models based on DNA tiles or branched
molecules, and construction of DNA nanomachines and walkers. Among the new trends, an
interesting one regards the possibility to compute with DNA molecules by means of com-
binatorial algorithms, having as a side application the introduction of new biotechnological
procedures. Indeed, as a matter of fact, several standard biomolecular protocols do not ensure
the needed precision for computation. Such techniques have to go through several adjustments,
and sometimes completely new protocols are necessary in order to improve their yield. In [6]
for example, both a strategy for operon structure optimization by random self-assembly and a
DNA comparator to find DNA concentrations were investigated.

An attractive task nowadays is indeed to characterize models within the scope of the given
experimental limitations, and to improve or obtain protocols that are sufficiently reliable,
controllable and predictable. It is convenient to formulate methods of molecular biology as
biomolecular algorithms, and to study the corresponding molecular processes both from combi-
natoric and experimental points of view. The goal is to optimize the efficiency of biomolecular
methodologies, not only to improve the reliability of computing, but also for medical and bi-
ological applications (“Optimization methods should be viewed not as vehicles for solving a
problem, but for proposing a plausible hypothesis to be confirmed or disconfirmed by further
experiments”, R. M. Karp, [7]). Namely, an algorithmic analysis of PCR process allowed us to
introduce the XPCR technique, which was an effective basis to formulate novel DNA recombi-
nation, extraction, and mutagenesis methods [3, 4, 8].

Starting from a heterogeneous pool of DNA double strands sharing a common prefix α and a
common suffix β, and given a specified string γ, by means of XPCRγ, we can recombine all
the strings of the pool that contain γ as substring.

12 Giuditta Franco

The XPCRγ procedure is described by the following four steps.

input a pool P of strings having α as prefix and β as suffix

1. split P into P1 and P2 (with the same approximate size);

2. perform P1 := PCR(α,γ)(P1) and P2 := PCR(γ,β)(P2) (cutting step, Figure 1); in order
to have the parallelism of these PCRs the encodings of primers must be such that their
melting temperatures are approximately the same;

PCR

α γ β α

α γ

_ _ _ _

_

α γ β

γ

γ

α γ β

_ _ _ _

_

α γ β

PCR

γ

β

γ β

β

Figure 1: Cutting step of XPCRγ.

3. mix the two pools resulting from the previous step in a new pool P := P1 ∪ P2;

4. perform P := PCR(α,β)(P) (recombination step, see Figure 2);

output the pool P resulting from the previous step.

After the cutting step we find in the test tubes an exponential amplification of the dsDNA α . . . γ
and γ . . . β, respectively (see Figure 1), that are shorter than the initial molecules (linearly
amplified products keep the initial length). In the recombination step, left parts α · · · γ and
right parts γ · · · β of the sequences of the pool having γ as subsequence are recombined in
all possible ways, regardless to the specificity of the sequences between α and γ, or γ and β.
Therefore, not only the whole sequences containing γ are restored but also new sequences are
generated by recombination (see Figure 2).

From a formal language theoretical viewpoint, XPCR implements null context splicing rules,
allowing in principle the actual production of any strictly locally testable language within DNA
molecules. Possible algorithmic strategies exploiting XPCR chimeric products will be discussed,
namely to generate large libraries, for example for operon structure optimization.

DNA recombination is a very important DNA manipulation, having applications that are be-
yond the combinatorial mathematical problems. In fact, the production of combinatorial li-
braries is fundamental to various types of in vitro selection experiments, for selecting new DNA

Giuditta Franco 13

α γ γ βα

_
β

α

α γ γ β

α γ β

α γ

_ _ _ _

_

_ _ _ _

_ _ _

_ _

α γ γ β

β

α γ γ β

β

γ β

α γ

Melting + hybridization

Polymerase action

Figure 2: Recombination basic step of XPCRγ.

or RNA enzymes (such as ribozymes), or for performing crossover of homologous genes and
mutagenesis [8]. It is very important also to sequence genomes and to produce DNA memories.

The general schema of a recombination procedure consists of an initial pool with a few different
kinds of DNA strands, and a sequence of computational steps that finally produces a DNA
pool with a variety of different strands that are made of pieces of the initial strands. A
generation method based on XPCR starts from four specific sequences I1, I2, I3, I4, each
constituted by n different strings which can occur in two distinct forms (say X and Y), and, by
using only polymerase extension, generates the whole DNA solution space, where all types of
possible sequences of the pool are present. This algorithm will be presented along with possible
improvements [2], where dlog2 ne cycles suffices to produce the desired space, that were not
experimentally tested yet.

Finally, it will be shown how the study of bioprocesses in combinatorial terms can discover
relevant features, as it was the case of recombination witnesses, which are special strands
attesting the generation of a whole DNA library by means of a XPCR-based recombination
procedure. The existence of the recombination witnesses is a check on the experimental iter
of our method that represents an actual advantage over all the other existing methods. They
provide us with a control of any eventual experimental error which usually cannot be excluded
in any DNA procedure.

Some open problems will conclude the talk.

14 Giuditta Franco

References

[1] CHAKRABORTY, B., JONOSKA, N., SEEMAN, N. C., Programmable transducer by DNA self-
assembly, in: [6], 98–99.

[2] FRANCO, G., A polymerase based algorithm for SAT, in: M. Coppo, E. Lodi, G. M. Pinna
(Eds.), Theoretical Computer Science, Lecture Notes in Computer Science 3701, 2005, 237–250.

[3] FRANCO, G., GIAGULLI, C., LAUDANNA, C., MANCA, V., DNA extraction by XPCR, in:
C. Ferretti, G. Mauri, C. Zandron (Eds.), Proceedings of the 10th International Workshop on
DNA Computing: DNA 10, Milan, Italy, June 2004, Revised Selected Papers, Lecture Notes in
Computer Science 3384, 2005, 104–112.

[4] FRANCO, G., GIAGULLI, C., LAUDANNA, C., MANCA, V., DNA recombination by XPCR,
in: A. Carbone, N.A. Pierce (Eds.), Proceedings of the 11th International Workshop on DNA
Computing: DNA 11, London, Ontario, Canada, June 2005, Revised Selected Papers, Lecture
Notes in Computer Science 3892, 2006, 55–66.

[5] GARZON, M. H., BOBBA, K. V., HYDE, B. P., Digital information encoding on DNA, in: N.
Jonoska, Gh. Păun, G. Rozenberg (Eds.), Aspects of Molecular Computing: Essays Dedicated
to Tom Head, on the Occasion of His 70th Birthday, Lecture Notes in Computer Science 2950,
2004, 152–166.

[6] GOEL, A., SIMMEL, F. C., SOSÍK, P. (Eds.), Preliminary Proceedings of the 14th International
Meeting on DNA Computing, DNA14, June 2-6, 2008, Prague, Czech Republic.

[7] KARP, R. M., Mapping the genome: some combinatorial problems arising in molecular biology,
Proceedings of 25th Annual Symposium on the Theory of Computing, San Diego, CA, USA, May
16-18, New York, NY, USA, ACM, 1993, 278–285.

[8] MANCA, V., FRANCO, G., Computing by polymerase chain reaction, Mathematical Biosciences
211 (2008), 282–298.

[9] ROTHEMUND, P. W. K., Folding DNA to create nanoscale shapes and patterns, Nature 440
(2006), 297–302.

ON THE COMPUTATIONAL POWER OF
P SYSTEMS WITH WORM OBJECTS

Shankara Narayanan Krishna
Department of Computer Science & Engineering

IIT Bombay, Powai, Mumbai, India 400 076
Email: krishnas@cse.iitb.ac.in

P Systems with worm objects constitute a variant of P systems being universal and able to solve
NP-complete problems. This variant processes string objects using the operations of replication,
mutation, splitting and recombination. The best result known so far (established by Gh. Păun
and C. Martin-Vı́de) shows that this variant is computationally complete with six membranes.
In this work, we study the power of this variant by looking at different combinations of the four
operations replication, mutation, splitting and recombination. We show that it is possible to
pick some pairs of operations from the four operations mentioned above so that computational
completeness can be obtained using only three membranes. We also characterize the power of
these systems with only two membranes.

MEMBRANE SYSTEMS WITH SURFACE

OBJECTS

Bogdan Aman and Gabriel Ciobanu
“A.I.Cuza” University of Iaşi, Faculty of Computer Science

Blvd. Carol I no.11, 700506 Iaşi, Romania
and

Romanian Academy, Institute of Computer Science
Blvd. Carol I no.8, 700505 Iaşi, Romania

Email: baman@iit.tuiasi.ro, gabriel@info.uaic.ro

Abstract

In this paper we relate the membrane systems with surface objects to a fragment of Brane
calculus based on Pino, Phago and Exo operations, by encoding this fragment into the membrane
systems with surface objects. We open the discussion on distributing the global multiset of rules
of the membrane systems with surface objects into local sets of rules.

1. Introduction

Two recent computational models have been inspired from the structure and the functioning
of the living cell: membrane systems [11, 13] and brane calculus [6]. Although the models start
from the same observation, they are build having in mind different goals: membrane systems
investigate formally the computational nature and power of various features of membranes,
while the brane calculus is capable to give a faithful and intuitive representation of the biolog-
ical reality. In [8] the initiators of these two formalisms describe the goals they had in mind:
“While membrane computing is a branch of natural computing which tries to abstract com-
puting models, in the Turing sense, from the structure and the functioning of the cell, making
use especially of automata, language, and complexity theoretic tools, brane calculi pay more
attention to the fidelity to the biological reality, have as a primary target systems biology, and
use especially the framework of process algebra.”

A membrane system consists of a hierarchy of membranes which do not intersect, with a dis-
tinguishable membrane called skin surrounding all of them. A membrane without any other
membranes inside is elementary, while a non-elementary membrane is a composite membrane.
The membranes define demarcations between regions; for each membrane there is a unique
associated region. Since we have a one-to-one correspondence, we sometimes use membrane in-
stead of region, and vice-versa. The space outside the skin membrane is called the environment.
Regions contain multisets of objects, evolution rules and possibly other membranes. Only rules
in a region delimited by a membrane act on the objects in that region. More details about
membrane systems can be found in [13].

18 Bogdan Aman and Gabriel Ciobanu

Exocytosis is the movement of materials out of a cell via membranous vesicles. These processes
allow patches of membrane to flow from compartment to compartment, and require us to think
of a cell as a dynamic, rather than static, structure. Endocytosis is a general term for a group
of processes that bring macromolecules, large particles, small molecules, and even small cells
into the eukaryotic cell. There are three types of endocytosis: pinocytosis, phagocytosis and
receptor-mediated endocytosis. In all three, the plasma membrane folds inward around materials
from the environment, forming a small pocket. The pocket deepens, forming a vesicle. This
vesicle separates from the plasma membrane and migrates with its contents to the cell interior.

In brane calculus we have a membrane structure, in which the membranes represent the sites
of activity. Opposite to the initial classes of membrane systems in which a computation took
place inside the membranes, in brane calculi a computation happens on the membrane. The
operations of the two basic brane calculi are directly inspired by biologic processes such as
endocytosis, exocytosis and mitosis. The calculus formed using pino, exo, phago operations
is more expressive then the calculus formed by mate, drip, bud, because we can simulate the
latter operations using the former ones. Another difference regarding the semantics is expressed
in [4]: ”whereas brane calculi are usually equipped with an interleaving, sequential semantics
(each computational step consists of the execution of a single instruction), the usual semantics
in membrane computing is based on maximal parallelism (a computational step is composed of
a maximal set of independent interactions).”

Some work was done trying to relate these two models [4, 5, 7, 9]. Inspired by brane calculus, a
model of the membrane system having objects attached to the membranes has been introduced
in [8]. In [3], a class of membrane systems containing both free floating objects and objects
attached to membranes have been proposed, while in [14] a simulation of a bounded symport
antiport membrane system using brane calculus is proposed. In this paper we are continuing
this research line, and simulate a variant of brane calculus by using membrane systems with
surface objects.

The structure of the paper is as follows. In Section 2 we define the class of membrane systems
with surface objects used for the simulation, while in Section 3 we present the fragment of brane
calculus called PEP. In Section 4 we present an encoding of the PEP calculus into membrane
systems with surface objects. The distribution of the global multiset of rules of the membrane
systems with surface objects into local sets of rules is discussed in Section 5. Conclusions and
references end the paper.

2. Membrane Systems with Surface Objects

The phospholipid bilayer serves as a lipid “lake” in which some proteins “float” (see Figure 1).

Membrane fusion is the process by which a vesicle membrane incorporates its components into
the target membrane and releases its cargo into the lumen of the organelle or, in the case of

Membrane Systems with Surface Objects 19

Figure 1: The Fluid Mosaic Model: The general molecular structure of biological membranes
is a continuous phospholipid bilayer in which proteins are embedded.

secretion, into the extracellular medium.

Different steps in membrane fusion are distinguished. First, the vesicle and the target membrane
mutually identify each other. Then, proteins from both membranes interact with one another
to form stable complexes and bring the two membranes into close apposition, resulting in the
docking of the vesicle to the target membrane. Finally, considerable energy needs to be supplied
to force the membranes to fuse, since the low-energy organization—in which the hydrophobic
tails of the phospholipids are kept away from water while the hydrophilic head groups are in an
aqueous medium—must be disrupted, even if only briefly, as the vesicle and target membranes
distort and then fuse. Each type of vesicle must only dock with and fuse with the correct target
membrane, otherwise the protein constituents of all the different organelles would become mixed
with each other and with the plasma membrane.

The molecular processes leading to membrane fusion is only just beginning to take shape;
according to [2] two types of proteins, called SNARES and Rab family GTPases work together to
achieve the fusion. SNARES located on the vesicles (v-SNARES) and on the target membranes
(t-SNARES) interact to form a stable complex that holds the vesicle very close to the target
membrane (Fig. 2). Not all vSNARES can interact with all tSNARES, so SNARES provide
a first level of specificity. So far, over 50 members of the Rab family have been identified in
mammalian cells, and each seems to be found at one particular site where it regulates one

20 Bogdan Aman and Gabriel Ciobanu

Figure 2: SNAREs and vesicle fusion.

specific transport event, thus controlling which vesicle fuses with which target.

This provides a biological motivation of using objects and co-objects for the exo and phago
rules. These rules are also inspired from the approach defined in [8].

We define now the membrane systems with surface objects. Let N be a set of positive integers,
and consider a finite alphabet Γ of symbols. A multiset over Γ is a mapping u : Γ → N. The
empty multiset is represented by λ. For any a ∈ Γ, the value u(a) denotes the multiplicity of a

in u (i.e., the number of occurrences of symbol a in u). Given two multisets u, v over Γ, for any
a ∈ Γ, we have (u⊎v)(a) = u(a)+v(a) as the multiset union, and (u\v)(a) = max{0, u(a)−v(a)}
as the multiset difference. We use the string representation of multisets used in the membrane
systems. An example of such a representations u = aabca, where u(a) = 3, u(b) = 1, u(c) = 1.
Using such a representation, the operations over multisets are defined as operations over strings.

Definition 1. A membrane system with surface objects (MSO) and n membranes is a construct

Π = (A, µ, u1, . . . , un, R)

where:

1. A is an alphabet (finite, non-empty) of proteins;

2. µ is a membrane structure with n ≥ 2 membranes;

3. u1, . . . , un are multisets of proteins (represented by strings over A) bound to the n mem-
branes of µ at the beginning of the computation (one assumes that the membranes in µ

have a precise identification, e.g., by means of labels, or of other “names”, in order to
have the marking by means of u1, . . . , un precisely defined; the labels play no other role
than specifying this initial marking of the membranes); the skin membrane is labelled with
1 and u1 = λ;

4. R is a finite set of rules of the following forms:

(a) []vbu →m [[]vx]uy, where b ∈ A, u, x, y ∈ A∗, v ∈ A+

pino

Membrane Systems with Surface Objects 21

The object b creates an empty membrane within the membrane where the b objects is
attached and is consumed during the process. The objects v on the empty membrane
so created, are transferred from the initial membrane. x and y are newly created
multisets of objects.

(b) []au[]abv →m [[[]ux]b]vy, where a, a ∈ A, u, v, x, y ∈ A∗ phago

An object a which also comes with its complementary object a models a membrane
(the one with a) “eating” another membrane (the one with a). It proceeds by the
membrane containing u wrapping around the membrane containing v and joining
itself on the other side. Hence, an additional layer of membrane is created around
the eaten membrane: the object on that membrane is b. The objects a and a are
consumed during the evolution. x and y are newly created multisets of objects.

(c) [[]au]av →m []uvx, where a, a ∈ A, u, v, x ∈ A∗

exo

An object a which comes with a complementary object a models the merging of two
nested membranes, which starts with the membranes touching at a point. In this pro-
cess (which is a smooth, continuous process), the content of the membrane containing
the multiset au gets expelled to the outside, and all objects of the two membranes
are united into a multiset on the membrane which initially contained v. The objects
a and a are consumed during this evolution, and x is a newly created multiset of
objects.

2.1. Decision Problems

A(Π) denotes the finite alphabet of the system Π, while a marking w represent a distribution
of the multiset of objects w over the structure µ of Π. If we consider a multiset of objects
w containing all the objects present in the system at a certain moment, then the following
proposition holds.

Proposition 1. It is decidable whether w is a reachable marking of Π, for any MSO system Π
and any multiset w of objects over A(Π).

Sketch. Since the alphabet A of Π is finite, we can consider a Petri net having as places the
objects from A, as initial marking the multiset w0 = u1 + . . . + un, and as transitions the way
the multiset of objects transform during evolution when applying the pino, exo and phago rules
in order to simulate the evolution of the marking of the system Π. Since in a Petri net it is
decidable if we can reach a given marking (see Theorem 1), and we have a translation of a
system Π into a Petri net, it results that it is decidable if we can reach a given marking w of
the system Π.

Theorem 1 ([10]). For all Petri nets P , for all markings m,m′ of P , one can decide whether
m′ is reachable from m.

22 Bogdan Aman and Gabriel Ciobanu

Example 1. Consider the membrane system with surface object

Π1 = ({a, b, c, c}, []1, abc, {r1 : []abc → [[]ac]cc, r2 : [[]ac]cc → []ac})

The Petri net corresponding to this system is:

b

ca c

r1

r2

2

2

Figure 3: Petri net associated with Π1

A similar result is presented in [3]; however, the set of rules used is different from the one used
in the current paper. The proof of the result presented in [3] is by using grammars without
appearance checking, while we use a translation into Petri nets.

2.2. Operational Semantics

Following the line described in [1] where a structural congruence rule was define for membrane
systems, we describe here the structural congruence for membrane systems with surface objects.

Table 1: Syntax of MSO

Systems M,N :: =M N | [M]u membranes with surface objects
Multisets u, v :: =λ | a | a | uv multisets of objects where a, a ∈ A

We denote by M the set of systems defined in the above table.
We abbreviate λu as u.

Table 2: Structural Congruence of MSO

M N ≡m N M uv ≡m vu

M (N P) ≡m (M N) P u(vw) ≡m (uv)w
λu ≡m u

M ≡m N implies M P ≡m N P u ≡m v implies uw ≡m vw

M ≡m N and u ≡m v implies [M]u ≡m [N]v

Membrane Systems with Surface Objects 23

The structural congruence relation is a way of rearranging the system such that the interacting
parts can come closer. The next rules are added to the rules which appear in Definition 1 in
order to show how we can construct the maximal multiset of rules applied in a step of evolution.

Table 3: Reductions of MSO

P →m Q implies P R →m Q R Par
P →m Q implies [P]u →m [Q]u Mem
P ≡m P ′ and P ′ →m Q′ and Q′ ≡m Q implies P →m Q Struct

3. PEP Calculus Without Replication

In this section we give an overview of PEP calculus (phago/exo/pino) without replication;
more details can be found in [6]. A membrane structure consists of a collection of nested
membranes as can be seen from Table 4. Membranes are formed of patches, where a patch s

can be composed from other patches s = s1 | s2. An elementary patch s consists of an action
a followed, after the consumption of it, by another patch s1: s = a.s1. Action often comes in
complementary pairs that cause the interaction between membranes. The names n are used
to pair-up actions and co-actions. Cardelli motivates that the replication operator is used to
model the notion of a “multitude” of components of the same kind, which is in fact a standard
situation in biology [6]. We do not use the replicator operator because we are not able to define
a membrane system in the following section without knowing exactly the initial membrane
structure.

Table 4: Syntax of Pino/Exo/Phage Calculus

Systems P,Q:: =⋄ | P ◦ Q | σ(P) nests of membranes
Branes σ, τ :: =O | σ|τ | a.σ combinations of actions
Actions a, b :: =nց | nց(σ) | nտ | nտ | pino(σ) phago ց, exo տ

We denote by P the set of systems defined above. We abbreviate a.0 as a, 0(P) as (P), and
σ(⋄) as σ().

Table 5: Structural Congruence of Pino/Exo/Phage Calculus

P ◦ Q ≡b Q ◦ P σ | τ ≡b τ | σ

P ◦ (Q ◦ R) ≡b (P ◦ Q) ◦ R σ | (τ | ρ) ≡b (σ | τ) | ρ

P ◦ ⋄ ≡b P σ | o ≡b σ

0(⋄) ≡b ⋄

P ≡b Q implies P ◦ R ≡b Q ◦ R σ ≡b τ implies σ | ρ ≡b τ | ρ

P ≡b Q and σ ≡b τ implies σ(P) ≡b τ(Q) σ ≡b τ implies a.σ ≡b a.τ

24 Bogdan Aman and Gabriel Ciobanu

The structural congruence relation is a way of rearranging the system such that the interacting
parts come together.

Table 6: Reductions of Pino/Exo/Phago Calculus

pino(ρ).σ|σ0(P) →b σ|σ0(ρ(⋄) ◦ P) Pino
nտ.τ |τ0(n

տ.σ|σ0(P) ◦ Q) →b P ◦ σ|σ0|τ |τ0(Q) Exo
nց.σ|σ0(P) ◦ nց(ρ).τ |τ0(Q) →b τ |τ0(ρ(σ|σ0(P)) ◦ Q) Phago
P →b Q implies P ◦ R →b Q ◦ R Par
P →b Q implies σ(P) →b σ(Q) Mem
P ≡b P ′ and P ′ →b Q′ and Q′ ≡b Q implies P →b Q Struct

The action pino(ρ) creates an empty bubble within the membrane where the pino action resides;
we should imagine that the original membrane buckles towards the inside and pinches off. The
patch σ on the empty bubble is a parameter of pino. The exo action nտ, which comes with a
complementary co-action nտ, models the merging of two nested membranes, which starts with
the membranes touching at a point. In the process (which is a smooth, continuous process), the
subsystem P gets expelled to the outside, and all the residual patches of the two membranes
become contiguous. The phago action nց, which also comes with a complementary co-action
nց(ρ), models a membrane (the one with Q) “eating” another membrane (the one with P).
Again, the process has to be smooth and continuous, so it is biologically implementable. It
proceeds by the Q membrane wrapping around the P membrane and joining itself on the other
side. Hence, an additional layer of membrane is created around the eaten membrane: the
patch on that membrane is specified by the parameter ρ of the cophago action (similar to the
parameter of the pino action).

4. Encoding PEP into Membranes with Surface Objects

“At the first sight, the role of objects placed on membranes is different in membrane and
brane systems: in membrane computing, the focus is on the evolution of objects themselves,
while in brane calculi the objects (“proteins”) mainly control the evolution of membranes”[12].
By defining an encoding of the PEP fragment of brane calculus into membranes with surface
objects, we show that the difference between the two models is not significant.

Definition 2. A translation T : P → M is given by

T (P) =

{

[T (P)]S(σ) if σ(P)
T (Q) T (R) if P = Q |R

where S : P → A is defined as:

Membrane Systems with Surface Objects 25

S(σ) =























σ if σ = nց or σ = nտ or σ = nտ

nց S(ρ) if σ = nց(ρ)
pino S(ρ) if σ = pino(ρ)
S(a) S(ρ) if σ = a.ρ

S(τ) S(ρ) if σ = τ | ρ

The rules from the membrane systems with surface objects are of the form:

[]S(nցσ|σ0)[]S(nց(ρ).τ |τ0) →m [[[]S(σ|σ0)]S(ρ)]S(τ |τ0)

[[]S(nտ.σ|σ0)]S(nտ.τ |τ0) →m []S(σ|σ0|τ |τ0)

[]S(pino(ρ).σ|σ0) →m [[]S(ρ)]S(σ|σ0)

We have the following results:

Proposition 2. If P is a PEP system and M = T (P) is a membrane system with surface
objects, then there exists N such that M ≡m N and N = T (Q), whenever P ≡b Q.

Proposition 3. If P is a PEP system and M = T (P) is a membrane system with surface
objects, then there exists Q such that N = T (Q) whenever M ≡m N .

Remark 1. In Proposition 3 it is possible that P 6≡b Q. Suppose P = nց.nտ(). By translation
we obtain M = T = []nցnտ ≡m []nտnց=N. It is possible to have Q = nտ.nց() or Q =
nտ|nց() such that N = T (Q), but P 6≡b Q.

Proposition 4. If P is a PEP system and M = T (P) is a membrane system with surface
objects, then there exists N such that M →m N and N = T (Q), whenever P →b Q.

Proposition 5. If P is a PEP system and M = T (P) is a membrane system with surface
objects, then there exists Q such that N = T (Q) whenever M →m N .

Remark 2. In Proposition 5 it is possible that P 6→b Q. Suppose P = nտ.nտ(nտ.nց()). By
translation we obtain M = (()nտ.nց)nտ.nտ, such that M →m []nցnտ. We observe that there
exist Q = nց.nտ() such that N = T (Q), but P 6→b Q.

The PEP calculus could be extended as in [6] to contain also molecules inside the membranes.
Using the new reduction exchanging molecules simultaneous between the interior and exterior
of a membrane, the translation can be easily extended by introducing objects in membranes as
in [3] and an antiport evolution rule in the definition of →m.

5. Global vs. Local Rules

We note in [3, 7, 8] that only a single set of rules is considered in all the definitions of the
membranes with surface objects. This means that the rules from this set can be applied

26 Bogdan Aman and Gabriel Ciobanu

anywhere in the system whenever the preconditions are satisfied. This is different from the
definition of membrane systems with rewriting rules in which sets of rules are localized in each
membrane. Thus if we have a set of rewriting rules and a multiset of objects placed in the same
membrane, then the rules may be applied only to this multiset of objects.

Inspired from the class of membrane systems with rewriting rules, we rewrite Definition 1 using
different sets of rules placed in each membrane, rules which control only the membranes placed
at the first level inside the membranes.

Definition 3. A localized membrane system with surface objects (LMSO) having n membranes
is a construct

Π = (A, µ, u1, . . . , un, R1, . . . , Rn)

where:

1. A is an alphabet (finite, non-empty) of proteins;

2. µ is a membrane structure with n ≥ 2 membranes;

3. u1, . . . , un are multisets of proteins (represented by strings over A) bound to the n mem-
branes of µ at the beginning of the computation (one assumes that the membranes in µ

have a precise identification, e.g., by means of labels, or of other “names”, in order to
have the marking by means of u1, . . . , un precisely defined; the labels play no other role
than specifying this initial marking of membranes); the skin membrane is labelled with 1
and u1 = λ;

4. R1, . . . , Rn are finite sets of rules of the following forms:

(a) []vbu →m [[]vx]uy pino

(b) [[]au]av →m []uvx exo

(c) []au[]abv →m [[[]ux]b]vy phago

In [8] it is mentioned that in case of the pino rules, the objects are randomly distributed to
the two resulting membranes. In this case what happens to the sets of rules placed in the
initial membrane? Are these rules duplicated in both resulting membranes or are distributed
randomly?

Definition 4. Consider a configuration Π0 = (A, µ, u1, . . . , un, R) as in Definition 1. We define
the set of reachable configurations by

Reachable(Π0, global) = {Π | Π0 →
∗
m Π}.

Definition 5. Consider a configuration Π′
0 = (A, µ, u1, . . . , un, R1, . . . , Rn) as in Definition 3.

We define the set of reachable configurations by
Reachable(Π′

0, local) = {Π | Π′
0 →

∗
m Π}.

Membrane Systems with Surface Objects 27

If we consider Π0 and Π′
0 such that they have the same A, µ, u1, . . . , un, we are interested in

investigating what could be the relationship between R and R1, . . . , Rn such that the following
result holds.

Proposition 6. Reachable(Π0, global) = Reachable(Π′
0, local)

The easiest solution would be to have R = R1 = . . . = Rn. Each time we create a new
membrane by pino or phago, we create also a duplicate of the set of rules from the membrane
which creates the new membrane. Also, when we combine two membranes using exo, we merge
the two sets of rules in only one. The problem with this solution is that the localized system
could become more complicated than the global one.

Depending on how the sets of rules are propagated, we can think that we can obtain other
relations between the two multisets (as inclusion, non-empty intersection, etc).

The advantage of the localized systems is that using local rules one would have not to know
the entire system during the computation, but only (small) parts of it.

6. Conclusion

We introduce in this paper a new set of rules for membrane systems with surface objects in
which we use objects and co-object during the evolution. A novel aspect is given by co-objects.
This notion is motivated by the existence of the proteins called SNARES. This aspect is not
used in various existing classes of membrane systems using peripheral objects [3, 7, 8]. We
show that PEP calculus without replication can be translated into this new class of membrane
systems with objects and co-objects. In this way the new class of membranes with surface
objects gets the whole computational power of the PEP fragment of the brane calculus.

We have noted that in [3, 7, 8] only a global set of rules is used. We open the discussion on
distributing the global multiset of rules into local sets of rules. The equivalence between the
global and the localized system remains an open problem.

Acknowledgements

The research of the authors for this paper was partially supported by CEEX 47/2005 and
CNCSIS IDEI 402/2007.

References

[1] AMAN, B., CIOBANU, G., Structural properties and observability in membrane systems,
SYNASC, IEEE Computer Society (2007), 74-84.

[2] BOLSOVER, S., et. al., Cell Biology. Short Course, Wiley, 2004.

28 Bogdan Aman and Gabriel Ciobanu

[3] BRIJDER, R., CAVALIERE, M., RISCOS-NÚÑEZ, A., ROZENBERG, G., SBURLAN, D.,
Membrane systems with marked membranes, Electronic Notes in Theoretical Computer Science
171 (2) (2007), 25–36.

[4] BUSI, N., On the computational power of the mate/bud/drip brane calculus: interleaving vs.
maximal parallelism, Workshop on Membrane Computing, Lecture Notes in Computer Science
3850, Springer, 2006, 144–158.

[5] BUSI, N., GORRIERI, R., On the computational power of brane calculi, Third Workshop on
Computational Methods in Systems Biology, 2005, 106–117.

[6] CARDELLI, L., Brane calculi. Interactions of biolobical membranes, Lecture Notes in BioInfor-
matics 3082, Springer, 2004, 257–278.

[7] CAVALIERI, M., SEDWARDS, S., Membrane systems with peripherial proteins: transport and
evolution, Electronic Notes in Theoretical Computer Science 171(2) (2007), 37–53.

[8] CARDELLI, L., PĂUN, Gh., An universality result for a (mem)brane calculus based on mate/drip
operations, ESF Exploratory Workshop on Cellular Computing (Complexity Aspects), Sevilla,
2005, 75–94.

[9] KRISHNA, S. N., Universality results for P systems based on brane calculi operations, Theoretical
Computer Science 371 (2007), 83–105.

[10] MAYR, E. W., An algorithm for the general Petri net reachability problem, SIAM Journal of
Computing 13(3) (1984), 441-460.

[11] PĂUN, Gh., Computing with membranes, Journal of Computer and System Sciences 61(1) (2000),
108-143.

[12] PĂUN, Gh., Membrane computing and brane calculi (some personal notes), Electronic Notes in
Theoretical Computer Science 171 (2007), 3–10.

[13] PĂUN, Gh., Membrane Computing. An Introduction, Springer, 2002.

[14] VITALE, A., MAURI, G., ZANDRON, C., Simulation of a bounded symport antiport P system
with brane calculi, Biossytems 91(3) (2008), 558–571.

SORTING OMEGA NETWORKS
SIMULATED WITH P SYSTEMS: OPTIMAL

DATA LAYOUTS

Rodica Ceterchi1 Mario J. Pérez-Jiménez2

Alexandru Ioan Tomescu3

1Faculty of Mathematics and Computer Science, University of Bucharest
Academiei 14, RO-010014, Bucharest, Romania

Email: rceterchi@gmail.com
2Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Sevilla

Email: mario.perez@cs.us.es
3Faculty of Mathematics and Computer Science, University of Bucharest

Academiei 14, RO-010014, Bucharest, Romania
Email: alexandru.tomescu@gmail.com

Abstract
The paper introduces some sorting networks and their simulation with P systems, in which each
processor/membrane can hold more than one piece of data, and perform operations on them
internally. Several data layouts are discussed in this context, and an optimal one is proposed,
together with its implementation as a P system with dynamic communication graphs.

1. Introduction

Paper [9] proposed two models to sort a sequence of N numbers, based on the bitonic sorting
network. The first one consisted of N membranes, each storing two numbers; one number was
an element of the sequence, and the other one was an auxiliary register used to route values. A
number x was codified as the number of appearances of a symbol a in each membrane. Moreover,
the membranes were disposed on a 2D-mesh, where only communication between neighbor
membranes on the mesh are permitted. This model, using a variant of P systems, called P
systems with dynamic communication graphs, (see [8]), follows closely the implementation of
the bitonic sort on the 2D-mesh.

The second model consisted of only one membrane, where all the N numbers were encoded as
occurrences of N different symbols. Restrictions on communication were no longer imposed, as
if the underlying communication graph were the complete graph.

30 R. Ceterchi, M. J. Pérez-Jiménez, A. I. Tomescu

In this paper we introduce a model in between the two. First of all, observe that the first model
has the advantage of a codifying alphabet of fixed size, while the second has the advantage of
a small communication overhead. The model we put forth in this paper captures these two
benefits. Each membrane holds a fixed number of values, and each of the membranes can
communicate with any other. Additionally, in order to minimize the communication between
membranes, we use a periodic remap of values to membranes, according to the steps of the
omega network.

The problem of mapping values to processors has been previously addressed in the context
of parallel sorting algorithms. The bitonic sorting network, which can sort N keys in time
O(log2N), is probably one of the most well-known parallel sorting algorithms. However, modern
architectures differ greatly from the theoretical models under which such good results were
obtained. As coarse-grained processors can store internally more than one value, the following
problem arises: how to map N keys to P processors (N > P), such that inter-processor
communication is minimized. In the bitonic sorting algorithm, and for N ≥ P 2, the solution
given in [14, 15] consisted in alternating a blocked layout with a cyclic layout, performing thus
the minimal number of remaps. This paper gives an optimal mapping strategy for the bitonic
sort for any N > P , and then applies this result to P systems.

The paper is organized as follows. Section 2 presents preliminaries on bitonic sorting networks
and defines omega networks. Section 3 approaches the problem of mapping N keys among P
processors, each processor manipulating n = N/P keys, such that overall communication is
minimized. Optimal data layouts for the omega network are proposed along the lines of [10],
and some essential results are proved about them. Section 4 discusses about internal processing
in one processor, and how we model it in our implementation with P systems. Section 5
introduces the P system which simulates the omega network with optimal data layouts, and
the algorithms which generate the sequence of dynamic communication graphs of this model.
Complexity issues are addressed at the end of Sections 3 and 5.

2. Preliminaries on Bitonic Sorting Networks and Omega Networks

A bitonic sequence is a concatenation of two monotonic sequences, one ascending, and the other
one descending, or a sequence such that a cyclic shift of its elements would put them in such a
form.

The key components of a bitonic network are the bitonic splitters and the bitonic mergers. The
splitter of size N takes as input a bitonic sequence of length N and partitions it in two bitonic
sequences of equal length, such that all the elements in the first sequence are smaller than (or
greater than) all the elements in the second sequence. A bitonic merger of size N consists of a
splitter of size N and of two mergers of size N/2, of opposite direction. It accepts as input a
bitonic sequence and sorts it in ascending or descending order (direction).

As any sequence of two numbers is bitonic, the sorting network uses bitonic mergers of increasing
size and alternating direction to construct bitonic sequences of increasing length. The last such

Sorting Omega Networks Simulated with P Systems: Optimal Data Layouts 31

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Figure 1: A bitonic sorting network of size N = 8. The network can be partitioned in three
stages, each containing bitonic mergers of size 2, 4, and 8, respectively.

merger, of size N , renders the whole sequence of N numbers sorted.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

a

b

c=min(a,b)

d=max(a,b)

a

b

c=max(a,b)

d=min(a,b)

a

b

c=(1-s)a+sb

d=sa+(1-s)b

(a) Increasing comparator

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

a

b

c=min(a,b)

d=max(a,b)

a

b

c=max(a,b)

d=min(a,b)

a

b

c=(1-s)a+sb

d=sa+(1-s)b

(b) Decreasing comparator

Figure 2: Network devices

Following [16] it is customary to represent a network as an ordered set of N lines (wires)
connected by a set of compare-exchange devices (comparators, for brevity). A comparator has
two input terminals, a and b, and produces two output terminals c and d. If the comparator
is increasing, Fig. 2(a), then c = min(a, b) and d = max(a, b), while if the comparator is
decreasing, Fig. 2(b), c = max(a, b) and d = min(a, b). A bitonic sorting network for N = 8 is
represented in Fig. 1.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

a

b

c=min(a,b)

d=max(a,b)

a

b

c=max(a,b)

d=min(a,b)

a

b

c=(1-s)a+sb

d=sa+(1-s)b

0

1

2

3

4

5

6

7

0

1

3

2

6

7

5

4

(a) The bitonic merger -
classical representation

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

a

b

c=min(a,b)

d=max(a,b)

a

b

c=max(a,b)

d=min(a,b)

a

b

c=(1-s)a+sb

d=sa+(1-s)b

0

1

2

3

4

5

6

7

0

1

3

2

6

7

5

4

(b) The bitonic merger -
after a permutation of
lines

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

a

b

c=min(a,b)

d=max(a,b)

a

b

c=max(a,b)

d=min(a,b)

a

b

c=(1-s)a+sb

d=sa+(1-s)b

0

1

2

3

4

5

6

7

0

1

3

2

6

7

5

4

0

1

2

3

4

5

6

7

(c) The balanced merger

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

a

b

c=min(a,b)

d=max(a,b)

a

b

c=max(a,b)

d=min(a,b)

a

b

c=(1-s)a+sb

d=sa+(1-s)b

0

1

2

3

4

5

6

0

1

3

2

6

7

5

4

0

1

2

3

4

5

6

7
D3 OM2

OM2

(d) The omega network
OM3

Figure 3: The bitonic merger, the balanced merger, and the omega network of size 8

We introduce some more notations regarding the serial and parallel connections of networks T1

and T2, of size N . Their serial connection, T1T2, is a network in which the i-th output terminal

32 R. Ceterchi, M. J. Pérez-Jiménez, A. I. Tomescu

of T1 is connected to the i-th input terminal of T2. The parallel connection, T1 ◦ T2, is the
union of T1 and T2, with terminal i of T1 becoming terminal i of T1 ◦ T2, and terminal i of T2

becoming terminal i+N of T1 ◦ T2 (i = 0, . . . , N − 1).

Definition 1 (Omega network, Fig. 3(d)). Let Dk, k ≥ 1 be a one-step network of N = 2k

lines with a device between the pair of lines (i, i+N/2), for i = 0 . . . N/2− 1. Then the omega
network OMk is recursively defined as OMk = Dk(OMk−1 ◦OMk−1).

In [6] the striking similarity between the bitonic merger (Fig. 3(a) , 3(b)) and the balanced
merger (Fig. 3(c)) is investigated. Although prior research [12] showed that there is no permu-
tation of lines to transform the bitonic merger into a balanced merger, a framework is developed
under which it is shown that the two mergers are isomorphic graphs, also isomorphic to the
graph of the omega network (Fig. 3(d)).

As a serial connection of logN identical networks in the class of omega networks forms a sorting
network [6], in what follows we will concentrate mainly on the omega network.

3. How they communicate

A sorting network is a fine-grained theoretical model, containing exactly one input key on each
wire. Additionally, comparators require communication between wires, which can sometimes
be more time consuming than the comparison operation itself [2, 3, 11, 17]. When redesigning
parallel sorting algorithms for coarse-grained PRAM, one has to pay particular attention to
both communication and computation.

Given N keys and P processors (N > P), we have to map n = N/P keys to each processor,
such that overall communication is minimized. Ionescu and Schauser [14, 15] investigated
this problem for the bitonic sorting algorithm. As initially suggested in [11], they proposed a
“smart” periodical switch between a blocked layout and a cyclic layout. They observed that in
each stage of the sorting algorithm, the last log n steps can be performed locally under a blocked
layout, while under the cyclic layout the first log n steps are local. A necessary condition for
the two layouts to span enough depth to cover an entire stage of the network is N ≥ P 2. In
addition, the two layouts are particular to the sorting network being implemented. We shall
see, for example, that the balanced merger [12, 13], which, as the bitonic merger, belongs to
the class of omega networks, also admits data layouts optimizing overall communication.

An approach from the opposite side was put forth by Lee and Batcher [18]. They used a parity
strategy for a shared-memory model with N = 2P to store even-parity keys in local memory,
while only odd-parity keys were recirculated. This decreased by a factor of 2 the number of
shared memory references.

The main contribution of this paper is a general scheme to map N values to P processors,
for any N > P and for any sorting network with the topology of the omega network. Our
idea captures the essence from the alternating smart layout of [15], and makes it generally

Sorting Omega Networks Simulated with P Systems: Optimal Data Layouts 33

applicable, even when N < P 2. The number of data layouts is no longer two, but it depends
on the granularity of the processors.

3.1. Optimal Data Layouts for the Omega Network

In the following, without explicitly mentioning it, we assume we have to sort N = 2k keys using
P processors, N > P , each processor holding n = N/P keys. Any number i ∈ {0, . . . , 2k−1} has
a bit representation i = a1a2 · · · ak, a1 being the most significant bit, and ak the least significant
one. To simplify notation, we say that a sequence of bits aj · · · ai, where i, j ∈ {1, . . . , k} and
j > i, stands for the void sequence. The number of parallel steps of OMk is k, and step t of the
omega network OMk contains devices linking lines whose bit representations differ of bit t, with
1 ≤ t ≤ k. For any t ∈ {1, . . . , k}, consider the function bct : {0, 1, . . . , 2k−1} −→ {0, 1, . . . , 2k−
1}, the bit complement of the t-th bit, defined by bct(a1a2 · · · at · · · ak) = a1a2 · · · āt · · · ak. The
function bct is injective and idempotent.

First, we give a formal definition of a data layout.

Definition 2 (Data layout). A data layout of N values to P processors is a function D :
{0, . . . , N − 1} → {0, . . . , P − 1}.

We introduce the following data layouts, as suggested in [11, 15].

Definition 3 (Blocked layout). A blocked layout for mapping N keys on P processors is a
function Db : {0, . . . , N − 1} → {0, . . . , P − 1}, such that Db(i) = bi/nc, where n = N/P .

Definition 4 (Cyclic layout). A cyclic layout for mapping N keys on P processors is a function
Dc : {0, . . . , N − 1} → {0, . . . , P − 1}, such that Dc(i) = i mod P .

We note that Definition 5 in [14], and the definition for the cyclic layout indicated in Section
2.1 of [15] are incorrect, since if we map the i-th key to the i mod n processor, where n = N/P ,
we have that n ≤ P , which implies N ≤ P 2, which clearly is not the case considered.

In a blocked layout, the first logN − log n steps require remote communication, while the last
log n steps are local. In a cyclic layout, the situation is reversed: the first logN− log n steps are
local, while the last log n steps are remote. The idea proposed in [15] when mapping N ≥ P 2

values in the bitonic sort is to periodically switch between the two layouts, such that all steps
are local. Moreover, as the stages in a bitonic sort have increasing size, the author proposes
an improved “smart” remap such that a layout spans through multiple stages of the algorithm,
achieving a total of logP + 1 remaps.

Our paper better highlights the reasoning behind these remaps, in the case of the bitonic sort.
Consider the omega network OMk, and consider we choose to map key 0 to processor 0. If each
processor can hold 2m values, which other keys are mapped to processor 0? As we can see, at
step 1 we have a device linking line 0 with line 0 + 2k−1. At step 2 we have a device linking line

34 R. Ceterchi, M. J. Pérez-Jiménez, A. I. Tomescu

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

(a) An omega network on size 32. Lines marked with same shape are assigned to
the same processor in one data layout.

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0 0 0 0 0 = 0

1 0 0 0 0 = 16

0 1 0 0 0 = 8

1 1 0 0 0 = 24

0 0 0 0 0 = 0

0 0 1 0 0 = 4

0 0 0 1 0 = 2

0 0 1 1 0 = 6

0 0 0 0 0 = 0

0 0 0 1 0 = 2

0 0 0 0 1 = 1

0 0 0 1 1 = 3

(b) Keys mapped
to processor 0 in
each of the three
data layouts

Figure 4: Three data layouts for the omega network OM5.

0 with line 2k−2, and a device linking line 2k−1 and line 2k−1 + 2k−2. We also note that in step 1
lines 2k−2 and 2k−1 + 2k−2 were also linked with a device. We continue until step m, where we
identify 2m lines linked by 2m−1 devices. It would be natural to map these lines to processor 0,
as all comparisons at step m are local. However, one more problem remains: all comparisons
at stages 0 through m− 1 are also local? As we shall see, the answer is yes.

The following lemma is straightforward from the definition of OMk.

Lemma 1. At each step 1 ≤ t ≤ k of OMk, and for any 0 ≤ i < 2k, line i is linked by a device
only with line bct(i).

Lemma 2. In OMk, for any 0 ≤ i < 2k−m, 1 ≤ m ≤ k and 0 ≤ t ≤ k−m, in steps t+1, . . . , t+
m there is no device linking lines in the set P t,m

i = {a1a2 · · · ak | a1 · · · atat+m+1 · · · ak = i, where
a1 · · · ak is a bit representation} with lines from {0, . . . , 2k − 1} \ P t,m

i .

Proof. Suppose there are 1 ≤ r ≤ m, l ∈ P t,m
i and l′ /∈ P t,m

i such that at step t + r there is a
device linking l and l′. From Lemma 1 we have that l′ = bct+r(l), which implies l′ ∈ P t,m

i , a
contradiction.

Sorting Omega Networks Simulated with P Systems: Optimal Data Layouts 35

We can therefore derive the data layouts for the omega network. Suppose we have N = 2k,
n = 2m, and P = 2k−m. We first assign to each processor Pi all values in the set P 0,m

i , for
0 ≤ i ≤ P − 1. By Lemma 2 we have that the first log n = m steps are entirely local. After m
steps, we remap to each processor Pi all the values in the set Pm,m

i , and perform the next m
stages locally, and so on. We can now give the definition of our proposed data layout.

Definition 5. Given N = 2k keys and P = 2k−m processors, which can store n = 2m values,
m ≥ 1, the sequence of optimal data layouts consists of dlogN/ log ne = dk/me data layouts.
In each data layout Ds, 0 ≤ s ≤ dk/me − 1, values in the set P sm,m

i are mapped to processor
Pi, for all 0 ≤ i ≤ 2k−m. More formally, for any 0 ≤ u < 2k such that u ∈ P sm,m

i , we have
Ds(u) = i.

The following is a consequence of Lemma 1 of [15].

Lemma 3. The maximum number of successive steps of the omega network that can be executed
locally, under any data layout is log n, where n = N/P .

In each data layout Ds, 0 ≤ s ≤ dk/me − 2, log n = m steps are local. For s = dk/me − 1, the
last k mod m steps of the network are local. From Lemma 3 we have that the proposed data
layouts for the omega network are optimal.

In the case N ≥ P 2, we notice that 2m > k, hence two data layouts are enough to cover the
whole omega network. However, they do not coincide with Db or Dc, as in the blocked layout,
the last m stages are local, while in the cyclic layout, the first k −m stages are local.

3.2. Computation Complexity

In each data layout, a processor holds n values and performs log n steps locally, taking time
O(n log n). As we have dlogN/ log ne data layouts, we get an overall time complexity of the
omega network of O(n logN). From [6] we have that a serial connection of logN omega
networks of size N is enough to sort a sequence of N numbers. Hence, the complexity to sort
N numbers using P processors, each holding n = N/P values, using our proposed data layouts,
is O(n log2N).

This remark has a quite profound significance. In the fine-grained theoretical model we have
n = 1, and its complexity is O(log2N). The complexity of the network using a more coarse-
grained model depends linearly on the degree of parallelism of the model. At the opposite
end, when n = N and the entire sorting network is simulated locally, we have a complexity
of O(N log2N), which is worse than O(N logN), the complexity of most sequential sorting
algorithms. It would be desirable to choose n such that this bound is not surpassed in the
parallel model. We impose n log2N ≤ N logN , which implies n ≤ N/ logN .

An algorithm to find the minimum of a bitonic sequence of size n in time O(log n), was in-
troduced in [15]. This gives a time complexity of each data layout of O(n). In the case of a

36 R. Ceterchi, M. J. Pérez-Jiménez, A. I. Tomescu

M
e
m

b
ra

n
e
 0
0
1

1

=

0
 0

 0
 0

 1

9

=

0
 1

 0
 0

 1

1
7
 =

 1
 0

 0
 0

 1

2
5
 =

 1
 1

 0
 0

 1

M
e
m

b
ra

n
e
 0
1
0

2

=

0
 0

 0
 1

 0

1
0
 =

 0
 1

 0
 1

 0

1
8
 =

 1
 0

 0
 1

 0

2
6
 =

 1
 1

 0
 1

 0

M
e
m

b
ra

n
e
 0
1
1

3

=

0
 0

 0
 1

 1

1
1
 =

 0
 1

 0
 1

 1

1
9
 =

 1
 0

 0
 1

 1

2
7
 =

 1
 1

 0
 1

 1

M
e
m

b
ra

n
e
 1
0
0

4

=

0
 0

 1
 0

 0

1
2
 =

 0
 1

 1
 0

 0

2
0
 =

 1
 0

 1
 0

 0

2
8
 =

 1
 1

 1
 0

 0

M
e
m

b
ra

n
e
 1
0
1

5

=

0
 0

 1
 0

 1

1
3
 =

 0
 1

 1
 0

 1

2
1
 =

 1
 0

 1
 0

 1

2
9
 =

 1
 1

 1
 0

 1

M
e
m

b
ra

n
e
 1
1
0

6

=

0
 0

 1
 1

 0

1
4
 =

 0
 1

 1
 1

 0

2
2
 =

 1
 0

 1
 1

 0

3
0
 =

 1
 1

 1
 1

 0

M
e
m

b
ra

n
e
 1
1
1

7

=

0
 0

 1
 1

 1

1
5
 =

 0
 1

 1
 1

 1

2
3
 =

 1
 0

 1
 1

 1

3
1
 =

 1
 1

 1
 1

 1

M
e
m

b
ra

n
e
 0
0
0

0

=

0
 0

 0
 0

 0

8

=

0
 1

 0
 0

 0

1
6
 =

 1
 0

 0
 0

 0

2
4
 =

 1
 1

 0
 0

 0

M
e
m

b
ra

n
e
 0
0
0

0

=

0
 0

 0
 0

 0

2

=

0
 0

 0
 1

 0

4

=

0
 0

 1
 0

 0

6

=

0
 0

 1
 1

 0

M
e
m

b
ra

n
e
 0
0
1

1

=

0
 0

 0
 0

 1

3

=

0
 0

 0
 1

 1

5

=

0
 0

 1
 0

 1

7

=

0
 0

 1
 1

 1

M
e
m

b
ra

n
e
 0
1
0

8

=

0
 1

 0
 0

 0

1
0
 =

 0
 1

 0
 1

 0

1
2
 =

 0
 1

 1
 0

 0

1
4
 =

 0
 1

 1
 1

 0

M
e
m

b
ra

n
e
 0
1
1

9

=

0
 1

 0
 0

 1

1
1
 =

 0
 1

 0
 1

 1

1
3
 =

 0
 1

 1
 0

 1

1
5
 =

 0
 1

 1
 1

 1

M
e
m

b
ra

n
e
 1
0
0

1
6
 =

 1
 0

 0
 0

 0

1
8
 =

 1
 0

 0
 1

 0

2
0
 =

 1
 0

 1
 0

 0

2
2
 =

 1
 0

 1
 1

 0

M
e
m

b
ra

n
e
 1
0
1

1
7
 =

 1
 0

 0
 0

 1

1
9
 =

 1
 0

 0
 1

 1

2
1
 =

 1
 0

 1
 0

 1

2
3
 =

 1
 0

 1
 1

 1

M
e
m

b
ra

n
e
 1
1
0

2
4
 =

 1
 1

 0
 0

 0

2
6
 =

 1
 1

 0
 1

 0

2
8
 =

 1
 1

 1
 0

 0

3
0
 =

 1
 1

 1
 1

 0

M
e
m

b
ra

n
e
 1
1
1

2
5
 =

 1
 1

 0
 0

 1

2
7
 =

 1
 1

 0
 1

 1

2
9
 =

 1
 1

 1
 0

 1

3
1
 =

 1
 1

 1
 1

 1

M
e
m

b
ra

n
e
 0
0
0

0

=

0
 0

 0
 0

 0

1

=

0
 0

 0
 0

 1

2

=

0
 0

 0
 1

 0

3

=

0
 0

 0
 1

 1

M
e
m

b
ra

n
e
 0
0
1

4

=

0
 0

 1
 0

 0

5

=

0
 0

 1
 0

 1

6

=

0
 0

 1
 1

 0

7

=

0
 0

 1
 1

 1

M
e
m

b
ra

n
e
 0
1
0

8

=

0
 1

 0
 0

 0

9

=

0
 1

 0
 0

 1

1
0
 =

 0
 1

 0
 1

 0

1
1
 =

 0
 1

 0
 1

 1

M
e
m

b
ra

n
e
 0
1
1

1
2
 =

 0
 1

 1
 0

 0

1
3
 =

 0
 1

 1
 0

 1

1
4
 =

 0
 1

 1
 1

 0

1
5
 =

 0
 1

 1
 1

 1

M
e
m

b
ra

n
e
 1
0
0

1
6
 =

 1
 0

 0
 0

 0

1
7
 =

 1
 0

 0
 0

 1

1
8
 =

 1
 0

 0
 1

 0

1
9
 =

 1
 0

 0
 1

 1

M
e
m

b
ra

n
e
 1
0
1

2
0
 =

 1
 0

 1
 0

 0

2
1
 =

 1
 0

 1
 0

 1

2
2
 =

 1
 0

 1
 1

 0

2
3
 =

 1
 0

 1
 1

 1

M
e
m

b
ra

n
e
 1
1
0

2
4
 =

 1
 1

 0
 0

 0

2
5
 =

 1
 1

 0
 0

 1

2
6
 =

 1
 1

 0
 1

 0

2
7
 =

 1
 1

 0
 1

 1

M
e
m

b
ra

n
e
 1
1
1

2
8
 =

 1
 1

 1
 0

 0

2
9
 =

 1
 1

 1
 0

 1

3
0
 =

 1
 1

 1
 1

 0

3
1
 =

 1
 1

 1
 1

 1

D
a

ta
 l
a

y
o

u
t

1

D
a

ta
 l
a

y
o

u
t

2

D
a

ta
 l
a

y
o

u
t

3

Figure 5: The three data layouts for the omega network in Figure 4(a).

Sorting Omega Networks Simulated with P Systems: Optimal Data Layouts 37

network obtained from a serial connection of bitonic mergers, this observation gives an overall
time complexity of O(n

logn
log2N).

4. What happens inside one processor/membrane

One processor (and the membrane which simulates it) will be capable of holding n = N/P = 2m,
pieces of data. We label the data with indices in the set {0, 1, · · · , n− 1}. For any such index
we consider its writing as a binary string of length m, for instance i = x1x2 · · · xt · · · xm.

Inside one processor, several comparisons are performed, in parallel, between the n pieces of
data, in the following manner: for every bit t, (starting with 1, the most significant bit, and
ending with m) we compare and exchange if necessary (to obtain an increasing order) all pairs
of values codified with ai and abct(i). More precisely, we have the following algorithm to be
performed inside each processor/membrane:

for t← 1 to m do
forall i < bct(i) in parallel do

compare(ai, abct(i));

Algorithm 1: A parallel algorithm for the bitonic merger

where by compare(ai, aj) we denote sorting in an ascendant manner the values codified by ai
and aj, i.e. we end by having the minimum of the two values codified by ai and the maximum
by aj.

The procedure compare(ai, aj) works in a membrane in the following manner: let si, sj and
ti, tj be four auxiliary symbols, for the sources and the targets of a comparator. The set of
rules

{ak → sk | k = i, j} ∪ {sisj → titj, si → tj, sj → tj} ∪ {tk → ak | k = i, j}
implement an increasing comparator between values codified by ai and aj. We first rewrite the
as to ss, next we have the comparator which writes the minimum to ti and the maximum to
tj, and then we rewrite these back to ai and aj respectively.

For all the comparisons which are to be done in parallel, take auxiliary alphabets S = {s0, · · · ,
sn−1} and T = {t0, · · · , tn−1}. We rewrite all initial symbols to symbols in S:

{ai → si | i = 0, 1, · · · , n− 1}.

Next we put the comparators between appropriate pairs:

{sisj → titj, si → tj, sj → tj | i = 0, 1, · · · , n− 1, i < j = bct(i)}.

Then we rewrite back to the original alphabet:

{ti → ai | i = 0, 1, · · · , n− 1}.

38 R. Ceterchi, M. J. Pérez-Jiménez, A. I. Tomescu

The parallel comparisons at each step t

forall i < bct(i) in parallel do
compare(ai, abct(i));

will thus be simulated in a membrane P by the rules

{ai → si | i = 0, 1, · · · , n− 1} ∪

∪ {sisj → titj, si → tj, sj → tj | i = 0, 1, · · · , n− 1, i < j = bct(i)} ∪

∪ {ti → ai | i = 0, 1, · · · , n− 1}.

5. A P System which Simulates the Omega Network

In this section we introduce a P system with dynamic communication [7], along the same general
lines as the model proposed in [8, 9]. For each of the processors Pi, i ∈ {0, 1, . . . , P − 1} we
have an associated membrane, which we label i. The graphs we consider are sub-graphs of the
complete graph, KP , or of the identity graph.

Note that at a certain step of the sorting algorithm not all edges are involved in communication.
Therefore we call active sub-graphs of KP those graphs containing only such edges. We also
introduce the identity graph, with

V (Id) = {0, 1, . . . , P − 1},

E(Id) = {(i, i) | 0 ≤ i ≤ P − 1}

for modeling internal processing steps.

In order to describe the evolution of such a P system, we use pairs of the type [graph, rules].
We have graph a sub-graph of KP or Id and rules a mapping from the set of all edges of graph,
E(graph), to the set of all symbol/object rewriting rules for routing or comparison operations.

The formal definition of the P system is

Π =< V = {a0, . . . , an−1} ∪ A, 〈[a
x0
0

0 , a
x0
1

1 , . . . , a
x0

n−1

n−1]0, . . . , [a
xP−1
0

0 , a
xP−1
1

1 , . . . , a
xP−1

n−1

n−1]P−1〉, Rµ >,

where the membrane indices are {0, 1, . . . , P − 1}. The alphabet {a0, . . . , an−1} is of fixed size,
and the set A contains the auxiliary symbols necessary to simulate the omega network, as
indicated in Section 4. Numbers xji with 0 ≤ i ≤ n − 1 are the values stored on the wires
mapped to processor j, 0 ≤ j ≤ P − 1 in the first data layout. Each of them is codified as the

Sorting Omega Networks Simulated with P Systems: Optimal Data Layouts 39

number of occurrences of a symbol ai inside membrane j. Finally, Rµ is the finite sequence of
pairs [graph, rules] which guides the computation.

We will see in the sequel that Rµ is generated algorithmically, by concatenating sequences of
pairs [graph, rules] (we denote the empty sequence by λ, and the concatenation of two sequences
by “·”).

Lemma 4. Given N = 2k keys and P = 2k−m membranes, which can store n = 2m values,
m ≥ 1, after the computation for the data layout Ds is finished, symbol ai of membrane j
codifies the value corresponding to wire u ∈ {0, . . . , N − 1}, where the bit representation of
u is u = j1 . . . jsmi1 . . . imjsm+1 . . . jk−m. By j1 . . . jk−m and by i1 . . . im we denoted the bit
representations of j, and i, respectively.

Proof. The proof is immediate by Definitions 1, 5 and Lemma 2.

We observe that the remap of values from a data layout to the other can be done in P + 1
steps. When passing from data layout Ds−1 to Ds, with 0 < s ≤ dk/me − 1, in each step
j, 0 ≤ j ≤ P − 1, membrane j sends its contents along the edges of the communication graph
Cj
s . To avoid collisions in the destination membranes, it also performs a rewriting of symbols

from at to a′t, for all t ∈ {0, . . . , n− 1}. In the last step P + 1, all auxiliary symbols a′t will be
rewritten back to at in all membranes, and the local computation can begin in each membrane.

We give below two algorithms generating the communication graphs Cj
s , and the rules associated

to each edge.

E(Cj
s)← ∅ ;

for j ← 0 to P − 1 do
for i← 0 to n− 1 do

let j have bit representation j1 · · · jsmjsm+1 · · · jk−m;
let i have bit representation i1 · · · im;
// the destination membrane of value encoded by ai in membrane j
z ← j1 · · · jsmi1 · · · imj(s+1)m+1 · · · jk−m;
// the destination symbol of value encoded by ai in membrane j
t← jsm+1 · · · jsm+m;

E(Cj
s) := E(Cj

s) ∪ {j, z};
rulesCj

s
((j, z)) := ai → a′t ;

Algorithm 2: Generation of the sequence of P communication graphs when passing from data
layout Ds−1 to Ds, with 0 < s ≤ dk/me − 1.

40 R. Ceterchi, M. J. Pérez-Jiménez, A. I. Tomescu

for j ← 0 to P − 1 do
rules-endcomm((j, j)) := {a′i → ai | 0 ≤ i ≤ n− 1};

Algorithm 3: Generation of the rules associated to the identity graph which rewrite back the
auxiliary symbols a′t when passing from any data layout Ds−1 to Ds, with 0 < s ≤ dk/me − 1.

We assume that the sequence denoted by SimOM is the sequence of pairs [graph, rules] which
simulates the omega network of size n, OMm (n = 2m). Its construction was indicated in
Section 4 and is expressed algorithmically below.

SimOM ← λ;
for t← 1 to m = log n do

forall p← 0 to P − 1 in parallel do
rulest,1((p, p))← {ai → si | i = 0, 1, . . . n− 1};
rulest,2((p, p))← {sisj → titj, si → tj, sj → tj | i = 0, 1, . . . , n− 1, i < j = bct(i)};
rulest,3((p, p))← {ti → ai | i = 0, 1, · · ·n− 1};

SimOM ← SimOM · [Id,rulest,1] · [Id,rulest,2] · [Id,rulest,3];

Algorithm 4: Generation of the sequence SimOM which simulates the omega network of size
n.

We can now give the algorithm which generates the whole sequence Rµ guiding the computation.

Rµ ← λ;
for s← 1 to dk/me − 1 do

Rµ ← Rµ · SimOM ;
for j ← 0 to P − 1 do

Rµ ← Rµ · [Cj
s , rulesCj

s
];

Rµ ← Rµ · [Id, rules-endcomm];

Rµ ← Rµ · SimOM ;
Algorithm 5: Generation of the sequence Rµ which guides the computation.

5.1. Computation complexity

Observe that the length of the sequence SimOM is 3 log n. As we have logN
logn

data layouts,
and that in each data layout 3 log n steps are needed for SimOM and another P + 1 steps
are needed for communication, the length of Rµ is 3 logN + N logN

n logn
. A sorting network can be

obtained by a serial connection of logN omega networks, hence our model can sort in time

O(log2N + N log2N
n logn

). Note that when n = N all computation is local, and the complexity is the

best possible, O(log2N). When n = 2 the complexity increases to O(N log2N).

Sorting Omega Networks Simulated with P Systems: Optimal Data Layouts 41

Acknowledgements

We thank the anonymous referees for their comments and suggestions which helped improve
the quality of the paper.

References

[1] AJTAI, M., KOMLOS, J., SZEMEREDI, E., An O(N log N) sorting network, Proc. 15th Ann.
ACM Symp. Theory of Computing, 1983, 1–9.

[2] AGGARWAL, A., CHANDRA, A. K., SNIR, M., Communication complexity of PRAMs, Theo-
retical Computer Science 71 (1) (1990), 3–28.

[3] ALEXANDROV, A., IONESCU, M., SCHAUSER, K. E., SCHEIMAN, C., LogGP: incorporating
long messages into the LogP model, Journal of parallel and distributed computing 44 (1) (1997),
71–79.

[4] ALHAZOV, A., SBURLAN, D., Static sorting P systems, Ch. 8 in: G. Ciobanu, Gh. Păun, M. J.
Pérez Jiménez (Eds.), Applications of Membrane Computing, Springer, 2005.

[5] BATCHER, K. E., Sorting networks and their applications, Proc. AFIPS Spring Joint Comput.
Conf. 32 (1968), 307–314.

[6] BILARDI, G., Merging and sorting networks with the topology of the Omega Network, IEEE
Transactions on Computers 38 (10) (1989), 1396–1403.

[7] CETERCHI, R., MARTÍN-VIDE, C., Dynamic P systems, Lecture Notes in Computer Science
2597, 2003, 146–186.

[8] CETERCHI, R., PÉREZ JIMÉNEZ, M. J., On two-dimensional mesh networks and their simu-
lation with P systems, Lecture Notes in Computer Science 3365, 2005, 259–277.

[9] CETERCHI, R., PÉREZ JIMÉNEZ, M. J., TOMESCU, A. I., Simulating the Bitonic Sort Using
P Systems, in: G. Eleftherakis et al. (Eds.), WMC8 2007, Lecture Notes in Computer Science
4860, 2007, 172–192.

[10] CETERCHI, R., TOMESCU, A. I., Implementing sorting networks with spiking neural P systems,
Fundamenta Informaticae, 2008, to appear.

[11] CULLER, D. E., KARP, R. M., PATTERSON, D. A., SAHAY, A., SCHAUSER, K. E., SAN-
TOS, E., SUBRAMONIAN, R., VON EICKEN, T., LogP: Towards a realistic model of parallel
computation, Proc. Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 1993, 1–12.

[12] DOWD, M., PERL, Y., SAKS, M., RUDOLPH, L., The balanced sorting network, Proc. Second
annual ACM symp. on Principles of distributed computing, 1983, 161–172.

[13] DOWD, M., PERL, Y., SAKS, M., RUDOLPH, L., The periodic balanced sorting network, JACM
36. (4) (1989), 738–757.

[14] IONESCU, M. F., Optimizing parallel bitonic sort, Tech. Report TRCS96-14, Dept. of Comp.
Sci., Univ. of California, Santa Barbara, 1996.

42 R. Ceterchi, M. J. Pérez-Jiménez, A. I. Tomescu

[15] IONESCU, M. F., SCHAUSER, K. E., Optimizing parallel bitonic sort, Proc. 11th Int’l Parallel
Processing Symp., 1997, 303–309.

[16] KNUTH, D. E., The Art of Computer Programming, volume 3: Sorting and Searching, second
ed., Redwood City, CA, Addison Wesley Longman, 1998.

[17] KRUSKAL, C., RUDOLPH, L., SNIR, M., A complexity theory of efficient parallel algorithms,
Theoretical Computer Science 71 (1) (1990), 95–132.

[18] LEE, J. D., BATCHER, K. E., Minimizing communication in the bitonic sort, IEEE Trans. on
Parallel and Distributed Systems 11 (5) (2000), 459–474.

[19] LEIGHTON, F., Tight bounds on the complexity of parallel sorting, IEEE Trans. Computers 34
(4) (1985), 344–354.

[20] PATERSON, M. S., Improved sorting networks with O(log N) depth, Algorithmica 5 (1990),
75–92.

(TISSUE) P SYSTEMS WORKING IN THE
k-RESTRICTED MINIMALLY PARALLEL

DERIVATION MODE

Rudolf Freund1 and Sergey Verlan2

1Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria

Email: rudi@emcc.at
2LACL, Département Informatique

UFR Sciences et Technologie, Université Paris XII
61, av. Général de Gaulle, 94010 Créteil, France

Email: verlan@univ-paris12.fr

Abstract
Just recently several new derivaton modes for (tissue) P systems have been introduced and
investigated in addition to the maximally parallel derivation mode used from the beginning in the
area of membrane computing. A variant of the minimally parallel derivation is considered in this
paper – we allow only a bounded number of rules to be taken from every set of the partitioning
of the whole set of rules. The 1-restricted minimally parallel derivation mode especially fits to
describe the way derivations take place in spiking neural P systems without delays, i.e., in every
neuron where a rule is applicable exactly one rule has to be applied. Moreover, purely catalytic P
systems working in the maximally parallel derivation mode can be described as P systems using
the corresponding rules without catalysts when working in the 1-restricted minimally parallel
derivation mode.

1. Introduction

In the original model of P systems introduced as membrane systems by Gh. Păun (see [5], [10]),
the objects evolve in a hierarchical membrane structure; in tissue P systems, first considered
by Gh. Păun and T. Yokomori in [13] and [14], also see [7], the cells communicate within an ar-
bitrary graph topology. In the original model of membrane systems as well as in many variants
of P systems and tissue P systems investigated during the last decade, the maximally parallel
derivation mode was used. Just recently several new derivation modes for P systems and tissue
P systems have been introduced and investigated, for example, the sequential and the asyn-
chronous derivation mode as well as the minimally parallel derivation mode (see [3]). In [8], a
formal framework for (tissue) P systems capturing the formal features of these derivation modes
was developed, based on a general model of membrane systems as a collection of interacting
cells containing multisets of objects (compare with the models of networks of cells as discussed

44 Rudolf Freund and Sergey Verlan

in [2] and networks of language processors as considered in [4]). Continuing the formal approach
started in [8], a variant of the minimally parallel derivation mode is considered in this paper:
In the minimally parallel derivation mode, we consider a partitioning of the whole set of rules
and allow only multisets of rules to be applied in parallel which cannot be extended by adding
a rule from a set of rules from which no rule has already been taken into this multiset of rules.
Whereas in the minimally parallel derivation mode, an arbitrary number of rules can be used
from any of the sets of rules in the partitioning of rules, only a bounded number of at most
k rules can be taken from each of these sets of the partitioning in the k-restricted minimally
parallel derivation mode.

The rest of this paper now is organized as follows: In the second section, well-known definitions
and notions are recalled. In the next section, we consider a general class of multiset rewriting
systems containing, in particular, many variants of P systems and tissue P systems as well
as even (extended) spiking neural P systems without delays and give formal definitions of the
most important well-known derivation modes (maximally parallel, minimally parallel) as well
as the new k-restricted minimally parallel derivation mode. The 1-restricted minimally parallel
derivation mode especially fits to describe the way derivations take place in spiking neural P
systems without delays, i.e., in every neuron where a rule is applicable exactly one rule has to
be applied. Moreover, purely catalytic P systems working in the maximally parallel derivation
mode can be described as P systems using the corresponding rules without catalysts when
working in the 1-restricted minimally parallel derivation mode. An outlook to future research
topics involving the k-restricted minimally parallel derivation mode concludes the paper.

2. Preliminaries

We recall some of the notions and the notations we use (see [12] for elements of formal language
theory). Let V be a (finite) alphabet; then V ∗ is the set of all strings (a language) over V , and
V + = V ∗ − {λ} where λ denotes the empty string. RE, REG (RE (T), REG (T)) denote the
families of recursively enumerable and regular languages (over the alphabet T), respectively.
For any family of string languages F , PsF denotes the family of Parikh sets of languages from
F and NF the family of Parikh sets of languages from F over a one-letter alphabet. By N we
denote the set of all non-negative integers, by Nk the set of all vectors of non-negative integers;
[k..m] for k ≤ m denotes the set of natural numbers n with k ≤ n ≤ m. In the following, we
will not distinguish between NRE, which coincides with PsRE ({a}), and RE ({a}).

Let V be a (finite) set, V = {a1, ..., ak}. A finite multiset M over V is a mapping M : V −→ N,
i.e., for each a ∈ V , M (a) specifies the number of occurrences of a in M . The size of the
multiset M is |M | =

∑
a∈V M (a). A multiset M over V can also be represented by any string

x that contains exactly M (ai) symbols ai for all 1 ≤ i ≤ k, e.g., by a
M(a1)
1 ...a

M(ak)
k , or else by

the set
{
a

M(ai)
i | 1 ≤ i ≤ k

}
. The support of M is the set supp(M) = {a ∈ V | f(a) ≥ 1}.

The set of all finite multisets over the set V is denoted by 〈V,N〉. We may also consider
mappings M of the form M : V −→ N∞ where N∞ = N ∪ {∞}, i.e., elements of M may

(Tissue) P Systems Working in the min1 Mode 45

have an infinite multiplicity; we shall call such multisets where M (ai) = ∞ for at least one i,
1 ≤ i ≤ k, infinite multisets. The set of all such multisets M over V with M : V −→ N∞ is
denoted by 〈V,N∞〉. For W ⊆ V , W∞ denotes the infinite multiset with W (a) = ∞ for all
a ∈ W .

Let x and y be two multisets over V , i.e., from 〈V,N〉 or 〈V,N∞〉. Then x is called a submultiset
of y, written x ≤ y or x ⊆ y, if and only if x (a) ≤ y (a) for all a ∈ V ; if, moreover, x (a) < y (a)
for some a ∈ V , then x is called a strict submultiset of y. Observe that for all n ∈ N, n+∞ =∞,
and ∞− n = ∞. The sum of x and y, denoted by x + y or x ∪ y, is a multiset z such that
z(a) = x(a) + y(a) for all a ∈ V . The difference of two multisets x and y, denoted by x − y,
provided that y ⊆ x, is the multiset z with z(a) = x(a) − y(a) for all a ∈ V . Observe that in
the following, when taking the sum or the difference of two multisets x and y from 〈V,N∞〉, we
shall always assume {x(a), y(a)} ∩ N 6= ∅.

If X = (x1, . . . , xm) and Y = (y1, . . . , ym) are vectors of multisets over V , then X ≤ Y if and
only if xj ⊆ yj for all j, 1 ≤ j ≤ m; in the same way, sum and difference of vectors of multisets
are defined by taking the sum and the difference, respectively, in each component.

Throughout the rest of the paper, we will not distinguish between a multiset from 〈V,N〉 and
its representation by a string over V containing the corresponding number of each symbol.
Moreover, when we speak of a partitioning of a set R into a set {Ri | 1 ≤ i ≤ h} of subsets of
R, i.e., Ri ⊆ R, 1 ≤ i ≤ h, the Ri are not necessarily disjoint.

3. Networks of Cells

In this section we consider membrane systems as a collection of interacting cells containing
multisets of objects like in [2] and [8]. For an introduction to the area of membrane computing
we refer the interested reader to the monograph [11], the actual state of the art can be seen in
the web [15].

Definition 3.1. A network of cells with checking sets of degree n ≥ 1 is a construct

Π = (n, V, w,R)

where

1. n is the number of cells;

2. V a finite alphabet ;

3. w = (w1, . . . , wn) where wi ∈ 〈V,N∞〉, for all 1 ≤ i ≤ n, is the multiset initially associated
to cell (in most of the cases, at most one cell, then being called the environment, will
contain symbols occurring with infinite multiplicity);

46 Rudolf Freund and Sergey Verlan

4. R is a finite set of interaction rules of the form

(E : X → Y)

where E is a recursive condition for configurations of Π (see definition below) as well
as X = (x1, . . . , xn), Y = (y1, . . . , yn), with xi, yi ∈ 〈V,N〉, 1 ≤ i ≤ n, are vectors of
multisets over V . We will also use the notation

(E : (x1, 1) . . . (xn, n)→ (y1, 1) . . . (yn, n))

for a rule (E : X → Y).

A network of cells consists of n cells, numbered from 1 to n, that contain (possibly infinite)
multisets of objects over V ; initially cell i contains wi. A configuration C of Π is an n-tuple
of multisets over V (u1, . . . , un); the initial configuration of Π, C0, is described by w, i.e.,
C0 = w = (w1, . . . , wn). Cells can interact with each other by means of the rules in R. An
interaction rule

(E : (x1, 1) . . . (xn, n)→ (y1, 1) . . . (yn, n))

is applicable to a configuration C if and only if C fulfills condition E; its application means
rewriting objects xi from cells i into objects yj in cells j, 1 ≤ i, j ≤ n.

The set of all multisets of rules applicable to C is denoted by Appl (Π, C) (a procedural algorithm
how to obtain Appl (Π, C) is described in [8]).

For the specific derivation modes to be defined in the following, the selection of multisets
of rules applicable to a configuration C has to be a specific subset of Appl (Π, C); for the
derivation mode ϑ, the selection of multisets of rules applicable to a configuration C is denoted
by Appl (Π, C, ϑ).

Definition 3.2. For the asynchronous derivation mode (asyn),

Appl (Π, C, asyn) = Appl (Π, C) ,

i.e., there are no particular restrictions on the multisets of rules applicable to C.

Definition 3.3. For the sequential derivation mode (sequ),

Appl (Π, C, sequ) = {R′ | R′ ∈ Appl (Π, C) and |R′| = 1} ,

i.e., any multiset of rules R′ ∈ Appl (Π, C, sequ) has size 1.

The most important derivation mode considered in the area of P systems from the beginning
is the maximally parallel derivation mode where we only select multisets of rules R′ that are
not extensible, i.e., there is no other multiset of rules R′′ % R′ applicable to C.

(Tissue) P Systems Working in the min1 Mode 47

Definition 3.4. For the maximally parallel derivation mode (max),

Appl (Π, C,max) = {R′ | R′ ∈ Appl (Π, C) and there is
no R′′ ∈ Appl (Π, C) with R′′ % R′} .

For the minimally parallel derivation mode, we need an additional feature for the set of rules
R, i.e., we consider a partition of R into disjoint subsets R1 to Rh. Usually, this partition of R
may coincide with a specific assignment of the rules to the cells. For any set of rules R′ ⊆ R,
let ‖R′‖ denote the number of sets of rules Rj, 1 ≤ j ≤ h, with Rj ∩R′ 6= ∅.

There are several possible interpretations of this minimally parallel derivation mode which in
an informal way can be described as applying multisets such that from every set Rj, 1 ≤ j ≤ h,
at least one rule – if possible – has to be used (e.g., see [3]). For the basic variant as defined in
the following, in each derivation step we choose a multiset of rules R′ from Appl (Π, C, asyn)
that cannot be extended to R′′ ∈ Appl (Π, C, asyn) with R′′ % R′ as well as (R′′ −R′)∩Rj 6= ∅
and R′ ∩ Rj = ∅ for some j, 1 ≤ j ≤ h, i.e., extended by a rule from a set of rules Rj from
which no rule has been taken into R′.

Definition 3.5. For the minimally parallel derivation mode (min),

Appl (Π, C,min) = {R′ | R′ ∈ Appl (Π, C, asyn) and
there is no R′′ ∈ Appl (Π, C, asyn)
with R′′ % R′, (R′′ −R′) ∩Rj 6= ∅
and R′ ∩Rj = ∅ for some j, 1 ≤ j ≤ h} .

In [8], further restricting conditions on the four basic modes defined above, especially interesting
for the minimally parallel derivation mode, were considered. We now consider a restricted
variant of the minimally parallel derivation mode allowing only a bounded number of at most
k rules to be taken from each set Rj, 1 ≤ j ≤ h, of the partitioning into a multiset of rules
applicable in the minimally parallel derivation mode.

Definition 3.6. For the k-restricted minimally parallel derivation mode (mink),

Appl (Π, C,mink) = {R′ | R′ ∈ Appl (Π, C,min) and
|R′ ∩Rj| ≤ k for all j, 1 ≤ j ≤ h} .

For all the derivation modes defined above, we now can define how to obtain a next configuration
from a given one by applying an applicable multiset of rules according to the constraints of the
underlying derivation mode:

Definition 3.7. Given a configuration C of Π and a derivation mode ϑ, we may choose a
multiset of rules R′ ∈ Appl (Π, C, ϑ) in a non-deterministic way and apply it to C. The
result of this transition step from the configuration C with applying R′ is the configuration
Apply (Π, C,R′), and we also write C =⇒(Π,ϑ) C

′. The reflexive and transitive closure of the
transition relation =⇒(Π,ϑ) is denoted by =⇒∗(Π,ϑ).

48 Rudolf Freund and Sergey Verlan

Definition 3.8. A computation in a network of cells Π, Π = (n, V, w,R), starts with the initial
configuration C0 = w and continues with transition steps according to the chosen derivation
mode ϑ; it is called successful if we reach a configuration C to which no multiset of rules can
be applied with respect to the derivation mode ϑ anymore, i.e., Appl (Π, C, ϑ) = ∅ (we also say
that the computation halts).

As the results of a halting computation we take the number of objects in a specified output
cell. We shall use the notation

OmCn (ϑ) [parameters for rules]

to denote the family of sets of natural numbers generated by networks of cells Π = (n, V, w,R)
with m = |V | as well as ϑ indicating the derivation mode; the parameters for rules describe the
specific features of the rules in R. If any of the parameters m and n is unbounded, we replace
it by ∗.

4. Specific Examples for the 1-Restricted Minimally Parallel Deriva-
tion Mode

In this section, we show how the 1-restricted minimally parallel derivation mode may capture
characteristic features of well-known models of P systems.

We first consider extended spiking neural P systems (without delays, see [1]), where the rules are
applied in a sequential way in each neuron, but on the level of the whole system, the maximally
parallel derivation mode is applied (every neuron which may use a spiking rule has to spike,
i.e., to apply a rule, see the original paper [9]). When partitioning the rule set according to the
set of neurons, the application of the 1-restricted minimally parallel derivation mode exactly
models the original derivation mode defined for spiking neural P systems.

Already in the original paper of Gh. Păun (see [10]), membrane systems with catalytic rules were
defined, but used together with other noncooperative rules. In [6] it was shown that only three
catalysts are sufficient in one membrane, using only catalytic rules with the maximally parallel
derivation mode, to generate any recursively enumerable set of natural numbers. Hence, by
showing that P systems with purely catalytic rules working in the maximally parallel derivation
mode can be considered as P systems working with the corresponding non-cooperative rules
in the 1-restricted minimally parallel derivation mode when partitioning the rule sets for each
membrane with respect to the catalysts, we obtain the astonishing result that in this case
we get a characterization of the recursively enumerable sets of natural numbers by using only
noncooperative rules, i.e., NRE = O∗C1 (min1) [noncoop].

4.1. Extended Spiking Neural P Systems

An extended spiking neural P system (of degree m ≥ 1) (in the following we shall simply speak
of an ESNP system) is a construct

(Tissue) P Systems Working in the min1 Mode 49

Π = (m,S,R)

where

• m is the number of neurons ; the neurons are uniquely identified by a number between 1
and m;

• S describes the initial configuration by assigning an initial value (of spikes) to each neuron;

• R is a finite set of rules of the form
(
i, E/ak → P

)
such that i ∈ [1..m] (specifying that

this rule is assigned to neuron i), E ⊆ REG ({a}) is the checking set (the current number
of spikes in the neuron has to be from E if this rule shall be executed), k ∈ N is the
“number of spikes” (the energy) consumed by this rule, and P is a (possibly empty) set
of productions of the form (l, aw) where l ∈ [1..m] (thus specifying the target neuron),
w ∈ N is the weight of the energy sent along the axon from neuron i to neuron l.

A configuration of the ESNP system is described by specifying the actual number of spikes in
every neuron. A transition from one configuration to another one is executed as follows: for
each neuron i, we non-deterministically choose a rule

(
i, E/ak → P

)
that can be applied, i.e.,

if the current value of spikes in neuron i is in E, neuron i “spikes”, i.e., for every production
(l, w) occurring in the set P we send w spikes along the axon from neuron i to neuron l. A
computation is a sequence of configurations starting with the initial configuration given by S.
An ESNP system can be used to generate sets from NRE (we do not distinguish between NRE
and RE ({a})) as follows: a computation is called successful if it halts, i.e., if for no neuron,
a rule can be activated; we then consider the contents, i.e., the number of spikes, of a specific
neuron called output neuron in halting computations.

We now consider the ESNP system Π = (m,S,R) as a network of cells Π′ = (m, {a} , S, R′)
working in the 1-restricted minimally parallel derivation mode, with

R′ =
{(
E :

(
ak, i

)
→ (aw1 , l1) . . . (awn , ln)

)
|(

i, E/ak → (l1, a
w1) . . . (ln, a

wn)
)
∈ R

}
and the partitioning R′i, 1 ≤ i ≤ m, of the rule set R′ according to the set of neurons, i.e.,

R′i =
{(
E :

(
ak, i

)
→ (aw1 , l1) . . . (awn , ln)

)
|(

E :
(
ak, i

)
→ (aw1 , l1) . . . (awn , ln)

)
∈ R′

}
.

The 1-restricted minimally parallel derivation mode chooses one rule – if possible – from every
set Ri and then applies such a multiset of rules in parallel, which directly corresponds to
applying one spiking rule in every neuron where a rule can be applied. Hence, it is easy to
see that Π′ and Π generate the same set from RE {a} if in both systems we take the same
cell/neuron for extracting the output. Due to the results valid for ESNP systems, see [1], we
obtain

NRE = O1C3 (min1) [ESNP] .

50 Rudolf Freund and Sergey Verlan

4.2. Purely Catalytic P Systems

A noncooperative evolution rule is of the form (I : (a, i)→ (y1, 1) . . . (yn, n)) where a is a single
symbol and I denotes the condition that is always fulfilled. A catalytic rule is of the form
(I : (c, i) (a, i)→ (c, i) (y1, 1) . . . (yn, n)) where c is from a distinguished subset VC ⊂ V such
that in all rules (noncooperative evolution rules, catalytic rules) of the whole system the yi

are from (V − VC)∗ and the symbols a are from (V − VC). Imposing the restriction that the
noncooperative evolution rules and the catalytic rules in a network of cells allow for finding
a hierarchical tree structure of membranes such that symbols either stay in their membrane
region or are sent out to the surrounding membrane region or sent into an inner membrane,
then we get the classical catalytic P systems without priorities. Allowing regular sets checking
for the non-appearance of specific symbols instead of I, we even get the original P systems
with priorities. Catalytic P systems using only catalytic rules are called purely catalytic P
systems. As we know from [6], only two (three) catalysts in one membrane are needed to
obtain NRE with (purely) catalytic P systems without priorities working in the maximally
parallel derivation mode, i.e., we can write these results as follows:

NRE = O∗C1 (max) [cat2] = O∗C1 (max) [pcat3] .

If we now partition the rule set in a purely catalytic P system according to the catalysts present
in each membrane, this partitioning replaces the use of the catalysts when working in the 1-
restricted minimally parallel derivation mode, because by definition from each of these sets then
– if possible – exactly one rule (as with the use of the corresponding catalyst) is chosen: from
the set of purely catalytic rules R we obtain the corresponding set of noncooperative rules R′

as
R′ = {(I : (a, i)→ (y1, 1) . . . (yn, n)) |

(I : (c, i) (a, i)→ (c, i) (y1, 1) . . . (yn, n)) ∈ R}
as well as the corresponding partitioning of R′ as

R′i,c = {(I : (a, i)→ (y1, 1) . . . (yn, n)) |
(I : (c, i) (a, i)→ (c, i) (y1, 1) . . . (yn, n)) ∈ R} .

Considering purely catalytic P systems in one membrane, we therefore infer the following quite
astonishing result that when using the 1-restricted minimally parallel derivation mode for a
suitable partitioning of rules we only need noncooperative rules:

NRE = O∗C1 (min1) [noncoop] .

5. Conclusions

The main purpose of this paper was to introduce the k-restricted minimally parallel derivation
mode and to elaborate how this new derivation mode allows for capturing the main characteris-
tics of well-known variants of membrane systems. The 1-restricted minimally parallel derivation

(Tissue) P Systems Working in the min1 Mode 51

mode, for example, allows us to interpret the way of how spiking neural P systems (without
delays) work in a sequential way on the level of cells, but in the maximally parallel way on the
level of the whole system by using this 1-restricted minimally parallel derivation mode for the
whole system with a partitioning of the rules given by the individual neurons. P systems with
purely catalytic rules working in the maximally parallel derivation mode can be considered as
P systems working with the corresponding noncooperative rules in the 1-restricted minimally
parallel derivation mode when partitioning the rule sets for each membrane with respect to the
catalysts.

In the general framework considered in this paper, many other variants of static P systems and
tissue P systems can be considered, hence, a great variety of such systems working in the k-
restricted minimally parallel derivation mode, especially for k = 1, remains to be investigated
in the future. Moreover, the basic k-restricted minimally parallel derivation mode may be
restricted as exhibited for the other derivation modes as shown in [8], eventually with other
variants of halting. As a specific example of new results of that kind we should like to mention
that, with the variant of the k-restricted minimally parallel derivation mode having to include
at most k rules from each set of the partitioning from which a rule is applicable to the current
configuration into a multiset of rules to be applied, together with partial halting we can only
obtain regular sets of natural numbers.

Acknowledgements

The authors gratefully acknowledge the useful suggestions and remarks from Artiom Alhazov
and Markus Beyreder.

References

[1] ALHAZOV, A., FREUND, R., OSWALD, M., SLAVKOVIK, M., Extended spiking neural P
systems generating strings and vectors of non-negative integers, in: H.J. Hoogeboom, Gh. Paun,
G. Rozenberg (Eds.), Pre-proceedings of Membrane Computing, International Workshop, WMC7,
Leiden, The Netherlands, 2006, 88–101.

[2] BERNARDINI, F., GHEORGHE, M., MARGENSTERN, M., VERLAN, S., Networks of cells
and Petri nets, in: M. A. Gutiérrez-Naranjo, Gh. Păun, A. Romero-Jiménez, A. Riscos-Núñez
(Eds.), Proc. Fifth Brainstorming Week on Membrane Computing, Sevilla, 2007, 33–62.

[3] CIOBANU, G., PAN, L., PĂUN, Gh., PÉREZ-JIMÉNEZ, M.J., P systems with minimal paral-
lelism, Theoretical Computer Science 378 (1) (2007), 117–130.

[4] CSUHAJ-VARJÚ, E., Networks of language processors, Current Trends in Theoretical Computer
Science (2001), 771–790.

[5] DASSOW, J., PĂUN, Gh., On the power of membrane computing, Journal of Universal Computer
Science5 (2) (1999), 33–49.

[6] FREUND, R., KARI, L., OSWALD, M., SOSÍK, Computationally universal P systems without
priorities: two catalysts are sufficient, Theoretical Computer Science 330 (2005), 251–266.

52 Rudolf Freund and Sergey Verlan

[7] FREUND, R., PĂUN, Gh., M.J. PÉREZ-JIMÉNEZ, Tissue-like P systems with channel states,
Theoretical Computer Science 330 (2005), 101–116.

[8] FREUND, R., VERLAN, S., A formal framework for P systems, in: G. Eleftherakis, P. Kefalas,
Gh. Paun (Eds.), Pre-proceedings of Membrane Computing, International Workshop – WMC8,
Thessaloniki, Greece, 2007, 317–330.

[9] IONESCU, M., PĂUN, Gh., YOKOMORI, T., Spiking neural P systems, Fundamenta Informat-
icae 71, 2–3 (2006), 279–308.

[10] PĂUN, Gh., Computing with membranes, J. of Computer and System Sciences 61, 1 (2000),
108–143, and TUCS Research Report 208 (1998) (http://www.tucs.fi).

[11] PĂUN, Gh., Membrane Computing. An Introduction, Springer-Verlag, Berlin 2002.

[12] ROZENBERG, G., SALOMAA, A. (Eds.), Handbook of Formal Languages (3 volumes), Springer-
Verlag, Berlin 1997.

[13] PĂUN, Gh., SAKAKIBARA, Y., YOKOMORI, T., P systems on graphs of restricted forms,
Publicationes Matimaticae 60, 2002.

[14] PĂUN, Gh., YOKOMORI, T., Membrane computing based on splicing, in: E. Winfree and D. K.
Gifford (Eds.), DNA Based Computers V, volume 54 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, American Mathematical Society, 1999, 217–232.

[15] The P Systems Web Page: http://ppage.psystems.eu.

ONE-SIDED INSERTION AND DELETION:
TRADITIONAL AND P SYSTEMS CASE

Alexander Krassovitskiy1 Yurii Rogozhin1,2 Sergey Verlan2,3

1Rovira i Virgili University,
Research Group on Mathematical Linguistics,

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
Email: alexander.krassovitskiy@estudiants.urv.cat

2Institute of Mathematics and Computer Science
Academy of Sciences of Moldova

5, str. Academiei, MD-2028, Chişinău, Moldova
Email: rogozhin@math.md

3 LACL, Département Informatique, Université Paris Est,
61, av. Général de Gaulle, 94010 Créteil, France

Email: verlan@univ-paris12.fr

Abstract
In this article we continue the investigation of insertion-deletion systems having a context only
on one side of insertion or deletion rules. We investigate the combination of systems having
minimal one-sided insertion and deletion rules and P systems and we show that the computa-
tional power is strictly increased. We also present a universality result for systems which insert
or delete one symbol in two symbols asymmetrical insertion and deletion contexts. Finally we
show that if deletion rules are not present, then some non-regular context-free languages may
be obtained.

1. Introduction

The operations of insertion and deletion are fundamental in formal language theory, and gen-
erative mechanisms based on them were considered (with linguistic motivation) for some time,
see [7] and [2]. Related formal language investigations can be found in several places; we men-
tion only [3], [5], [9], [11]. In the last years, the study of these operations has received a new
motivation from molecular computing, see [1], [4], [13], [15], [8].

In a general form, an insertion operation means adding a substring to a given string in a
specified (left and right) context, while a deletion operation means removing a substring of a
given string from a specified (left and right) context. A finite set of insertion-deletion rules,
together with a set of axioms provide a language generating device (an InsDel system): starting
from the set of initial strings and iterating insertion-deletion operations as defined by the given
rules we get a language. The number of axioms, the length of the inserted or deleted strings,

54 A. Krassovitskiy, Yu. Rogozhin, S. Verlan

as well as the length of the contexts where these operations take place are natural descriptional
complexity measures in this framework. As expected, insertion and deletion operations with
context dependence are very powerful, leading to characterizations of recursively enumerable
languages. Most of the papers mentioned above contain such results, in many cases improving
the complexity of insertion-deletion systems previously available in the literature.

Some combinations of parameters lead to systems which are not computationally complete [10],
[6] or even decidable [16]. It is worth to note that most of these results concern insertion-
deletion systems having a context only on one side of insertion or deletion rules. Such kind
of insertion-deletion systems can be investigated in combination with distributed computing
concepts like P systems [12]. In this article we show that the distribution based on P systems
increases the computational power with respect to a non-distributed insertion-deletion system.
We also continue the investigation of the class of one-sided insertion-deletion systems and show
a universality result for systems inserting and deleting one symbol in two-symbols asymmetrical
context. Finally, we show that the class of minimal one-sided insertion-only systems contains
non-regular context-free languages.

2. Prerequisites

All formal language notions and notations we use here are elementary and standard. The reader
can consult any of the many monographs in this area – for instance, [14] – for the unexplained
details.

We denote by |w| the length of word w and by card(A) the cardinality of the set A. An InsDel
system is a construct ID = (V, T,A, I,D), where V is an alphabet, T ⊆ V , A is a finite language
over V , and I,D are finite sets of triples of the form (u, α, v), α 6= ε of strings over V , where ε
denotes the empty string. The elements of T are terminal symbols (in contrast, those of V −T
are called nonterminals), those of A are axioms, the triples in I are insertion rules, and those
from D are deletion rules. An insertion rule (u, α, v) ∈ I indicates that the string α can be
inserted in between u and v, while a deletion rule (u, α, v) ∈ D indicates that α can be removed
from the context (u, v). Stated otherwise, (u, α, v) ∈ I corresponds to the rewriting rule
uv → uαv, and (u, α, v) ∈ D corresponds to the rewriting rule uαv → uv. We denote by =⇒ins

the relation defined by an insertion rule (formally, x =⇒ins y iff x = x1uvx2, y = x1uαvx2,
for some (u, α, v) ∈ I and x1, x2 ∈ V ∗) and by =⇒del the relation defined by a deletion rule
(formally, x =⇒del y iff x = x1uαvx2, y = x1uvx2, for some (u, α, v) ∈ D and x1, x2 ∈ V ∗).
We refer by =⇒ to union of the relations =⇒ins,=⇒del, and denote by =⇒∗ the reflexive and
transitive closure of =⇒ (as usual, =⇒+ is its transitive closure). The language generated by
ID is defined by L(ID) = {w ∈ T ∗ | x =⇒∗ w, for all x ∈ A}.

The complexity of an InsDel system ID = (V, T,A, I,D) is traditionally described by the vector
(n,m; p, q) called weight, where

One-sided Insertion and Deletion 55

n = max{|α| | (u, α, v) ∈ I},
m = max{|u| | (u, α, v) ∈ I or (v, α, u) ∈ I},
p = max{|α| | (u, α, v) ∈ D},
q = max{|u| | (u, α, v) ∈ D or (v, α, u) ∈ D},

The total weight of ID is the sum γ = m+ n+ p+ q.

However, it was shown in [16] that this complexity measure is not accurate and it cannot
distinguish between universality and non-universality cases (there are families having same
total weight but not the same computational power). In the same article it was proposed to
use the length of each context instead of the maximum. More exactly,

n = max{|α| | (u, α, v) ∈ I},
m = max{|u| | (u, α, v) ∈ I},
m′ = max{|v| | (u, α, v) ∈ I},
p = max{|α| | (u, α, v) ∈ D},
q = max{|u| | (u, α, v) ∈ D},
q′ = max{|v| | (u, α, v) ∈ D}.

Hence the complexity of an insertion-deletion system will be described by the vector
(n,m,m′; p, q, q′) that we call size. We also denote by INSm,m′

n DELq,q′
p corresponding fam-

ilies of insertion-deletion systems. Moreover, we define the total weight of the system as the
sum of all numbers above: ψ = n+m+m′+p+q+q′. Since it is known from [16] that systems
using a context-free insertion or deletion of one symbol are not powerful, we additionally require
n+m+m′ ≥ 2 and p+ q + q′ ≥ 2.

If some of the parameters n,m,m′, p, q, q′ is not specified, then we write instead the symbol ∗.
In particular, INS0,0

∗ DEL0,0
∗ denotes the family of languages generated by context-free InsDel

systems. If one of numbers from the couples m, m′ and/or q, q′ is equal to zero (while the other
is not), then we say that corresponding families have a one-sided context.

InsDel systems of a “sufficiently large” weight can characterize RE, the family of recursively
enumerable languages.

An insertion-deletion P system is the following construct:

Π = (V, T, µ,M1, . . . ,Mn, R1, . . . , Rn),

where

• V is a finite alphabet,

• T ⊆ V is the terminal alphabet,

• µ is the membrane (tree) structure of the system which has n membranes (nodes). This
structure will be represented by a word containing correctly nested marked parentheses.

56 A. Krassovitskiy, Yu. Rogozhin, S. Verlan

• Mi, for each 1 ≤ i ≤ n is a finite language associated to the membrane i.

• Ri, for each 1 ≤ i ≤ n is a set of insertion and deletion rules with target indicators
associated to membrane i and which have the following form: (u, x, v; tar)a, where (u, x, v)
is an insertion rule, and (u, x, v; tar)e, where (u, x, v) is an deletion rule, and tar, called
the target indicator, is from the set {here, in, out}.

Any m-tuple (N1, . . . , Nn) of languages over V is called a configuration of Π. For two configura-
tions (N1, . . . , Nn) and (N ′1, . . . , N

′
n) of Π we write (N1, . . . , Nn) =⇒ (N ′1, . . . , N

′
n) if we can pass

from (N1, . . . , Nn) to (N ′1, . . . , N
′
m) by applying the insertion and deletion rules from each region

of µ, in parallel, to all possible strings from the corresponding regions, and following the target
indications associated with the rules. More specifically, if w ∈ Mi and r = (u, x, v; tar)a ∈ Ri,
respectively r = (u, x, v; tar)a ∈ Ri, such that w =⇒r

ins w
′, respectively w =⇒r

del w
′, then

w′ will go to the region indicated by tar. If tar = here, then the string remains in Mi, if
tar = out, then the string is moved to the region immediately outside the membrane i (maybe,
in this way the string leaves the system), if tar = in, then the string is moved to the region
immediately below.Note that as strings are supposed to appear in arbitrary many copies, after
the application of rule r in a membrane i the string w is still available in the same region.

A sequence of transitions between configurations of a given insertion-deletion P system Π,
starting from the initial configuration (M1, . . . ,Mn), is called a computation with respect to Π.
The result of a computation consists of all strings over T which are sent out of the system at
any time during the computation. We denote by L(Π) the language of all strings of this type.
We say that L(Π) is generated by Π. We denote by ELSPk(insdel, (n,m,m′; p, q, q′))(see, for
example [12]) the family of languages L(Π) generated by insertion-deletion P systems of degree
at most k, k ≥ 1 having the size (n,m,m′; p, q, q′).

3. Results

In this section we present main results of the paper. We start with a result on computational
completeness of one-sided insertion-deletion system of size (1, 2, 0; 1, 0, 2). In order to proof the
next theorem we recall the following lemma from [6]:

Lemma 1. For any insertion-deletion system ID = (V, T,A, I,D) with size (n,m,m′; p, q, q′)
we can construct an insertion-deletion system ID2 = (V ∪ {X, Y }, T, A2, I2, D2 ∪ D′2) having
the same size such that L(ID2) = L(ID). Moreover, all rules from I2 have the form (u, α, v),
where |u| = m, |v| = m′, all rules from D2 have the form (u′, α, v′), where |u′| = q, |v′| = q′

and D′2 = {(ε,X, ε), (ε, Y, ε)}.

Theorem 2. INS2,0
1 DEL0,2

1 = RE.

Proof. The proof of the theorem is based on a simulation of insertion-deletion systems of size
(1, 1, 1; 1, 1, 1). It is known that these systems generate any recursively enumerable language

One-sided Insertion and Deletion 57

[15]. Consider ID = (V, T,A, I,D) to be such a system. Now we construct a system ID2 =
(V2, T, A, I2, D2) of size (1, 2, 0; 1, 0, 2) that will generate the same language as ID.

Using Lemma 1 for normal form of insertion and deletion rules we may assume that rules have
always two symbol in contexts, except for two deletion rules of the form (ε,X, ε) and (ε, Y, ε).
It is clear that in order to show the inclusion L(ID) ⊆ L(ID2) it is sufficient to show how an
insertion rule (a, x, b) ∈ I, with a, b, x ∈ V , may be simulated by using rules of system ID2, i.e.,
insertion rules of type (a′b′, x′, ε) and deletion rules of type (ε, y′, b′c′), with a′, b′, c′ ∈ V2 ∪ {ε},
x′, y′ ∈ V2. We may suppose that for any rule (a, x, b) ∈ I it holds x 6= b. Indeed, if this is
not the case then this rule may be replaced by two insertion rules (a,B, b), (a, b, B) and one
deletion rule (b, B, b):

w1abw2 =⇒ w1aBbw2 =⇒ w1abBbw2 =⇒ w1abbw2.

Similarly we may suppose that for a rule (a, x, b) ∈ I it holds x 6= a.

Consider V2 = V ∪ {Ai, Xi, Yi | 1 ≤ i ≤ card(I)} ∪ {Bi | 1 ≤ i ≤ card(D)}. Let us label all
rules from I by integer numbers. Consider now a rule i : (a, x, b) ∈ I, where 1 ≤ i ≤ card(I) is
the label of the rule. We introduce insertion rules

(ab, Yi, ε) (1)

(a,Ai, ε) (2)

(aAi, x, ε) (3)

(Aix,Xi, ε) (4)

and the deletion rules

(ε, Ai, xXi) (5)

(ε,Xi, bYi) (6)

(ε, Yi, ε) (7)

in D2. The rule i : (a, x, b) ∈ I is simulated as follows. We first perform insertions of symbols
Yi, Ai, x, and Xi:

w1abw2 =⇒ w1abYiw2 =⇒ w1aAibYiw2

=⇒w1aAixbYiw2 =⇒ w1aAixXibYiw2.

and after that deletion of Ai, Xi, Yi as follows:

w1aAixXibYiw2 =⇒ w1axXibYiw2 =⇒ w1axbYiw2 =⇒ w1axbw2.

In that way we simulate the rule (a, x, b) ∈ I correctly. Now let us consider a deletion rule
(a, x, b) ∈ D. Similarly as for insertion rule, we may suppose that for any rule (a, x, b) ∈ D it
holds a 6= x. If this is not the case then this rule may be replaced by two deletion rules (B, a, b),
(a,B, b) and one insertion rule (a,B, a).

58 A. Krassovitskiy, Yu. Rogozhin, S. Verlan

Let us label all rules from I by integer numbers. Consider now a rule i : (a, x, b) ∈ D, where
1 ≤ i ≤ card(D) is the label of the rule. We introduce insertion rule

(ax,Bi, ε) (8)

and the deletion rules

(ε, x,Bib) (9)

(ε, Bi, b) (10)

in D2. The rule i : (a, x, b) ∈ D is simulated as follows. We first perform insertions of Bi:

w1abw2 =⇒+ w1ax(Bi)
+bw2

and after that deletion of x and Bi (applicable to w1axBibw2):

w1axBibw2 =⇒ w1aBibw2 =⇒ w1abw2

Hence, L(ID) ⊆ L(ID2). Now in order to prove the converse inclusion, we consider the
simulation of the rule (a, x, b) ∈ I. We observe that we perform insertion of non-terminal
symbols Yi, Ai, and Xi from V2. After performing these insertions, the only way to get rid of
these symbols is to perform the whole sequence of insertions and deletions. Indeed, in order
to erase Ai at least one symbol Xi has to be inserted after x. And, in order to erase Xi at
least one Yi are needed after b. And, in case more than one symbol x are inserted, then it is
impossible to eliminate the corresponding symbol Ai(as we assumed x 6= b). Now suppose that
more than one symbol Ai, Xi or Yi is inserted after insertion of x, then to finish the derivation
we will have to eliminate every inserted Ai, Xi and Yi. Moreover insertion of Yi after ab insures
that substring xb which appears after (3) can not be used by other rules until Ai, and Xi are
removed.

Now consider the deletion rule (a, x, b). Here we insert Bi from V2 corresponding to the deletion
rule. It follows from (8) that insertion of Bi only possible if ax is on the left. Now we have
two possible cases. The first case is to erase Bi straight after the insertion. It will remain the
sentential form unchanged. The second case is to erase x by the rule (9) and after that erase
Bi. In the case more than one Bi are inserted, we will have to remove every additional symbol
Bi by the rule (10). And, since we supposed a 6= x, not more then one x can be deleted. It
proves that L(ID2) ⊆ L(ID) and hence we have L(ID2) = L(ID).

As a corollary we obtain the following result:

Corollary 3. INS0,2
1 DEL2,0

1 = RE.

Now we consider insertion-deletion system with rules having small context and with no deletion
rules. In [13] it is already shown that the family INS1,1

n DEL0,0
0 is a subset of the family of

context-free languages. Below we show that even a smaller subclass, INS1,0
1 DEL0,0

0 , having
one-sided insertion rules contains non-regular context-free languages.

One-sided Insertion and Deletion 59

Theorem 4. INS1,0
1 DEL0,0

0 ∩ (CF \REG) 6= ∅

Proof. It is already known that INS1,0
1 DEL0,0

0 ⊆ CF , see [13]. To complete the assertion of
the theorem it suffices to show that a non-regular context-free language might be generated by
such systems.

Consider system ID = (T, T, {a}, I, ∅), where T = {a, b, c, d} and I = {(a, b, ε), (b, c, ε), (c, d, ε),
(d, a, ε)}.

Let us denote by L′ the language generated by ID (L′ = L(ID)). Let us observe a possible
derivation of ID (where Sx, x ∈ T denotes a possible insertion site after the letter x):

aSa =⇒ aSabSb =⇒∗ aSabSbb
∗Sb =⇒∗ aSab

+cScb
∗Sb =⇒∗

aSab
+c+Scc

∗Scb
∗Sb =⇒∗ aSab

+c+d+Sdd
∗Sdc

∗Scb
∗Sb =⇒∗

aSab
+c+d+SdaSad

∗Sdc
∗Scb

∗Sb =⇒ . . .

It is easy to observe that the language L′ might be defined by the following recursive formulas:

L1 = b∗ + b+c∗ + b+c+d∗

L2 = b+c+d+(a(L1 + L2)
∗)∗d∗c∗b∗

L′ = a(L1 + L2)
∗

Let R = (abcd)∗(dcb)∗. Consider the language L′′ = L′ ∩ R. In this case we obtain L′′ =
(abcd)i(dcb)j, j ≤ i. Indeed, the sequence dcb might be obtained if and only if an instance of L2

is generated, i.e., an instance of abcd is present. Since in L2 we obtain d∗c∗b∗, then the number
of dcb in the intersection might be smaller than the number of abcd obtained.

Now it is clear that (abcd)i(dcb)j, j ≤ i is a context-free language (by the inverse morphism
{abcd → x, dcb → y it becomes the well known context-free language xiyj, j ≤ i). Since the
intersection of a context-free language with a regular language is a context-free language we
obtain that L′ is a context-free language. The assertion of the Theorem follows from this.

Consider now insertion-deletion systems with rules of the size (1,1,0; 1,1,0). This class is not
computationally complete, because it is a subclass of the class of systems with the size (1,1,0;
1,1,1) which is not computationally complete [6]. However, if rules of size (1, 1, 0; 1, 1, 0) are
used in the framework of P systems, then the computational power increases and it becomes
possible to simulate any type-0 grammar.

Theorem 5. ELSP5(insdel, (1, 1, 0; 1, 1, 0)) = RE.

60 A. Krassovitskiy, Yu. Rogozhin, S. Verlan

Proof. Let G = (N, T, S,R) be a type-0 grammar in Kuroda normal form. This means that all
production rules in R are of the form:

AB −→ CD or

A −→ BC or

A −→ α

where A,B,C and D are from N and α ∈ T ∪ N ∪ {ε}. Suppose that rules in R are ordered
and n = card(R).

Now consider the following system

Π = (V, T, [1 [2 [3 [4 [5]5]4]3]2]1, {SX}, ∅, ∅, ∅, ∅, R1, R2, R3, R4, R5).

It has a new nonterminal alphabet V = N∪T∪{P 1
i , P

2
i |i = 1, ..., n}∪{X}. For every production

i : AB −→ CD from R with A,B,C,D ∈ N we add following rules to R1, R2, R3, R4, and R5

correspondingly:

(ε, P 1
i , ε; in)a to R1;

(P 1
i , A, ε; in)e and (ε, P 2

i , ε; out)e to R2;

(P 1
i , B, ε; in)e and (P 2

i , C, ε; out)a to R3;

(P 1
i , P

2
i , ε; in)a and (P 2

i , D, ε; out)a to R4;

(ε, P 1
i , ε; out)e to R5.

For every production i : A −→ BC from R where A,B,C ∈ N we add rules:

(ε, P 1
i , ε; in)a to R1;

(P 1
i , A, ε; in)e and (ε, P 2

i , ε; out)e to R2;

(P 1
i , X, ε; in)a and (P 2

i , B, ε; out)a to R3;

(P 1
i , P

2
i , ε; in)a and (P 2

i , C, ε; out)a to R4;

(ε, P 1
i , ε; out)e to R5.

For every production i : A −→ α from R where A ∈ N,α ∈ T ∪N we add rules:

(ε, P 1
i , ε; in)a to R1;

(P 1
i , A, ε; in)e and (ε, P 2

i , ε; out)e to R2;

(P 1
i , P

2
i , ε; in)a and (P 2

i , α, ε; out)a to R3;

(ε, P 1
i , ε; out)e to R4.

For every production i : A −→ ε from R with A ∈ N we add rules (ε, A, ε;here)e to R1.

One-sided Insertion and Deletion 61

Finally, we add to R1 rules (ε,X, ε;here)e and (ε,X, ε; out)e.

We claim that Π generates the same language as G. In fact it is enough to proof that every
step in derivation by grammar G can be simulated in Π. Let us show as an example production
i : AB −→ CD ∈ R. The simulation of this rule is controlled by symbols P 1

i and P 2
i . Consider

a string w1ABw2 in the skin region. We insert P 1
i : w1ABw2 =⇒ w1P

1
i ABw2 and send the

obtained string to membrane 2. Here we delete A : w1P
1
i ABw2 =⇒ w1P

1
i Bw2 and send the

string to membrane 3. Next we delete B : w1P
1
i Bw2 =⇒ w1P

1
i w2 and send the obtained

string to membrane 4. Here we insert P 2
i : w1P

1
i w2 =⇒ w1P

1
i P

2
i w2 and send the string to 5.

Now we remove P 1
i : w1P

1
i P

2
i w2 =⇒ w1P

2
i w2 pushing the string back to membrane 4. Next

we insert D : w1P
2
i w2 =⇒ w1P

2
i Dw2 and send the string to membrane 3. Next we insert

C : w1P
2
i Dw2 =⇒ w1P

2
i CDw2 is inserted and send the string to membrane 2. Finally we

remove P 2
i and gathering the previous steps we get w1ABw2 =⇒∗ w1CDw2.

Productions of the form A −→ BC, where A,B,C ∈ N can be simulated similarly. We use
P 1

i to control the sequence of rules to push sequential form “down” from R1 to R5, and P 2
i to

control the sequence of rules to push the sequential form “up” from R5 to R1. Clear, that we
need even number of symbols in every production which is not the case for A −→ BC. One
can mention that we use the symbol X just due to the definition of insertion-deletion systems
restricts insertion or deletion rule (x, y, z) to have y 6= ε. In fact the context-free production
A −→ BC is simulated by two equivalent productions A −→ XBC and X −→ ε with a special
nonterminal X. We use the same technique for productions A −→ α,A ∈ N,α ∈ T ∪N . The
only difference is that we need only four membranes to make one symbol replacement.

According to the definition of insertion-deletion P systems the result of a computation consists
of all strings over T which are sent out of the system at any time during the computation. This
is formally provided by the rule (ε,X, ε; out)e in the skin membrane. This rule uses conventional
notation from [12].

To claim the proof we observe that every correct sentential form has at most one symbol P 1
i and

P 2
i , i = 1, ..., n. And after insertion of P 1

i in the skin membrane either all rules corresponding
to i-th rule have to be applied (in the defined order) or the derivation is blocked. Hence, we
have L(G) = L(Π).

Remark 6. We mention that in the proof above the simulation of productions have used
embedded membranes to regulate the sequence of insertions and deletions. Similar result can
be obtained if a matrix regulation for insertion-deletion systems is used.

Remark 7. Positions of symbols P 1
i regarding symbols to be inserted and removed by i-th rule

are determined by the form of rules for insertion and deletion (with left context so far). One
can mention that the same result can be obtained for ELSP5(insdel, (1, 1, 0; 1, 0, 1)) if contexts
for insertion and deletion are on different sides. We leave it to be verified by scrupulous readers.

62 A. Krassovitskiy, Yu. Rogozhin, S. Verlan

4. Conclusions

In this article we have investigated insertion-deletion systems with one-sided contexts. Com-
putational complexity of one-sided insertion-deletion systems of the size (1,2,0;1,0,2) was
given. Moreover, we showed that systems using only one-sided minimal insertion may gen-
erate non-regular context-free languages. Finally, we considered insertion-deletion rules of size
(1, 1, 0; 1, 1, 0) in the framework of P systems and we showed that the computational power
strictly increases. It is worth to note that this is the first example of such a relation, because
all computationally complete insertion-deletion P systems present in the literature use such
parameters for insertion-deletion rules that by themselves suffice to obtain the computational
power of a Turing machine, without any distribution. The obtained result uses five membranes
to achieve the computational completeness. We leave it an open question whether this number
can be decreased for this kind of systems.

Acknowledgments

The first author acknowledges the grant of Ramon y Cajal from University Rovira i Virgili
2005/08 and grant no. MTM 63422 from the Ministry of Science and Education of Spain. The
second author acknowledges the support of European Commission, project MolCIP, MIF1-CT-
2006-021666. The second and the third author acknowledge the Science and Technology Center
in Ukraine, project 4032.

References

[1] DALEY, M., KARI, L., GLOOR, G., SIROMONEY, R., Circular contextual insertions/deletions
with applications to biomolecular computation, in: Proc. of 6th Int. Symp. on String Processing
and Information Retrieval, SPIRE’99, Cancun, Mexico, 1999, 47–54.

[2] GALIUKSCHOV, B., Semicontextual grammars, Matematika Logica i Matematika Linguistika
(in Russian), Tallin University, 1981, 38–50.

[3] KARI, L., On Insertion and Deletion in Formal Languages, PhD Thesis, University of Turku,
1991.

[4] KARI, L., PĂUN, Gh., THIERRIN, G, YU, S., At the crossroads of DNA computing and for-
mal languages: characterizing RE using insertion-deletion systems, in: Proc. of 3rd DIMACS
Workshop on DNA Based Computing, Philadelphia, 1997, 318–333.

[5] KARI, L., THIERRIN, G., Contextual insertion/deletion and computability, Information and
Computation 131 (1) (1996), 47–61.

[6] KRASSOVITSKIY, A., ROGOZHIN, Yu., VERLAN, S., Further results on insertion-deletion sys-
tems with one-sided contexts, Pre-proceedings of the 2nd International Conference on Language
and Automata, Theory and Application, LATA 2008, March 13-19, 2008, Technical Reports of
Research Group on Mathematical Linguistics, No. 36/08, 2008, 347–358.

[7] MARCUS, S., Contextual grammars, Rev. Roum. Math. Pures Appl. 14 (1969), 1525–1534.

One-sided Insertion and Deletion 63

[8] MARGENSTERN, M., PĂUN, Gh., ROGOZHIN, Yu., VERLAN, S., Context-free insertion-
deletion systems, Theoretical Computer Science 330 (2005), 339–348.

[9] MARTÍN-VIDE, C., PĂUN, Gh., SALOMAA, A., Characterizations of recursively enumerable
languages by means of insertion grammars, Theoretical Computer Science 205 (1–2) (1998), 195–
205.

[10] MATVEEVICI, A., ROGOZHIN, Yu., VERLAN, S., Insertion-deletion systems with one-sided
contexts, Lecture Notes in Computer Science 4664 , Springer, 2007, 205–217.

[11] PĂUN, Gh., Marcus Contextual Grammars, Kluwer, Dordrecht, 1997.

[12] PĂUN, Gh., Membrane Computing. An Introduction, Springer-Verlag, Berlin, 2002, 163, 226–
230.

[13] PĂUN, Gh., ROZENBERG, G., SALOMAA, A., DNA Computing. New Computing Paradigms,
Springer-Verlag, Berlin, 1998.

[14] ROZENBERG, G., SALOMAA, A. (Eds.), Handbook of Formal Languages, Springer-Verlag,
Berlin, 1997.

[15] TAKAHARA, A., YOKOMORI, T., On the computational power of insertion-deletion systems,
in: Proc. of 8th International Workshop on DNA-Based Computers, DNA8, Sapporo, Japan,
June 10–13, 2002, Revised Papers, Lecture Notes in Computer Science 2568, 2003, 269–280.

[16] VERLAN, S., On minimal context-free insertion-deletion systems, Journal of Automata, Lan-
guages and Combinatorics 12 (1/2) (2007), 317-328.

A SMALL UNIVERSAL SPIKING NEURAL
P SYSTEM

Turlough Neary
Boole Centre for Research in Informatics

University College Cork, Ireland
Email: tneary@cs.may.ie

Abstract
In this work we give a small extended spiking neural P system that is weakly universal. This
system is significantly smaller than the smallest strongly universal spiking neural P systems.
Strong universality has strict conditions regarding the encoding of input and decoding of output.
Weak universality has more relaxed conditions regarding the encoding of input and decoding of
output. Păun and Păun [10] gave a strongly universal spiking neural P system with 84 neurons
and another that has extended rules with 49 neurons. Subsequently, the number of neurons used
for strong universality was reduced from 84 to 67 and from 49 to 41 by Zhang et al. [11]. Here
we give a weakly universal spiking neural P system that uses extended rules and has only 12
neurons.

1. Introduction

Spiking neural P systems [2] are quite a new computational model that are a synergy inspired
by P systems and spiking neural networks. It has been shown that these systems are compu-
tationally universal [2]. Before we discuss results in the area of small universal spiking neural
P systems, we note the two different notions of universality given by Korec [5]. Strong uni-
versality has strict conditions regarding the encoding of input and decoding of output. Weak
universality has more relaxed conditions regarding the encoding of input and decoding of out-
put. Recently, Păun and Păun [10] gave two small strongly universal spiking neural P systems;
A spiking neural P system with 84 neurons and an extended spiking neural P system with
49 neurons (and without delay). Păun and Păun conjectured that it is not possible to give a
significant decrease in the number of neurons of their two universal systems. Zhang et al. [11]
offered such a significant decrease in the number of neurons used to give such small universal
systems. They give a strongly universal spiking neural P system with 67 neurons and another,
which has extended rules (without delay), with 41 neurons. Here we give an extended spiking
neural P system with 12 neurons that is weakly universal and also uses rules without delay.

From a previous result [9] it is known that there exists no universal spiking neural P system that
simulates Turing machines in less the exponential time and space. It is a relatively straightfor-
ward matter to generalise this result to show that extended spiking neural P systems suffer from

66 Turlough Neary

the same inefficiencies. It immediately follows that the universal system we present here and
those found in [10, 11] have exponential time and space requirements. However, it is possible to
give a time efficient spiking neural P system when we allow exhaustive use of rules. A universal
extended spiking neural P system with exhaustive use of rules has been given that simulates
Turing machines in polynomial time [9]. Furthermore, this system has only 18 neurons. Spiking
neural P systems with exhaustive use of rules were originally proved computationally univer-
sal by Ionescu et al. [3]. However, the technique used to prove universality suffered from an
exponential time overhead.

Using different forms of spiking neural P systems, a number of time efficient (polynomial or
constant time) solutions to NP-hard problems have been given [1, 6, 7]. All of these solutions
to NP-hard problems rely on families of spiking neural P systems. Specifically, the size of the
problem instance determines the number of neurons in the spiking neural P system that solves
that particular instance. This is similar to solving problems with circuits families where each
input size has a specific circuit that solves it. Ionescu and Sburlan [4] have shown that spiking
neural P systems simulate circuits in linear time.

In the next two sections we give definitions for spiking neural P systems and register machines
and explain the operation of both. Following this, in Section 4 we give an extended spiking
neural P system with 12 neurons that is weakly universal and uses rules without delay.

2. Spiking neural P system

Definition 1 (Spiking neural P systems).
A spiking neural P system is a tuple Π = (O, σ1, σ2, · · · , σm, syn, in, out), where:

1. O = {s} is the unary alphabet (s is known as a spike),

2. σ1, σ2, · · · , σm are neurons, of the form σi = (ni, Ri), 1 6 i 6 m, where:

(a) ni > 0 is the initial number of spikes contained in σi,

(b) Ri is a finite set of rules of the following two forms:

i. E/sb → s; d, where E is a regular expression over s, b > 1 and d > 0,

ii. se → λ, where λ is the empty word, e > 1, and for all E/sb → s; d from Ri

se /∈ L(E) where L(E) is the language defined by E,

3. syn ⊆ {1, 2, · · · ,m} × {1, 2, · · · ,m} is the set of synapses between neurons, where i 6= j
for all (i, j) ∈ syn,

4. in, out ∈ {σ1, σ2, · · · , σm} are the input and output neurons, respectively.

In the same manner as in [10], spikes are introduced into the system from the environment by
reading in a binary sequence (or word) w ∈ {0, 1} via the input neuron σ1. The sequence w is

A small universal spiking neural P system 67

read from left to right one symbol at each timestep. If the read symbol is 1 then a spike enters
the input neuron on that timestep.

A firing rule r = E/sb → s; d is applicable in a neuron σi if there are j > b spikes in σi and
sj ∈ L(E) where L(E) is the set of words defined by the regular expression E. If, at time t,
rule r is executed then b spikes are removed from the neuron, and at time t+d the neuron fires.
When a neuron σi fires a spike is sent to each neuron σj for every synapse (i, j) in Π. Also, the
neuron σi remains closed and does not receive spikes until time t + d and no other rule may
execute in σi until time t + d + 1. A forgeting rule r′ = se → λ is applicable in a neuron σi if
there are exactly e spikes in σi. If r′ is executed then e spikes are removed from the neuron. At
each timestep t a rule must be applied in each neuron if there is one or more applicable rules at
time t. Thus, while the application of rules in each individual neuron is sequential the neurons
operate in parallel with each other.

Note from 2b(i) of Definition 1 that there may be two rules of the form E/sb → s; d, that are
applicable in a single neuron at a given time. If this is the case then the next rule to execute is
chosen non-deterministically. The output is the time between the first and second spike in the
output neuron.

An extended spiking neural P system [10] has more general rules of the form E/sb → sp; d,
where b > p > 1. Thus, a synapse in a spiking neural P system with extended rules may
transmit more than one spike in a single timestep.

3. Register machines and notions of universality

Definition 2 (Register machine). A register machine is a tuple C = (z, r1, rm, Q, q1, qh), where
z gives the number of registers, r1 and rm are the input and output registers respectively,
Q = {q1, q2, · · · , qh} is the set of instructions, q1, qh ∈ Q are the initial and halt instructions,
respectively.

Each register rj stores a natural number value x > 0. Each instruction qi is of one of the
following two forms qi : INC(j) or qi : DEC(j)qk, and is executed as follows:

• qi : INC(j) increment the value x stored in register rj by 1 and move to instruction qi+1.

• qi : DEC(j)qk if the value x stored in register rj is greater than 0 then decrement this
value by 1 and move to instruction qi+1, otherwise if x = 0 move to instruction qk.

At the beginning of a computation the first instruction executed is q1. The input to the register
machine is initially stored in register r1. If the register machine’s control enters instruction
qh then the computation halts at that timestep. The result of the computation is the value x
stored in the output register rm when the computation halts.

68 Turlough Neary

In Section 14.1 of his book, Minsky [8] proves that register machines with only two registers
are universal.

Theorem 1 (Minsky [8]). For any Turing machine T there exists a program machine MT with
just two registers that behaves the same as T (in the sense described in sections 10.1 and 11.2)
when started with zero in one register and 2a3m5n in the other. This machines uses only the
operations ’ and - , assuming that the successor instruction contains the “go” information
for the next instruction.

Minsky refers to register machines as program machines (i.e. MT satisfies Definition 2). The

operations ’ and - are identical to the instructions INC and DEC, which we defined above.
The term “behaves the same as T” is well defined in Minsky’s book and the encoding and
decoding used by MT satisfy Korec’s notion of weak universality.

Recall that the output of a spiking neural P system Π is the time interval between the first
and second spike. If the binary sequence 10y−11 is given as input to Π, then the output of the
computation is given by Π(y). Let (φ0, φ1, φ2, . . .) be a Gödel enumeration of all unary partial
recursive functions. Then we say that a spiking neural P system ΠU is weakly universal if
φx(y) = f(ΠU(g(x, y)) where g and f are recursive functions.

The small universal spiking neural P systems of Păun and Păun [10] and of Zhang et al. [11]
simulate the 22 instruction strongly universal register machine of Korec [5]. In addition these
spiking neural P systems satisfy the strict encoding and decoding requirements of Korec’s [5]
notion of strong universality. For weak universality it is sufficient to have encoding and decoding
functions that are recursive. For this reason we note only that both the encoding (2a3m5n) and
decoding functions for MT in Theorem 1 are recursive. It is not necessary for our purposes
to discuss the encoding and decoding for MT in more detail. The extended spiking neural P
systems we give in the next section simulates a weakly universal 2 register machine. Thus, our
system is also weakly universal.

4. A small universal spiking neural P system

In this section we give our small universal spiking neural P system. We prove the universality
of our system by showing that it simulates a weakly universal register machine C2 that has only
two registers. Using Minsky’s proof of Theorem 1 finding such a register machine is relatively
straightfroward. As noted at the end of the previous section the encoding and decoding for
such register machines are recursive and thus it is not necessary to concern ourselves with other
details of C2 here.

Theorem 2. Let C2 be a weakly universal register machine with 2 registers. Then there is a
weakly universal extended spiking neural P system ΠC2 that simulates the computation of C2

and has only 12 neurons.

A small universal spiking neural P system 69

σ6 σ7 σ8 σ9 σ10 σ11 σ12

register r1σ4 register r2 σ5

s2h+1/s2h → s2h; 0,
σ2

s2h+1/s2h → s2h; 0,

σ3

s/s→ sσ1

input

output

Figure 1: Universal extended spiking neural P system ΠC2 .

Proof. Let C2 = (2, r1, r1, Q, q1, qh) where Q = {q1, q2, · · · , qh}. Our spiking neural P system
ΠC2 is given by Figure 1, and Tables 1 and 2. The algorithm given for ΠC2 is deterministic.

Encoding of a configuration of C2 and reading in input to ΠC2. A configuration of C2

is stored as spikes in the neurons of ΠC2 . The next instruction qi to be executed is stored in
each of the neurons σ4 and σ5 as 2(h+ i) spikes. Let x1 and x2 be the values stored in registers
r1 and r2, respectively. Then x1 and x2 are stored as 4hx1 and 4hx2 spikes in neurons σ4 and
σ5, respectively.

The input to ΠC2 is read into the system via the input neuron σ1 as shown in Figure 1. If the
input to C2 is x then the binary sequence w = 10x−11 is read in via the input neuron σ1. In
Figure 1 σ2, σ3, σ4, and σ5 initially contain 2h spikes before the computation begins. Neurons
σ2 and σ3 receive the first spike from σ1 at time t1 and the second spike at time tx+1. Thus,
σ2 and σ3 fire on every timestep between times t1 and tx+2 and send a total of 4hx spikes to
σ4. Therefore, when σ1 fires for the second time, after x + 2 timesteps neuron σ4 contains
4hx + 2(h + 1) spikes, the encoding (4hx) of the input x and the encoding (2(h + 1)) of the
initial instruction q1. Note that at time tx+2 neuron σ5 also contains the encoding (2(h+ 1)) of
the initial instruction q1.

70 Turlough Neary

neuron rules

σ1 s/s→ s; 0

σ2, σ3 s2h+1/s2h → s2h; 0

σ4 s2(h+i)(s4h)∗/s2(h+i) → s2(h+i)−1; 0 if qi : INC(1) ∈ {Q}
s4h+2(h+i)(s4h)∗/s4h+2(h+i) → s2(h+i); 0 if qi : DEC(1) ∈ {Q}
s2(h+i)/s2(h+i) → s2(h+i)−1; 0 if qi : DEC(1) ∈ {Q}
s2(h+i)(s4h)∗/s2(h+i) → s; 0 if qi : INC(2) ∈ {Q} or qi : DEC(2) ∈ {Q}
s6h+3(s4h)∗/s6h → s; 0, s2h+3 → λ, s7(s4h)∗/s4h → s2h; 0, s3/s3 → s; 0,

σ5 s2(h+i)(s4h)∗/s2(h+i) → s2(h+i)−1; 0 if qi : INC(2) ∈ {Q}
s4h+2(h+i)(s4h)∗/s4h+2(h+i) → s2(h+i); 0 if qi : DEC(2) ∈ {Q}
s2(h+i)/s2(h+i) → s2(h+i)−1; 0 if qi : DEC(2) ∈ {Q}
s2(h+i)(s4h)∗/s2(h+i) → s; 0 if qi : INC(1) ∈ {Q} or qi : DEC(1) ∈ {Q}

Table 1: This table gives the rules in each of the neurons σ1 to σ5 of ΠC2 .

ΠC2 simulating qi : INC(1). Let there be x1 spikes in register r1 and x2 spikes in register r2.
Then the simulation of qi : INC(1) begins at time tj with 4hx1 + 2(h + i) spikes in σ4 and
4hx2 + 2(h+ i) spikes in σ5. We explain the simulation by giving the number of spikes in each
neuron and the rule that is to be applied in each neuron at time t. For example at time tj we
have

tj : σ4 = 4hx1 + 2(h+ i), s2(h+i)(s4h)∗/s2(h+i) → s2(h+i)−1; 0,

σ5 = 4hx2 + 2(h+ i), s2(h+i)(s4h)∗/s2(h+i) → s; 0.

where on the left σk = y gives the number y of spikes in neuron σk at time tj and on the right
is the next rule that is to be applied at time tj if there is an applicable rule at that time. Thus,
from Figure 1, when we apply the rule s2(h+i)(s4h)∗/s2(h+i) → s2(h+i)−1; 0 in neuron σ4 and the
rule s2(h+i)(s4h)∗/s2(h+i) → s; 0 in σ5 at time tj we get

tj+1 : σ4 = 4hx1,

σ5 = 4hx2,

σ6, σ7, σ8 = 2(h+ i), s2(h+i)/s2(h+i) → s2h; 0,

σ9, σ11, σ12 = 2(h+ i), s2(h+i) → λ,

σ10 = 2(h+ i), s2(h+i)/s2(h+i) → s2(i+1); 0,

tj+2 : σ4 = 4h(x1 + 1) + 2(h+ i+ 1),

σ5 = 4hx2 + 2(h+ i+ 1).

At time tj+2 the simulation of qi : INC(1) is complete. The encoded register value has been

A small universal spiking neural P system 71

neuron rules

σ6, σ7 s2(h+i)/s2(h+i) → s2h; 0 if qi : INC(1) ∈ {Q}
s2(h+i) → λ if qi : INC(1) /∈ {Q}
s2(h+i)+1 → λ, s2h → λ, s→ λ

σ8 s2(h+i)/s2(h+i) → s2h; 0, s2(h+i)+1/s2(h+i)+1 → s2h; 0, s2h → λ, s→ λ

σ9 s2(h+i) → λ, s2(h+i)+1 → λ, s2h → λ, s/s→ s; 0

σ10 s2(h+i)/s2(h+i) → s2(i+1); 0 if qi : INC ∈ {Q} and qi+1 6= qh

s2(h+i)/s2(h+i) → s3; 0 if qi : INC ∈ {Q} and qi+1 = qh

s2(h+i)+1/s2(h+i)+1 → s2(i+1); 0 if qi : DEC ∈ {Q} and qi+1 6= qh

s2(h+i)+1/s2(h+i)+1 → s3; 0 if qi : DEC ∈ {Q} and qi+1 = qh

s2(h+i)/s2(h+i) → s2k; 0 if qi : DECqk ∈ {Q} and qk 6= qh

s2(h+i)/s2(h+i) → s3; 0 if qi : DECqk ∈ {Q} and qk = qh

s2h → λ, s→ λ

σ11, σ12 s2(h+i)/s2(h+i) → s2h; 0 if qi : INC(2) ∈ {Q}
s2(h+i) → λ if qi : INC(2) /∈ {Q}
s2(h+i)+1 → λ, s2h → λ, s→ λ

Table 2: This table gives the rules in each of the neurons σ6 to σ12 of ΠC2 .

incremented by increasing it from 4hx1 to 4h(x1 + 1). The encoding 2(h + i + 1) of the next
instruction qi+1 has been established.

ΠC2 simulating qi : DEC(1)qk. As above the simulation begins at time tj giving

tj : σ4 = 4hx1 + 2(h+ i), s4h+2(h+i)(s4h)∗/s4h+2(h+i) → s2(h+i); 0,

σ5 = 4hx2 + 2(h+ i), s2(h+i)(s4h)∗/s2(h+i) → s; 0,

tj+1 : σ4 = 4h(x1 − 1),

σ5 = 4hx2,

σ6, σ7, σ9, σ11, σ12 = 2(h+ i) + 1, s2(h+i)+1 → λ,

σ8 = 2(h+ i) + 1, s2(h+i)+1/s2(h+i)+1 → s2h; 0,

σ10 = 2(h+ i) + 1, s2(h+i)+1/s2(h+i)+1 → s2(i+1); 0,

tj+2 : σ4 = 4h(x1 − 1) + 2(h+ i+ 1),

σ5 = 4hx2 + 2(h+ i+ 1).

At time tj+2 the simulation of qi : DEC(1)qk is complete. The encoded register value has been

72 Turlough Neary

decremented by decreasing it from 4hx1 to 4h(x1 − 1). The encoding 2(h + i + 1) of the next
instruction qi+1 has been established. In the above example we assume that register r1 has
value x1 > 0. If x1 = 0 then we get the following

tj : σ4 = 2(h+ i), s2(h+i)/s2(h+i) → s2(h+i)−1; 0,

σ5 = 4hx2 + 2(h+ i), s2(h+i)(s4h)∗/s2(h+i) → s; 0,

tj+1 : σ5 = 4hx2,

σ6, σ7, σ9, σ11, σ12 = 2(h+ i), s2(h+i) → λ,

σ8 = 2(h+ i), s2(h+i)/s2(h+i) → s2h; 0,

σ10 = 2(h+ i), s2(h+i)/s2(h+i) → s2k; 0,

tj+2 : σ4 = 2(h+ k),

σ5 = 4hx2 + 2(h+ k).

Note that at time tj+2, when the simulation is complete, the encoding 2(h + k) of the next
instruction qi+1 has been established.

Halting. The halt instruction qh is encoded as 2h + 3 spikes. Thus, if C2 enters the halt
instruction qh we get the following

tj : σ4 = 4hx1 + 2h+ 3, s6h+3(s4h)∗/s6h → s; 0,

σ5 = 4hx2 + 2h+ 3,

tj+1 : σ4 = 4h(x1 − 1) + 3, s7(s4h)∗/s4h → s2h; 0,

σ5 = 4hx2 + 2h+ 3,

σ6, σ7, σ8, σ10, σ11, σ12 = 1, s→ λ,

σ9 = 1, s/s→ s; 0,

tj+2 : σ4 = 4h(x1 − 2) + 3, s7(s4h)∗/s4h → s2h; 0,

σ5 = 4hx2 + 2h+ 3,

σ6, σ7, σ8, σ9, σ10, σ11, σ12 = 2h, s2h → λ.

A small universal spiking neural P system 73

The rule s7(s4h)∗/s4h → s2h; 0, is applied a further x1 − 2 times in σ9 until we get

tj+x1 : σ4 = 3, s3/s3 → s; 0,

σ5 = 4hx2 + 2h+ 3,

σ6, σ7, σ8, σ9, σ10, σ11, σ12 = 2h, s2h → λ,

tj+x1+1 : σ5 = 4hx2 + 2h+ 3,

σ6, σ7, σ8, σ10, σ11, σ12 = 1, s→ λ,

σ9 = 1, s/s→ s; 0.

As usual the output is the time interval between the first and second spikes that are sent out
of the output neuron. Note from above that the output neuron σ9 fires for the first time at
timestep tj+1 and for the second time at timestep tj+x1+1. Thus, the output of ΠC2 is x1 the
value of the output register r1 when C2 enters the halt instruction qh. Note that if x1 = 0 then
the rule s2h+3 → λ is executed at timestep tj and thus no spikes will be sent out of the output
neuron.

We have shown how to simulate arbitrary instructions of the form qi : INC(1) and qi : DEC(1)qk.
Instructions of the form qi : INC(2) and qi : DEC(2)qk, which operate on register r2, are
simulated in a similar manner Immediately following the simulation of an instruction ΠC2 is
configured to simulate the next instruction. Thus, ΠC2 simulates the computation of C2.

The algorithm used by ΠC2 could be easily modified to simulate strongly universal register
machines thus giving small extended spiking neural P systems that are strongly universal.
Each additional register would require an extra three neurons. Also, if we wish to simulate a
register machine that has two input registers we would require a further three neurons.

The reachability question for spiking neural P systems is as follows; Given a configuration cx
of a spiking neural P systems does it ever enter a configuration cy. It is worth noting that
using the results in Theorem 2 smaller spiking neural P systems with undecidable reachability
questions may be given. Such systems may be given by removing the output neurons and the
neurons for initialising the system (the input module) from ΠC2 . Thus, there exist spiking
neural P systems with 8 neurons which have undecidable reachability questions.

Acknowledgements

The author would like to thank the anonymous reviewers and Rudolf Freund for their careful
reading of the paper, and for their helpful suggestions and comments. The author is funded by
Science Foundation Ireland Research Frontiers Programme grant number 07/RFP/CSMF641.

74 Turlough Neary

References

[1] CHEN, H., IONESCU, M., ISHDORJE, T., On the efficiency of spiking neural P systems, in:
M. A. Gutiérrez-Naranjo et al. (Eds.), Proceedings of Fourth Brainstorming Week on Membrane
Computing, Sevilla, Feb. 2006, 195–206, .

[2] IONESCU, M., PĂUN, Gh., YOKOMORI, T., Spiking neural P systems, Fundamenta Informat-
icae 71(2-3) (2006), 279–308.

[3] IONESCU, M., PĂUN, Gh., YOKOMORI, T., Spiking neural P systems with exhaustive use of
rules, International Journal of Unconventional Computing 3 (2) (2007), 135–153.

[4] IONESCU, M., SBURLAN, D., Some applications of spiking neural P systems, in: George Eleft-
herakis et al. (Eds.), Proceedings of the Eightth Workshop on Membrane Computing, Thessa-
loniki, June 2007, 383–394.

[5] KOREC, I., Small universal register machines, Theoretical Computer Science 168 (2) (1996),
267–301.

[6] LEPORATI, A., ZANDRON, C., FERRETTI, C., MAURI, G., On the computational power
of spiking neural P systems, in: M.A. Gutiérrez-Naranjo et al. (Eds.), Proceedings of the Fifth
Brainstorming Week on Membrane Computing, Sevilla, Jan. 2007, 227–245.

[7] LEPORATI, A., ZANDRON, C., FERRETTI, C., MAURI, G., Solving numerical NP-complete
problems with spiking neural P systems, in: George Eleftherakis et al. (Eds.), Proceedings of the
Eightth Workshop on Membrane Computing, Thessaloniki, June 2007, 405–423.

[8] MINSKY, M. L., Computation. Finite and Infinite Machines, Prentice-Hall, 1967.

[9] NEARY, T., On the computational complexity of spiking neural P systems, in: 7th International
Conference on Unconventional Computation (UC 2008), Vienna, Aug. 2008, Lecture Notes in
Computer Science 5204, Springer, 2008, 190–20.

[10] PĂUN, A., PĂUN, Gh., Small universal spiking neural P systems, BioSystems 90 (1) (2007),
48–60.

[11] ZHANG, X., ZENG, X., PAN, L., Smaller universal spiking neural P systems, submitted, 2008.

AN EXTENDED
DOT-BRACKET-NOTATION

FOR FUNCTIONAL NUCLEIC ACIDS

Effirul I. Ramlan and Klaus-Peter Zauner
School of Electronics and Computer Science

University of Southampton, SO17 1BJ, United Kingdom
Email: {eir05r,kpz}@ecs.soton.ac.uk

Abstract
Functional nucleic acids are an attractive substrate for molecular computing. A nucleic acid
molecule is a linear chain of covalently bound building blocks assembled in arbitrary order from
a set of typically four nucleotides. Certain pairs of nucleotides weakly attract each other through
short-range electrostatic interaction and, accordingly, complementary sequences of nucleotides
can bind to each other. The complementary stretches of nucleic acids that attract each other
can be part of two different molecules or two parts of a single molecule. Binding within a single
molecule leads to a folding of the linear chain. This so called secondary structure is of great
importance for the function of nucleic acids.

The present paper is concerned with the representation of this secondary structure. We propose
an extension for the syntax of the standard dot-bracket notation to increase its convenience
and expressive power for both its use to communicate nucleic acid secondary structures among
humans and machines. The extensions reflect our own requirements for the representation of
nucleic acids for molecular computation, but should be useful for functional nucleic acids in
general.

1. Computational Nucleic Acid Enzymes

Organisms have powerful and enviably efficient information processing capabilities. To a large
extent these capabilities are conferred by macromolecules and their specific properties. The
existence of these natural information processing architectures demonstrates that computing
based on physical substrates that are radically different from silicon is feasible. Accordingly,
the potential of biomolecules as a computing substrate in artificial devices has been investi-
gated for over three decades [15]. In nature proteins appear to play the preeminent role as
molecular computing substrate. At the present state of technology, however, two other classes
of biomolecules are more amenable to applications in man-made information processing ar-
chitectures: deoxyribonucleic acids (DNA) and ribonucleic acids (RNA). The former offers a
more limited conformational flexibility and concomitant less functionality, while the latter is

76 E. I. Ramlan and K.-P. Zauner

less stable and requires more careful laboratory techniques. The existing body of work on using
nucleic acids for information processing can be grouped under three concepts:

Covalent Concept: Early proposals for the use of DNA in computing were inspired by the
discovery of DNA’s role in the storage of inheritable information and the astounding
information density that can be achieved with molecular encoded data. All of these
concepts require the formation and cleavage of specific covalent bonds which would require
custom-designed proteins and are for this reason not practical (cf., e.g., [8])

Complement Concept: In [1] the influential suggestion to use arbitrary nucleotide sequences
and the hybridisation with their complementary sequences instead of covalently linked
individual bases was made and a practical demonstration of this approach was given.
This idea moved the burden of recognising tokens of information from proteins (which up
to now cannot be designed for purpose) to the self-assembly of short nucleotide sequences
which can be designed with desired self-assembly properties and can be synthesised with
ease.

Conformational Concept: Whereas in the above two concepts the conformational flexibility
of the nucleic acids is irrelevant or even undesirable, more recently computing concepts
that exploit the change in conformation a nucleic acid undergoes upon hybridising with
another nucleic acid molecule have been developed [9, 10].

A recent introduction to the conformational concept of information processing with nucleic acids
is available in [11]. The three-dimensional conformation of a nucleic acid is largely determined
by the secondary structure, i.e., the intramolecular binding among complementary sections of
its nucleotide sequence. The sequence itself is typically for the most part not as important for
the function as the secondary structure it assumes. For a given secondary structure there is
generally a large variety of nucleotide sequences that it will fold into.

In designing sets of nucleic acids for information processing one typically has a desired secondary
structure and additional local constraints on the sequence. For example, a binding side for an
effector molecule (i.e. a nucleic acid that will affect the activity of a functional nucleic acid)
may be required to be complementary to a sequence released in a preceding step. Software
tools that, given a secondary structure, can generate a suitable sequence candidate likely to
fold into the desired structure are available [2, 3, 5]. It would be desirable to have a convenient
representation of secondary structures together with sequence constraints and special properties
of regions of the sequence. Ideally a single representation should support the communication
between humans and software.

2. Representation of Nucleic Acid Structure

A widely used method to denote RNA secondary structure is the dot-bracket-notation or paren-
thesis format introduced by Hofacker et al. [2]. It uses matching parenthesis and dots to denote
paired and free bases, respectively. Fig. 1 illustrates the notation for a short RNA sequence.

Extended Dot-Bracket Notation 77

A

constraint

:

{ base }

^ , base

parameter

digit

digit

{ }

alpha

operator

~

_

&

@

$

2

B CCGAUAGAGGCGUGCGGUCAAGGUCCGG

C (((((...(((.....)))...)).)))

Figure 1: A sample secondary structure of an RNA molecule is shown (A) together with the
notation of its sequence (B) and its structure in dot-bracket form (C).

The dot-bracket-notation has the advantage that a string denoting the secondary structure of
a nucleic acid is of the same length as the string denoting the nucleotide sequence with a single
character for each nucleotide. The two strings can be aligned to show the secondary structure
features along the nucleotide sequence (Fig. 1B and C). In molecular biology one typically has a
given (discovered) sequence and is interested in its folding properties. The dot-bracket notation
reflects this mode of operation. As indicated above, in molecular computing applications it is
common that the secondary structure is of importance, but the detailed sequence that yields
the structure is over large stretches arbitrary. In such a scenario the dot-bracket notation is
often cumbersome, it leads to large expressions with information that is partially obscured for
human readers, because it would require counting identical characters. While the sequence
is typically arbitrary in most positions, as long as the structure of the molecule is preserved,
nucleic acids with functional properties, such as catalytic activity, often require specific bases in
a few positions. If in a few places the nucleotide sequence (i.e. the primary structure) is given,
two strings are required: one to specify the structure in dot-bracket-notation and a second
string to represent the type of the immutable nucleotides. Furthermore, for communicating
structural features among humans a two-dimensional rendering of the one-dimensional dot-
bracket notation is often desirable. It would be convenient if specific features in the sequence
could be communicated to the rendering software.

To alleviate these issues we use an extended dot-bracket-notation that is particularly suitable
to denote functional nucleic acids where the primary characteristic is the secondary structure
and not the sequence. In doing so we were aiming at:

• backward compatibility to the dot-bracket notation

• use of familiar and mnemonic conventions

• single character operators

• the possibility to describe sets of interacting molecules

• flexibility to chose expressions according to application

• support for rendering with and without colour

Achieving these aims comes at the price of giving up the equivalence of the length between the
secondary structure specification and the sequence. On the other hand, the extended notation

78 E. I. Ramlan and K.-P. Zauner

is often more compact and capable of describing, in a single string, a group of RNA molecules
where each molecule varies in length, sequence, and conformation.

The extended dot-bracket-notation introduces several new symbols which fall into four different
categories:

Scoping symbols group sections of the notations. Square brackets “[]” are used for grouping
range of base positions. Curly braces delimit alphanumerical parameters for operators
and also limit sets of constraints placed on the choice of base permitted for a particular
sequence position. Curly braces can optionally be used to delimit the numbers specifying
repetitions.

Operator symbols associate a property with the preceding base position, or grouped range
of positions. The properties are mostly used for graphical rendering of the the structure
(_,$,~,@), but also to mark binding sites for inter-molecular binding (+). An operator
symbol is always followed by a parameter.

Constraint symbol restrict the possible bases that may be present at the preceding base
position. The two constraint symbols are a colon (:) which restricts the preceding position
to be equal to the base or set of bases that follow it, and a hat (^) that restricts the
preceding position to differ from the base or set of bases that follow it.

Special symbols are available to express features which cannot be expressed with the above
elements. At present only the %-symbol is defined, it marks a cleavage-point where the
RNA sequence may be hydrolysed.

An overview of the new symbols introduced in the extended dot-bracket-notation is provided
in Tab. 1. With these enhancements the extended dot-bracket notation can carry a lot more
information about an RNA structure than the standard notation while generally leading to a
more compact description. However, the translation from the extended dot-bracket-notation to
the standard notation is trivial. This is important as the computational tools for nucleic acids
secondary structure have adopted the dot-bracket-notation as their input–output channels [6].
A translation from the standard notation to the extended dot-bracket-notation can of course
not make much use of the richer syntax of the extended notation. It is also generally not re-
quired, as the standard notation is a valid subset of the extended notation. Nevertheless, such
a translation may be useful to arrive at shorter representations as shown for small examples in
Tab. 2. Any symbol that can occupy a base position in a sequence (i.e., .,(,),A,U,G,C,T,. . .)
may be followed by a positive integer value n to denote n repetitions of the symbol. This
run-length notation is particularly convenient for manually entering secondary structure de-
scriptions. The downside is that the run-length notation can obscure structural motives which
may be recognised more readily in the standard notation. A considered use of the repetition
parameter will maximise readability, whether by reducing the length of the representation or by
deliberately breaking runs of parenthesis into sections that match. For example, (3.2(3.4)6
represents a stem-loop with bulge. The same structure could also be written as (3.2(3.4)3)3.

Extended Dot-Bracket Notation 79

Table 1: New symbols introduced in the extended dot-bracket-notation

Description Usage Comment

[] Grouping of base
positions

[.8]@{label A} Eight unbound bases marked as “label A”.

{ } Parameter delimiter see example above
{ } Set delimiter .:{A,C} A single unbound base that can be either

A or C.
{ } Repetition delimiter A{10} Always optional.
_ Line width ((([.5]_1))) Stem-loop structure with bold loop
$ Colour (3[.2]$1(3.4)3)3 A buldge in red.
~ Line decoration .24~1(3.3)3 Binding site marked as crinkled line.
@ Annotation marker See first row.
+ Multi-molecule binding (24+1(3.3)3 Sticky end of 24 bases, will bind to site

marked 1 on other molecule.
: Base assignment)):A Two binding bases, the second one of

which is A; See also set delimiter.
^ Base exclusion (((..^U.))) Stem loop where the central base in the

loop is not a uracil.
% Clevage point (((..%..(((Between bases, i.e., not a base position.

The latter is longer, but preferable nevertheless, because the base-pairing of the two helices
is emphasised by breaking the run of six closing parenthesis into two groups of three closing
parenthesis each. This example also illustrates that in the extended dot-bracket-notation there
is no unique string to describe a given structure. The equivalence of two structures denoted
in the extended form, however, can be established by translating both into the standard form,
which is easily accomplished.

Specifications for individual base positions, repetitions of these, as well as groups (marked by
square brackets) of individual positions and repetitions can be arguments for operators. The
operator follows its argument and precedes its parameters. More than one operator/parameter
combination may follow an argument and all will be applied to the argument. Table 3 provides
a few examples of operator use—some of them taken from the structures rendered in Figs. 3

Table 2: The extended dot-bracket-notation allows for run-length encoding to achieve a compact
representation

Standard notation Extended notation Part of Fig.

...(((((....))))).)))))))) .3(5.4)5.)8 3A
(((....))).....(((((((((3.4)3.5(8 3B
(((((....))))).)))))))). (5.4)5.)8. 4A
..)).)))........ .2)2.)3.8 4C

80 E. I. Ramlan and K.-P. Zauner

Table 3: Sample usage of operators

Notation Description Fig.

~2@{shift region 1} Apply decoration type 2 to the preceding region and label
it as “shift region 1”.

3A

+3~2 The preceding argument binds externally with another
molecule at the region marked “3” and is drawn with deco-
ration type 2 (“cross”).

3C

+2_1@{OBS2+EFF2} The argument (not shown) binds with another molecule at
the region marked “2”, draw the binding region in bold (line
thickness 1) and label it as “OBS2+EFF2”

4C

+1_1${Red}@{node001} The preceding argument binds externally with another
molecule at the region marked “1”, render the argument
with line thickness 1 in red and label the region as “node001”

-

~1_2${blue} Combination of drawing parameters applied to the preceding
argument resulting in a strong bold (thickness 2) crinkled
line (type 1) in blue color.

-

+{SITE1}~1_1@{match}${red} The preceding argument binds externally with another
molecule at the region marked as “SITE1”. This region is
rendered using crinkle line with the thickness value 1, and
colored in red. The region is labeled “match”.

-

and 4. Note that in all cases the argument itself, which precedes the operator, is not shown.

The acceptable parameters that follow an operator and their semantics are not specified by the
notation. A rendering program, for example, may accept a predefined color number, an explicit
color name, or a hexadecimal RGB value. The corresponding operator with parameters would
be $1, ${red}, and ${#FF0000}. An overview of the extended notation is provided in Fig. 2.
For clarity, three of the nonterminal symbols occurring in the syntax graph are not shown in
Fig. 2. The non-terminal digit stands for a single digit in the range from 0–9. The non-terminal
alpha stands for a single character from either the range a–z, or A–Z, or a dash (-), underline
(), or space (). The non-terminal base stands for any one of (A,U,G,C,T,X,N) in upper or
lower case.

As can be seen in Fig. 2, a single string in the extended dot-bracket-notation can denote more
than one molecule (cf. RNA string in Fig. 2). The limitations in expressing interactions among
multiple molecules in the standard notation was one of the factors motivating the present
work. An example with a pair of molecules that bind in two different regions of equal length
will illustrate the difficulty of using the standard notation in such cases:

((((((.....((((((......))))))...((((....))))...((((((&

))))))........(((((....((((....))))....)))))...))))))

Extended Dot-Bracket Notation 81
RNA_string

RNA_molecule

& RNA_molecule

RNA_molecule

RNA_block

RNA_block

RNA_elem

[RNA_elem] operator parameter

RNA_elem

%

base

dot_brac digit

constraint

{ digit }

1

RNA_string

RNA_molecule

+ RNA_molecule

RNA_molecule

RNA_block

RNA_block

RNA_elem

[RNA_elem] operator parameter

RNA_elem

%

bases

dot_brac digit

constraint

{ digit }

1

RNA string RNA molecule

RNA_string

RNA_molecule

+ RNA_molecule

RNA_molecule

RNA_block

RNA_block

RNA_elem

[RNA_elem] operator parameter

RNA_elem

%

bases

dot_brac digit

constraint

{ digit }

1

RNA block

RNA_string

RNA_molecule

+ RNA_molecule

RNA_molecule

RNA_block

RNA_block

RNA_elem

[RNA_elem] operator parameter

RNA_elem

%

base

dot_brac digit

constraint

{ digit }

1

RNA elem
constraint

: base

^ { base }

, base

parameter

digit

digit

{ }

alpha

operator

~

_

&

@

$

2

constraint

constraint

: base

^ { base }

, base

parameter

digit

digit

{ }

alpha

operator

~

_

+

@

$

2

constraint

:

{ bases }

^ , bases

parameter

digit

digit

{ }

alpha

operator

~

_

&

@

$

2

operator parameter

Figure 2: Syntax graph for the extended dot-bracket notation.

82 E. I. Ramlan and K.-P. Zauner

The two lines represent two different molecules, separated by the &-symbol. The regions in which
the two molecules will bind to each other are underlined. The dot-bracket-notation is not able to
express in which combination the binding regions will bind. In larger molecules the situation can
easily be more ambiguous with numerous plausible locations for intermolecular binding. In the
extended dot-bracket-notation, the + operator can indicate the matching regions. Accordingly,
the two molecules shown above can be represented as:

(6+{B1}.....((((((......))))))...((((....))))...(6+{B2} &

)6+{B1}........(((((....((((....))))....)))))...)6+{B2}

A more relevant example for such an ambiguous binding situation can be seen in Fig. 4D, where
the two binding sites in the AND gate have the same length. The AND gate uses two effector
molecules as input signals and, in its active state, is a three-molecule supramolecular complex.
The alphanumeric marking of binding sites in the extended dot-bracket-notation enables the
description of interactions among several molecules. Note in the examples above, how the
standard notation and the extended notation can be mixed to highlight particular features of
a molecule or set of molecules.

The benefit of the extended notation is most easily seen when it is rendered as two-dimensional
structures. Figure 3 shows the rendering of several sample structures from the literature.
Panel A shows a ribonucleic acid PASS gate in its inactive state [10]. Panel B depicts a
deoxyribonucleic acid AND gate described in [12]. The mechanisms of Fig. 3A is based on
disrupting the active conformation of a nucleic acids enzyme. Upon binding of an effector
molecule to the binding site shown in bold the active conformation is restored. In the gate
depicted in Fig. 3B, the binding site for the substrate of a nucleic acids enzyme is blocked by
intramolecular binding highlighted with a crinkled lines. Binding of effector molecules to the two
binding sites shown in bold will expose the substrate binding site. Two hammerhead ribozymes
with different catalytic activation strategies described in [4] and [14] are shown in Fig. 3C and
D, respectively. The hammerhead ribozymes are shown in their active conformation, each with
a bound effector molecule. The effector molecules are marked with bold lines and the location
of the cleavage point is marked on the substrate strand. The corresponding extended notation
for the four structures is shown in panel E.

In Fig. 4 four different states of the ribonucleic AND gate designed by Penchovsky and Breaker
[10] are shown. The interplay of multiple molecules and multiple conformational states is
crucial to the computing schemes based on functional nucleic acids. They are also a challenge
to represent in a convenient notation. Panels A shows the secondary structures of the AND
gate without effector molecules, panels B and C show the structures the AND gate assumes
if only one of the effector molecules is present. If both oligonucleotide binding sites (OBS1,
OBS2) are occupied by effector molecules the ribozyme changes into the catalytically active
conformation shown in panel D. The extended dot-bracket-notation corresponding to the four
states of the gate are shown in panel E.

Extended Dot-Bracket Notation 83

A

•
OBS

shift region 2

shift region 1

B

C

D

E

A
({15}[(3]~2@{shift region 1}[(3]_2(.4[(2.7)3.)2]_2@{OBS}[)3.]_2

[(4.2]~2@{shift region 2}.3(5.4)5.)8

B [(9]~1[.{15}]_1)9(3.4)3.5(8[.15]_1[)8]~1

C [(5]+1.7(4.4)4.3[(5]+2.2[(8]+3~2.2 & [)5]+2[.]%[(5]+1 & [)8]+3_2

D [(8]+1.7(4.4)4.3[(3]+2[(6]+3 & [)6]+3_1[(6]+4_1 & [)6]+4[)6]+2[.]%[)8]+1

Figure 3: Four different structural renderings of arbitrary nucleic acid molecules.

84 E. I. Ramlan and K.-P. Zauner

A

OBS1

OBS2

shift region 1

shift region 2

dangle−5′

B

OBS1+EFF1

C

OBS2+EFF2

D

OBS1+EFF1

OBS2+EFF2

E

A
({15}[(4]$1@{shift region 1}[(.4]$1(3.3[.2(3.]_1@{OBS1}[(3.7]_1

)3[.)3.3]_1@{OBS2}[.3)3.2)2]_1)6[.)5]$1[.3]$1@{shift region 2}.3

(5.4)5.)8.9

B
({15}[(5.3]$1(3.3[({16}]+1_1.3[.9)3.2)2]_1)5[.)5.2]$1.3(5.4)5.)8.9

& [){16}]+1_1@{OBS1+EFF1}

C
({15}[(3.)3.]$1.2(2.3[.2)2.)3.8]_1.3[({16}]+2_1)5[.)5.2]$1.3(5.4)5.)8.9

& [){16}]+2_1@{OBS2+EFF2}

D
(8.7[(8]$1.6[({16}]+1_1.3[({16}]+2_1.5[)8]$1.3(5.4)5[.]%)8.9

& [){16}]+1_1@{OBS1+EFF1} & [){16}]+2_1@{OBS2+EFF2}

Figure 4: RNA molecular AND gate after [10] in different states. Rendered from the extended
dot-bracket notation.

Extended Dot-Bracket Notation 85

3. Conclusions

Within recent years nucleic acids of up to about 200 nucleotides in length have become a focus
of interest for prototype implementations of molecular computing concepts. During the same
period the importance of ribonucleic acids as components of the regulatory networks within
living cells has increasingly been revealed. While the configuration of the nucleic acids is gen-
erally linear, they can adopt a range of conformations. The conformation adopted by a nucleic
acid is determined by the possibility of its nucleotide chain to form non-covalent intramolecular
bonds through hybridisation of complementary regions in the nucleotide sequence. This in-
tramolecular hybridisation pattern, known as secondary structure of the molecule, is crucial to
the interactions a nucleic acid undergoes with other molecules. For a given secondary structure
there is typically a large number of sequences that will adopt this structure. The standard
method for denoting nucleic acid secondary structure is in the form of a string of matching
parenthesis for hybridising pairs of nucleotides separated by dots representing nucleotides that
do not participate in internal hybridisation. We have extended this notation for the convenience
of human users as well as machine processing. The extensions allow for a more compact nota-
tion through the use of iterator operators and grouping symbols, provide for constraints placed
on the nucleotides that may appear in a position, and facilitate the annotation of sequence
regions and the graphical rendering of secondary structures.

A downside of the proposed annotation is the potentially increased complexity of the strings
that represent a molecule. For human readers this means that more symbols and the scoping
of operators needs to be understood to read the notation. For machines establishing the equiv-
alence of the secondary structures denoted by two strings is no longer as simple as comparing
the strings. However, the language of the dot-bracket notation is a subset of the extended
dot-bracket notation proposed here and the use of its symbols and operators is thus wholly
optional. The most appropriate notation will depend on the application. For instance, the use
of iterator operators make it easier for humans to compare the length of hybridised regions
within a molecule, but the relative lengths of oligonucleotides is more readily apparent if de-
noted without iterator operators. Human users can choose to use the features of the extended
notation according to application. For machine processing the extended notation can easily be
expanded or reduced to the standard dot-bracket notation.

In our own work we felt the need for a more expressive notation for computational nucleic
acids. The extended dot-bracket notation described here answers this need. We are currently
converting our software tools to the new notation. The accompanying widening of its use is
likely to lead to further refinements of the notation and we welcome suggestions for improving
its usefulness. For example, the application of iterators to groups and the nesting of groups are
not currently part of the extended notation, but could be added if needed. We expect to make
the code used for rendering secondary structures in LaTeX [7] with TikZ [13] available in the
near future.

86 E. I. Ramlan and K.-P. Zauner

References

[1] ADLEMAN, L. M., Molecular computation of solutions to combinatorial problems, Science 226
(1994), 1021–1024.

[2] HOFACKER, I. L., FONTANA, W., STADLER, P. F., BONHOEFFER, L. S., TACKER, M.,
SCHUSTER, P., Fast folding and comparison of RNA secondary structures, Chemical Monthly
125 (2) (1994), 167–188.

[3] ANDRONESCU, M., ANGUIRRE-HERNÁNDEZ, R., CONDON, A., HOOS, H. H., RNAsoft:
A suite of RNA secondary structure prediction and design software tools, Nucleic Acid Research
31 (13) (2003), 3461–3422.

[4] BURKE, D. H., OZEROVA, N. D. S., NILSEN-HAMILTON, M., Allosteric hammerhead ri-
bozyme TRAPs, Biochemistry 41 (2002), 6588–6594.

[5] BUSCH, A., BACKOFEN, R., INFO-RNA – a fast approach to inverse RNA folding, Bioinfor-
matics 22 (15) (2006), 1823–1831.

[6] HIGGS, P. G., RNA secondary structure: physical and computational aspects, Quarterly Reviews
of Biophysics 33 (3) (2000), 199–253.

[7] LAMPORT, L., LaTex: A document preparation system, user’s guide and reference manual,
Addison-Wesley, Mass 1994.

[8] LIBERMAN, E. A., Analog-digital molecular cell computer, BioSystems 11 (1979), 111–124.

[9] STOJANOVIC, M. N., STEFANOVIC, D., A deoxyribozyme-based molecular automaton, Nature
Biotechnology 21 (9) (2003), 1069–1074.

[10] PENCHOVSKY, R., BREAKER, R. R., Computational design and experimental validation of
oligonucleotide-sensing allosteric ribozymes, Nature Biotechnology 23 (11) (2005), 1424–1433.

[11] RAMLAN, E. I., ZAUNER, K.-P., Nucleic acid enzymes: The fusion of self-assembly and confor-
mation computing, International Journal of Unconventional Computing, in print (2008).

[12] STOJANOVIC, M. N., MITCHELL, T. E., STEFANOVIC, D., Deoxyribozyme-based logic gates,
Journal of the American Chemical Society 124 (2002), 3555–3561.

[13] TANTAU, T., TikZ and PGF Manual for version 2.0, 2007.

[14] WANG, D. Y., LAI, H. Y., FELDMAN, A. R., SEN, D., A general approach for the use of oligonu-
cleotide effectors to regulate the catalysis of RNA-cleaving ribozymes and DNAzymes, Nucleic
Acids Research 30 (8) (2002), 1735–1742.

[15] ZAUNER, K.-P., Molecular information technology, Critical Reviews in Solid State and Material
Sciences 30 (1) (2005), 33–69.

A SOFTWARE TOOL FOR GENERATING

GRAPHICS BY MEANS OF P SYSTEMS

Elena Rivero-Gil Miguel A. Gutiérrez-Naranjo

Álvaro Romero-Jiménez Agust́ın Riscos-Núñez
Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Seville

E-mails: elen.rg@gmail.com, magutier@us.es,

Alvaro.Romero@cs.us.es, ariscosn@us.es

Abstract

The hand-made graphical representation of the configuration of a P system becomes a hard task
when the number of membranes and objects increases. In this paper we present a new software
tool, called JPLANT, for computing and representing the evolution of a P system model with
membrane creation. We also present some experiments performed with JPLANT and point out
new lines for the research in computer graphics with membrane systems.

1. Introduction

Since A.R. Smith [12] proposed Lindenmayer systems (L-systems) [5] as a tool for synthesiz-
ing realistic images of plants, many efforts have been done for bridging the theory of formal
languages and computer graphics.

In [2, 3], a first membrane-based device for computer graphics was presented. It was a hybrid
model between L-systems and membrane computing and it used concepts very close to the L-
systems model. Later, in [10], a new approach was presented for representing the development
of higher plants with P systems. It was based on a type of P systems with membrane creation
and it was entirely developed with membrane computing techniques. The basic idea was to
consider the growing of the structure of membranes in a P system with membrane creation.

By definition, the structure of membranes in a cell-like P system is a (formal) tree. In P
systems with membrane creation, new membranes can be created inside the existing membranes
and this produces the expansion of the structure of membranes by increasing the depth of
the branches. With an appropriate interpretation of the objects inside the membranes, the
membrane structure can be represented as a tree which evolves in time and the length and
width of the branches can grow in a similar way to real plants. In [11], the study started at [10]
was completed by adding stochastic rules to the P system. In this case, the random choice of

88 E. Rivero-Gil, M.A. Gutiérrez-Naranjo Á. Romero-Jiménez, A. Riscos-Núñez

different rules produces different configurations of the P system and, hence, different graphical
representations.

The hand-made graphical representation of the configurations of the P system becomes a hard
task when the number of membranes and objects increases. For this reason, to study in depth
the relationship between P systems and computer graphics it was necessary to develop a software
able to deal with complex P systems and to represent graphically its evolution along time.

In this paper we present such a software, JPLANT, which computes the first configurations of
a computation and draws the corresponding graphical representations. This software is a very
useful tool for the experimental research of the graphical representation of P systems. We show
several experiments and open new research lines for exploring the possibilities of P systems.

The paper is organized as follows: Section 2 recall the restricted model of P systems with
membrane creation used for the graphical design. Section 3 gives a brief presentation of the
software JPLANT and the next section shows several experiments. The paper finishes with
some conclusions and lines for future research.

2. P Systems with Membrane Creation

Membrane computing is a branch of natural computing which abstracts from the structure and
the functioning of the living cell. In the basic model, membrane systems (also frequently called
P systems) are distributed parallel computing devices, processing multisets of symbol-objects,
synchronously, in the compartments defined by a cell-like membrane structure (a detailed de-
scription of P systems can be found in [9] and updated information in [13]).

In this paper we consider P systems which make use of membrane creation rules, which were
first introduced in [4, 6]. However, our needs are far simpler than what the models found in the
literature provide. This is the reason why we introduce the new variant of restricted P systems
with membrane creation.

A restricted P system with membrane creation is a tuple Π = (O, µ,w1, . . . , wm, R) where:

1. O is the alphabet of objects. There exist two distinguished objects, F and W , that always
belong to the alphabet of any P system considered below.

2. µ is the initial membrane structure, consisting of a hierarchical structure of m membranes
(all of them with the same label; for the sake of simplicity we omit the label).

3. w1, . . . , wm are the multisets of objects initially placed in the m regions delimited by the
membranes of µ.

4. R is a finite set of evolution rules associated with every membrane, which can be of the
two following kinds:

A Software Tool for Generating Graphics by means of P Systems 89

(a) a → v, where a ∈ O and v is a multiset over O. This rule replaces an object a

present in a membrane of µ by the multiset of objects v.

(b) a → [v], where a ∈ O and v is a multiset over O. This rule replaces an object a

present in a membrane of µ by a new membrane with the same label and containing
the multiset of objects v.

A membrane structure together with the objects contained in the regions defined by its mem-
branes constitute a configuration of the system. A transition step is performed applying to
a configuration the evolution rules of the system in the usual way within the framework of
membrane computing, that is, in a non-deterministic maximally parallel way; a rule in a region
is applied if and only if the object occurring in its left–hand side is available in that region;
this object is then consumed and the objects indicated in the right–hand side of the rule are
created inside the membrane. The rules are applied in all the membranes simultaneously, and
all the objects in them that can trigger a rule must do it. When there are several possibilities
to choose the evolution rules to apply, non-determinism takes place.

2.1. Graphical Representation

In this section we show how to use, through a suitable graphical representation, restricted P
systems with membrane creation to model branching structures. The key point of the repre-
sentation relies on the fact that a membrane structure is a rooted tree of membranes, whose
root is the skin membrane and whose leaves are the elementary membranes. Thus, this seems
a suitable frame to encode the branching structure.

Let us suppose that the alphabet O of objects contains the objects F and W , and let us fix the
lengths l and w.

A simple model to graphically represent a membrane structure is to make a depth-first search
of it, drawing, for each membrane containing the object F , a segment of length m × l, where
m is the multiplicity of F . If the number of copies of F in a membrane increases along the
computation, the graphical interpretation is that the corresponding segment is lengthening.
Analogously, the multiplicity of the symbol W specifies the width of the segments to be drawn as
follows: if the number of objects W present in a membrane is n, then the segment corresponding
to this membrane must be drawn with width n × w.

Each segment is drawn rotated with respect to the segment corresponding to its parent mem-
brane. In order to determine the rotation angle we need to fix a third parameter δ. This angle
δ together with the length l and the width w will determine the picture of each configuration
of the P system.

In order to compute the rotation angle of a segment with respect to the segment corresponding
to its parent membrane we consider two new objects that can appear in the alphabet: + and
−. The rotation angle will be n × δ, where n is the multiplicity of objects “+” minus the

90 E. Rivero-Gil, M.A. Gutiérrez-Naranjo Á. Romero-Jiménez, A. Riscos-Núñez

multiplicity of objects “−” in the membrane. That is, each object “+” means that the rotation
angle is increased by δ whereas each object “−” means that it is decreased by δ.

Inside the membranes other objects can appear that do not have geometrical interpretation.
They are related to the development of the graph along time.

For a better understanding let us consider the following example: let Π1 be the restricted P
system with membrane creation such that

Figure 1: First four configurations

• The alphabet of objects is O = {F,W,Bl, Bs, Br, L, L1, E, +,−}.

• The initial membrane structure together with the initial multiset of objects is [F 2 W Bl Bs L1 E].

• The rules are:

Bl → [+ F W Bl Bs LE] L → LF

Bs → [F W Bl Br L1 E] L1 → L1 F 2

Br → [−F W Bl Bs LE] E → E W

In this system, the object Bs represents the straight branches to be created, whereas the objects
Bl and Br represent branches to be created rotated to the left and to the right, respectively.
The objects F and W will determine the length and the width of the corresponding branch.
The objects L, L1, and E do not have a graphical interpretation; they can be considered as
seeds for growing the branch in length and width.

A Software Tool for Generating Graphics by means of P Systems 91

The initial configuration consists of one membrane which contains two copies of F and one
copy of W . If we consider the parameters l, w, and δ, then the graphical representation of
this initial configuration is a single segment of length 2 × l and width w. In the first step,
the objects Bl and Bs create new membranes, so the picture of this configuration consists on
three segments. The new membrane created by Bs does not contains objects + or − and then
the corresponding segment is not rotated with respect to the segment that represents the skin.
On the other hand, the membrane created by Bl contains one object +, so its segment will be
rotated an angle δ with respect to its parent membrane.

Notice also that the evolution of the objects L1 and E has modified the number of objects F

and W in the skin, so in this new picture, the segment corresponding to the skin has length
4 × l and width 2 × w.

Figure 1 shows the graphical representation of the first four configurations where we fix a
bottom-up orientation and an angle δ of 15 degrees.

2.2. Stochastic Versus Non-deterministic P Systems

The non-determinism is one of the main features of P systems and the possibility of reaching
different configurations leads us to consider different graphical representations in the evolution
of a P system.

One possible way to formalize the probability of obtaining one or another configuration is via
stochastic P systems. Several alternatives to incorporate randomness into membrane systems
can be found in the literature (see [1, 7, 8] and the references therein). One of them is to
associate each rule of the P system with a probability of execution. Thus, to pass from a
configuration of the system to the next one we apply to every object present in the configuration
a rule chosen at random, according to those probabilities, among all the rules whose left–hand
side coincides with the object (this idea was presented in [11]).

For example, let us consider Π2 the following restricted P system with membrane creation:

• The alphabet of objects is O = {F,W,Bl, Bs, Br, L, L1, E}.

• The initial membrane structure together with the initial multiset of objects is [F 2 W Bl Bs L1 E].

• The rules are:

Bl

1/2
−−→ [+ F W Bl Bs LE] L → LF

Bl

1/2
−−→ [−F W Bl Bs LE] L1 → L1 F 2

Br

1/2
−−→ [+ F W Bl Bs LE] E → E W

Br

1/2
−−→ [−F W Bl Bs LE] Bs → [F W Bl Br L1 E]

92 E. Rivero-Gil, M.A. Gutiérrez-Naranjo Á. Romero-Jiménez, A. Riscos-Núñez

Figure 2: Four configurations after the second step

There exist two rules for the evolution of the object Bl and two possibilities for the evolution
of the object Br. The probability for each choice is 1/2. Notice that we do not make explicit
the probability of the rule when this is 1.

Figure 2 shows four different configurations after the second step of this P system with the
angle δ = 15.

3. JPLANT

In order to avoid the heavy task of obtaining by hand the graphical representation of a configu-
ration of a restricted P system with membrane creation a new software tool has been designed.
In this paper we present JPLANT (the software is available from [13]), which computes the
first configurations of a computation of such a P system and draws the corresponding graphical
representations of these configurations.

JPLANT has been written in Java and it has an intuitive user-friendly graphical interface. The
initial configuration and the set of rules are provided in plain text mode. The syntax of the
initial configuration and the rules of the system are checked for correctness before starting the
computation. The generation of a new configuration is driven by the user which can choose
between jumping to a configuration N or generating (and drawing) at each time the next
configuration.

The software tool is thought as a drawing tool so the computed new configurations are not
showed to the user in text mode. The output is a picture with a set of connected segments
drawn according with the rules described in Section 2. For each new configuration, a new
picture is drawn, so the output of this tool is a sequence of pictures which can be saved in
several computer graphic formats.

A Software Tool for Generating Graphics by means of P Systems 93

The graphical representation of one configuration is not unique. It depends on the parameters
l, w and δ which determine the length and width of the segments as well as the angles between
them. Such parameters must be also provided by the user as input of the tool, together with
the initial configuration and the rules.

The current version of JPLANT includes the ability to load and save files with the input data
and to save the generated pictures and also to provide color to the pictures.

Another feature of JPLANT is the possibility of coloring the graphics generated from the
configurations of the system. This is performed bu drawing the segments associated with each
membrane in different colors, obtaining this way more realistic pictures. We must point out
that these graphical elements are not intrinsic to the P system, but are indicated externally to
it.

Figure 3 shows a snapshot of this computer software.

Figure 3: Snapshot of JPLANT

4. Applications

Next we illustrate the possibilities of JPLANT with some examples.

4.1. Polygons and Spirals

Polygons and spirals can be considered a very special case of branching structures. They consist
of a connected set of segments where a vertex only connect two segments. From a membrane
computing point of view, this means that each membrane in a configuration only contains one
membrane.

94 E. Rivero-Gil, M.A. Gutiérrez-Naranjo Á. Romero-Jiménez, A. Riscos-Núñez

4.1.1. Polygons

A first example of figures built with P systems are regular polygons. In such polygons the
length of the side is constant and the angle of deviation from the previous side is also constant.
A simple calculus shows us that a deviation of δ = 360/n degrees allows us to built a regular
polygon of n sides.

Figure 4: 10-polygon and 12-polygon

Figure 4 shows regular polygons of n = 10 and n = 12 sides obtained with δ = 36 and δ = 30
degrees. Obviously the number of steps are 10 and 12 respectively. The P system is the
following

Initial configuration: [F W H]

Rule: H → [−F W H]

4.1.2. Spirals

In mathematics, a spiral is a curve which emanates from a central point, getting progressively
farther away as it revolves around the point. The concise mathematical definition is the locus
of a point moving at constant speed whose distance from a fixed point increases at a specific
rate.

An Archimedean spiral (a spiral named after the 3rd-century-BC Greek mathematician Archimedes)
is the locus of points corresponding to the locations over time of a point moving away from
a fixed point with a constant speed along a line which rotates with constant angular velocity.
Equivalently, in polar coordinates (ρ, ω) it can be described by the equation ρ = a + bω with
real numbers a and b. Archimedes described such a spiral in his book On Spirals. It can be
represented with the following P system:

Initial configuration: [F nWHL]

Rules: H → [−F nWLH]
L → LF

A Software Tool for Generating Graphics by means of P Systems 95

Figure 5: Archimedes’ spiral

Figure 5 shows the representation of such Archimedes spiral for n = 5, length of F = 0.01,
width W = 1.0, angle δ = 15 and step 120.

The logarithmic spiral is a special kind of spiral curve which often appears in nature. It was
first described by Descartes and extensively investigated by Jakob Bernoulli, who called it
Spira mirabilis, “the marvelous spiral”. Its equation in polar coordinates is ρ = cω. It can be
approximated by the P system

Initial configuration: [F nWHL]

Rules: H → [−F nWLH]
L → LM1F

M1 → M2

. . .

Mi−1 → Mi

Mi → L

Figure 6 shows the representation of such logarithmic spiral for n = 10, i = 7, length of
F = 0.001, width W = 1.0 angle δ = 30 and step 40.

4.2. Friezes

Another application of JPLANT for the graphical representation of restricted P systems with
membrane creation is the design of friezes.

With the appropriate interpretation of the symbols, the following P system can be represented
as a frieze based on right angles which has a flavor of Greek friezes. It can be extended
horizontally in an unbounded manner.

96 E. Rivero-Gil, M.A. Gutiérrez-Naranjo Á. Romero-Jiménez, A. Riscos-Núñez

Figure 6: Logarithmic spiral

Figure 7: The first frieze

Initial configuration: [F 5 W H1]

Rules: H1 → [−F 5 W H2] H7 → [+ F W H8]
H2 → [−F 4 W H3] H8 → [+ F 2 W H9]
H3 → [−F 3 W H4] H9 → [+ F 3 W H10]
H4 → [−F 2 W H5] H10 → [+ F 4 W H11]
H5 → [−F W H6] H11 → [+ F 5 W H12]
H6 → [−F W H7] H12 → [+ F 5 W H1]

Figure 7 shows the representation of such frieze for length of F = 0.5, width W = 1 angle
δ = 90 and step 60.

Figure 8 shows a horizontally bounded frieze based on the Archimedes spiral.

A Software Tool for Generating Graphics by means of P Systems 97

Figure 8: The second frieze

Initial configuration: [F 300 W 40 H1 I1 D1]

Rules: H1 → [F 300 W 40 H2 I2 D2] I1 → I2

H2 → [F 300 W 40 H3 I3 D3] D1 → D2

H3 → [F 300 W 40] I2 → I3

L → LF D2 → D3

K → K W I3 → I4

I4 → [−11 F W LK D4] D3 → D4

D4 → [+ F W LK D4]

Figure 8 shows the representation of such frieze for length of F = 0.01, width W = 0.1 angle
δ = 15 and step 40.

4.3. Plants

Figure 9 shows the corresponding graphical representation of the ninth configuration of the P
system presented in Section 2.1, where we fix a bottom-up orientation with a length F = 1,
width W = 2 and an angle δ of 15 degrees.

Figure 10 represents four different trees obtained with JPLANT from the P system in Section
2.2.

5. Conclusions and Future Work

In this paper we have shown the suitability of P systems for modeling the growth of branch-
ing structures. It is our opinion that using membrane computing for this task could be an
alternative to L-systems, the model most widely studied nowadays, for several reasons: the
process of growing is closer to reality, since for example a plant does not grow by “rewriting”
its branches, but by lengthening, widening and ramifying them; the membrane structure of P
systems supports better and clearer the differentiation of the system into small units, easier to
understand and possibly with different behaviors; the computational power of membrane sys-
tems can provide tools to easily simulate more complex models of growing, for example taking
into account the flow of nutrients or hormones.

98 E. Rivero-Gil, M.A. Gutiérrez-Naranjo Á. Romero-Jiménez, A. Riscos-Núñez

Figure 9: Tree

Nevertheless, it is still necessary a deeper study of several features of our proposed framework
as compared with that of Lindenmayer systems. Two aspects that have to be investigated
are the complexity of the models that can be constructed, and the computational efficiency in
order to generate their graphical representation. On one hand, the use of the ingredients of
membrane computing can lead to more intuitive models; on the other hand, we lose the linear
sequence of graphical commands that characterize the parsing algorithm of L-systems.

From a theoretical point of view, one of the main drawbacks of the model is that it is ex-
tremely simple. Although the orientation of the paper belongs to the framework of membrane
computing, the exclusive use of rules of type a → v and a → [v] miss the potential richness
of expressiveness and computation of P systems. The following steps on this line should be
devoted to the study of the graphical possibilities of P systems with more features, such as
labels for the membranes (they can help to distinguish between different parts of a plant), the
use of communication rules, allowing objects to cross the membranes of the system, division
and/or dissolution rules, rules with cooperation, etc.

A Software Tool for Generating Graphics by means of P Systems 99

Figure 10: Four configurations

Acknowledgements

The authors acknowledge the support of the project TIN2006-13425 of the Ministerio de Ed-
ucación y Ciencia of Spain, cofinanced by FEDER funds, and the support of the project of
excellence TIC-581 of the Junta de Andalućıa.

References

[1] ARDELEAN, I., CAVALIERE, M., Modelling Biological Processes by Using a Probabilistic P
System Software, Natural Computing 2 (2) (2003), 173–197.

[2] GEORGIOU, A., GHEORGHE, M., Generative Devices Used in Graphics, in: A. Alhazov, C.
Mart́ın–Vide, Gh. Păun, (Eds.), Preproceedings of the Workshop on Membrane Computing,
Tarragona, Spain, 2003, 266–272.

100 E. Rivero-Gil, M.A. Gutiérrez-Naranjo Á. Romero-Jiménez, A. Riscos-Núñez

[3] GEORGIOU, A., GHEORGHE, M., BERNARDINI, F., Membrane-Based Devices Used in Com-
puter Graphics, in: G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez (Eds.), Applications of Membrane
Computing, Springer-Verlag, Berlin, Heidelberg, New York, 2006, 253–282.

[4] ITO, M., MARTÍN-VIDE, C., PĂUN, Gh., A characterization of Parikh sets of ET0L languages
in terms of P systems, in: M. Ito, Gh. Păun, S. Yu (Eds.), Words, Semigroups, and Transducers,
World Scientific, 2001, 239–254.

[5] LINDENMAYER, A., Mathematical models for cellular interaction in development, Parts I and
II, Journal of Theoretical Biology 18 (1968), 280–315.

[6] MADHU, M., KRITHIVASAN, K., P Systems with Membrane Creation: Universality and Effi-
ciency, in: M. Margenstern, Y. Rogozhin (Eds.), Proceedings of the Third International Confer-
ence on Universal Machines and Computations, Lecture Notes in Computer Science 2055 (2001),
276–287.

[7] OBTU LOWICZ, A., PĂUN, Gh., (In search of) Probabilistic P systems, Biosystems 70 (2) (2003),
107–121.

[8] PESCINI, D., BESOZZI, D., MAURI, G., ZANDRON, C., Dynamical probabilistic P systems,
International Journal of Foundations of Computer Science 17 (1) (2006), 183–204.

[9] PĂUN, Gh., Membrane Computing. An Introduction, Springer-Verlag, Berlin 2002.

[10] ROMERO-JIMÉNEZ, A., GUTIÉRREZ-NARANJO, M.A., PÉREZ-JIMÉNEZ, M.J., The
growth of branching structures with P systems, in: C. Graciani-Dı́az, Gh. Păun, A. Romero–
Jiménez, F. Sancho-Caparrini (Eds.), Proceedings of the Fourth Brainstorming Week on Mem-
brane Computing, Vol. II, Sevilla, Spain, 2006, 253–265.

[11] ROMERO-JIMÉNEZ, A., GUTIÉRREZ-NARANJO, M. A., PÉREZ-JIMÉNEZ, M. J., Graphical
modelling of higher plants using P systems, in: H. J. Hoogeboom, Gh. Păun, G. Rozenberg, A.
Salomaa (Eds.), Membrane Computing, Seventh International Workshop, WMC 2006, Lecture
Notes in Computer Science 4361, 2006, 496–506.

[12] SMITH, A.R., Plants, Fractals and formal languages, Computer Graphics 18 (3) (1984), 1–10.

[13] The P Systems Web Page http://ppage.psystems.eu/

Author Index

Aman, Bogdan, 17

Bandyopadhyay, Anirban, 9

Ceterchi, Rodica, 29
Ciobanu, Gabriel, 17

Franco, Giuditta, 11
Freund, Rudolf, 43

Gutiérrez-Naranjo, Miguel A., 87

Krassovitskiy, Alexander, 53
Krishna, Shankara Narayanan, 15

Neary, Turlough, 65

Pérez-Jiménez, Mario, 29

Ramlan, Effirul I., 75
Riscos-Núñez, Agust́ın, 87
Rivero-Gil, Elena, 87
Rogozhin, Yurii, 53
Romero-Jiménez, Álvaro, 87

Tomescu, Alexandru Ioan, 29

Verlan, Sergey, 43, 53

Zauner, Klaus-Peter, 75

	ersteSeitenCBM
	CBMfrontmatter
	anirbar
	Giuditta
	krishna
	cbmAmanCiobanuFinal
	dl-ps-6
	mink
	insdelMemf1
	NearyCBM2008
	Ramlan
	sevilla
	CBMfrontmatter

